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Background: The severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is an infectious virus, which has generated a global pandemic.
Since December 20, 2020, Israel was one of the first countries to vaccinate its
population. This study analyzes the weight of four covariates on a daily mortality
growth rate from SARS-COV2 virus. These include population size, median age,
a socio-economic ranking at a city level, a date variable and a dummy variable
that equals 1 for post-vaccination and 0 for pre-vaccination era.

Method: Regression analysis, where each variable is converted to the standard
normal distribution function. This methodology permits the estimation of
variations in daily mortality growth rates, where all the covariates are given in
comparable units of measurement (one standard deviation). Consequently, the
coe�cients of this regression have to be measured as absolute value weights.

Results: Findings suggest a rise in projected mortality growth rate with
population-size and median age, and a drop with socio-economic ranking and
vaccination availability. Of the four investigated covariates, population size and
median age of the city have the highest weight, whereas socio-economic ranking
and vaccination availability have the lowest weight.

Conclusions: In an e�ort to reduce the mortality of severe coronavirus disease
(COVID19) patients, greater priority should be given to larger cities with a
relatively older population profile. In particular, policies should strive for better
coordination at a municipal level between health and municipal and welfare
services, particularly in large cities.
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1 Introduction

COVID-19 is regarded as the second most consequential epidemic in modern history,

following the Spanish flu of 1918–1921, largely due to its extensive global reach and

mortality (1–3). A central concern throughout the pandemic has been the scale of global

fatalities. By early October 2021, COVID-19 had resulted in 4.8 million deaths worldwide.

While this number is considerably lower than the estimated 35 million deaths caused by

the Spanish flu, the comparison becomes much more striking when adjusted for today’s

global population. If the Spanish flu were to occur under current demographic conditions,

it could have caused as many as 150 million deaths (3). Additionally, forecasts indicate

that the total number of deaths from COVID-19 could continue to rise significantly in the

coming years (4).
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Despite these global comparisons, the impact of COVID-19 has

varied greatly from one country to another. In the United States, the

toll has been especially heavy. As of October 7, 2021, the country

had recorded 710,173 COVID-19 deaths—exceeding the estimated

675,000 American fatalities from the 1918–1919 Spanish flu (5).

This milestone highlights the extraordinary burden the current

pandemic has placed on the U.S., despite a century of advancements

in medical science and public health systems.

In contrast, Israel’s experience has been markedly different.

Although it faced many of the same global challenges, its official

COVID-19 death toll has remained comparatively low. This

contrast highlights the uneven distribution of the pandemic’s

effects and positions Israel as a noteworthy case in the broader

international response (4).

Israel provides a notable case study during the COVID-19

pandemic, featuring:

1. Uneven distribution of population density, and high levels of

urbanization which might exacerbate the spread of the virus

(6, 7).

2. Variations in household income and socioeconomic status (8).

3. More than 50% of the population being fully vaccinated

by March 2021 following an early nationwide vaccination

campaign (9).

This study aims to investigate how vaccination rates, city

population size, socioeconomic status, and median resident age in

167 local authorities affect the daily COVID-19 mortality growth

rate. It utilized panel data tracking mortality rates from March 11,

2020, to September 21, 2021, with vaccines becoming available from

December 20, 2020.

In contrast to previous studies that used diverse measurement

units, this research applied normalized variables in the regression

model. The findings show that among the four factors examined,

city population size and median age have the most significant

impact, whereas socioeconomic status and vaccination availability

have the least. The size of the city population is the most influential

factor on expected mortality rates due to increased interactions

in densely populated areas. Additionally, older age groups are at

a higher risk of infection and mortality (2, 10, 11). Conversely,

socioeconomic status and the initiation of vaccination campaigns

have a negative effect on mortality rates.

The article is structured as follows. Section 2 describes

the descriptive statistics. Section 3 presents the methodology

and Section 4 presents the results. Finally, Section 5 concludes

and summarizes.

2 Descriptive statistics

This section describes the variables used in the empirical

model. The descriptive statistics of the variables are presented

in Table 1. These data are official figures provided by the Israeli

Ministry of Health and are presented here as they appear in the

original database.

Abbreviations: COVID, coronavirus disease; SARS-CoV-2, severe acute

respiratory syndrome coronavirus 2.

The study utilizes data from 167 local authorities in Israel

(i = 1, 2, 3, · · · , 167) over a period of up to 550 days

(t = 11, 12, 13, · · · , 560), resulting in a total of i × t =

70, 085 observations.1 The number of days is calculated as

(550 = 560− 11+ 1). The time variable t corresponds to

calendar dates ranging from day 11 (March 11, 2020, marking the

first recorded COVID-19 cases in Israel) to day 560 (September

21, 2021). Throughout the article, the indices i and t are used or

omitted as appropriate, depending on the context.

It is also important to note that the panel used in this study

is unbalanced; otherwise, we would expect 167 × 550 = 91, 850

observations. However, for many localities, data are missing for

a substantial number of days. Moreover, in small and isolated

localities with low mortality rates, the number of recorded deaths

often remains unchanged over time.

In each of the 167 cities and towns in Israel, the

dependent variable ln(Cum_Deaths) equals ln (Cum_Deaths)t −

ln
(

Cum_Deaths
)

t−1
and reflects the estimated daily mortality

rate from the SARS-COV2 virus (Cum_Deaths is the

accumulated number of deaths). Johnston and Dinardo

[(12), p. 42–45] demonstrate that logarithmic differences

between two adjacent data of a time series reflect an

approximation of a constant rate of percentage change. Thus,

ln (Cum_Deaths)t − ln
(

Cum_Deaths
)

t−1
reflects the daily change

in the mortality rate.2 It is worth noting that the difference between

the cumulative values on two consecutive days corresponds to the

number of deaths recorded on the latter day.

According to Table 1, and with respect to the dependent

variable ln(Cum_Deaths), the average daily mortality rate is 0.13%

and the standard deviation is 0.7%. The maximum daily increase

rate in mortality is 21.13%. This figure was obtained in Jerusalem

from 17 deaths on April 9, 2020, to 21 deaths on April 10, 2020 [an

exact calculation yields an increase of 21
17 − 1 = 23.52%, and an

approximated calculation ln(21)− ln(17) = 21.13%].

The independent variables include Dum_vaccine; median_age;

Population size and RANK2013. Dum_vaccine equals 1 in the post-

vaccination era (December 20, 2020–September 21, 2021); 0= pre-

vaccination era (March 21, 2020–December 19, 2020). According

to Table 1, during the sample period, the COVID19 vaccine was

available, and the population was vaccinated 65% of the time. With

regard to MedianAge (median age of city residents in years), the

median average age is 28.75 years and the standard deviation is

6.40 years. The median age variable was calculated by the Israeli

Ministry of Health and the Central Bureau of Statistics, which

determined the median age in each locality based on the ages of all

1 This implies the use of an unbalanced panel structure, as detailed in the

subsequent paragraph.

2 This principle may be readily demonstrated as follows. An increase from

10 to 11 deaths per day reflects an exact growth of 10%:

11

10
− 1 = 0.1 = 10%

The corresponding log di�erence is:

ln11− ln10 = 0.0953 = 9.53% ≈ 10%

This illustrates that the log di�erence closely approximates the actual

percentage change.
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TABLE 1 Descriptive statistics.

Variable Description Obs Mean SD Min Max

t Date variable from 11 (=March 11, 2020; the first

documentation of COVID19 cases) to 560 (= September 21,

2021)

70,085 341.40 134.96 11 560

1ln(Cum_Deaths) =

ln (Cum_Deaths)t −

ln
(

Cum_Deaths
)

t−1

Approximated daily mortality growth rate from SARS-COV2

virus in each of the 167 Israeli municipalities where

Cum_Deaths is the accumulated number of deaths

70,085 0.0013 0.007 0 0.2113

Dum_vaccine 1= post-vaccine era (December 20, 2020-September 21, 2021);

0= pre-vaccine era (March 21, 2020–December 19, 2020)

70,085 0.6507 0.4767 0 1

MedianAge Median age of city inhabitants in years 70,085 28.75 6.40 11.44 40.73

PopulationSize Urban population size 70,085 52,172.13 96,486.48 5,446 865,721

RANK2013 Socio-economic ranking on a scale of 1= the lowest to 255=

the highest

70,085 118.1978 74.1146 2 253

The dataset Refers to 167 Israeli municipalities (i = 1, 2, 3, · · · , 167) and up to 550 days (t = 11, 12, 13, · · · , 560), where i× t = 70, 085. Note that the panel is unbalanced. For many localities,

data is missing for numerous days. Additionally, in small and isolated localities where mortality rates are low, the number of deaths often remains unchanged.

residents. The median age ranged from 11.44 to 40.73 years. With

regard to population size (urban population), the average is 52,172

inhabitants and the standard deviation is 96,486 inhabitants. The

minimum is 5,446 persons (Kfar Vradim in the Western Galilee)

and the maximum is 865,721 persons (Jerusalem). With regard to

RANK2013 (socioeconomic ranking of the authorities on a scale of

1 = lowest to 255 = highest), the average is 118 and the standard

deviation is 74. The minimum and maximum rank (2, Shaqib

al-Salam) and 253, Lehavim) are located in the Negev.

3 Methodology

Consider the following models:

1ln
(

Cum_Deaths
)

i,t
= α0 + α1Dum_Vaccinei,t × t

+ α2MedianAgei + α3PopulationSizei

+ α4RANK2013i + µi,t (1)

µ1i,t = a1i+ ∈1,i,,t (2)

where the municipalities index is denoted by i (i =

1, 2, 3, · · · , 167), the variable t is the date index from 11 (=

11 March 2020; first record of cases COVID19) to 560 (= 21

September 2021); 1ln
(

Cum_Deaths
)

i,t
is the approximated daily

SARS-COV2 mortality decline or growth rate. The independent

variables are: Dum_Vaccinei,t × t;MedianAgei; PopulationSizei and

RANK2013i. Except Dum_Vaccinei,t × t, all independent variables

are generic and constant over time in the same municipality.

Finally, ∈1,i,,t is the random disturbance term satisfies all the

classical assumptions of the regression model, and a1i represents

the unobserved effect.

The model given by Equations 1, 2 is estimated via the random

effect regression. This procedure is discussed in Wooldridge [(18),

p. 489–490].3

An alternative estimation approach is the fixed-effects

regression model. However, this methodology is unsuitable for our

3 According toWooldridge, the randome�ect regressionmodel is given by:

yit − λyi = β0 (1− λ) + β1 (xit1 − λxi1) + · · · + βk (xitk − λxik) + (νit − λν i)

study due to its requirement that all explanatory variables must be

time-varying. Since MedianAge, PopulationSize, and RANK2013

are time-invariant covariates, using a fixed-effects model would

result in perfect multicollinearity. This issue is demonstrated

in the Table A1, which compares the estimation results of the

random-effects and fixed-effects models.

Another inherent limitation of the empirical models specified

in Equations 1, 2 is the variation in units of measurement among

the independent variables. To address this issue, we re-estimate the

following model:

Z
(

1ln
(

Cum_Deaths
))

i×t
= β0 + β1Z (Dum_Vaccine× t)i×t

+ β2Z
(

MedianAge
)

i×t

+ β3Z
(

PopulationSize
)

i×t

+ β4Z (RANK2013)i×t + µ2i,t (3)

µ2i,t = a2i+ ∈2,i,,t (4)

where Z (X)i×t =
Xi×t−X

SX
, X is the mean and SX >

0 is the standard deviation of Xi×t .
4 The advantage of this

where

λ = 1−
[

σ 2
u /

(

σ 2
u + Tσ 2

a

)]
1
2 .

νit = ai + uit

Here, yit is the dependent variable, while xit1 , · · · , xitk are the independent

variables. The coe�cients β0 ,β1 , · · · ,βk denote the parameters to be

estimated. The term ai–refers to a vector of generic dummy variables (one

for each locality, excluding the base category). The error term uit represents

the classical randomdisturbance, which satisfies the standard assumptions of

the OLS regression model. Importantly, the composite error term νit exhibits

serial correlation over time, which is addressed within the random e�ects

regression framework [(18), p. 489–490].

4 WhenXi×t is constant, SX = 0, making the transformationmathematically

ill-defined. Including β0 means estimating the model without standardizing

the intercept. However, under these conditions, one should expect to fail to

reject the null hypothesis that the intercept is zero. This is because, when the

dependent variable is standardized, its sample mean becomes zero, and the

intercept in the regression reflects this mean.
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model lies in the equal units of measurement, where increase

in one unit of measurement indicates one standard deviation.

Consequently, the estimated parameters β1,β2,β3,β4 measure the

separate contribution of each independent variable following an

identical increase in the unit of measurement. It may be readily

verified that for a normalized regression model with a constant

term and one explanatory variable, the coefficient of the normalized

explanatory variable yields the Pearson correlation between the

two variables.5

This method, also referred to as the standardized or beta

coefficient approach, is discussed in detail by Wooldridge [(18), p.

187–189]. It offers both advantages and disadvantages.

Advantage: Standardization ensures that all explanatory

variables are measured on a consistent scale, facilitating easier

interpretation. In particular, a one-unit change in a standardized

independent variable corresponds to a one-standard-deviation

change, allowing for more meaningful comparisons of effect sizes

across variables.

This approach can be particularly useful—even when compared

to models that apply uniform units, such as the double-log

model. While the double-log model yields elasticities (i.e., the

effect of a 1% increase in an independent variable, “holding”

others constant), it may not provide meaningful comparisons

when variables differ significantly in their range of variation. For

instance, if one variable (e.g., income level in a given state) exhibits

substantial variation, while another (e.g., per-student spending)

showsminimal variation, comparing their respective elasticities can

be misleading. In such cases, standardized (or beta) coefficients

offer a more sensible basis for comparison [(18), p. 187–189].

To support our use of beta coefficients, we calculated the

standard deviation-to-mean ratio. The results of this exercise is

reported in Table 2 and reveals substantial differences in variability

across variables. Notably, while population size shows a high degree

of variation (184.94%), the variation in median age is relatively low

(22.26%). This further underscores the value of standardization for

meaningful comparisons across variables.

Disadvantage: when normalization is used, it can be more

challenging to select the correct model specification, as the original

scale of the variables is lost, and the model’s performance might be

affected by the normalization process.

We estimated the standardized regression model using the

random-effect specification. This approach consists of two steps:

1. Standardizing all variables using the Stata command:

5 This may be demonstrated as follows. The simple regression model with

one explanatory variable is defined as: (1) Yi = α̂ + β̂Xi + µ̂i where Yi is

the dependent variable, Xi is the independent variable, (X,Y) are the sample

means, (SX , SY ) are the respective standard deviations, α̂, β̂ are the estimated

parameters via the OLS procedure, µ̂i are the residuals, β̂OLS =
COV(Xi ,Yi)

S2X

and the Pearson correlation is: rX,Y =
COV(Xi ,Yi)

SXSY
= β̂ SX

SY
[e.g., (13), p.

237–243]. The derived normal equations of the OLS procedure yield: (2)

Y = α + βX. Subtracting (2) from (1) and rearranging terms yields: (3)
(

Yi − Y
)

= β̂
(

Xi − X
)

+ µ̂i. Multiplication of (3) by 1
SXSY

yields: (4) (Yi−Y)
SXSY

=

β̂
(Xi−X)
SXSY

+ µ̂i. Substitution of ZY =
(Yi−Y)

SY
and ZX =

(Xi−X)
SX

yields: (5)
ZY
SX

= β̂ ZX
SY

+ µ̂i. Multiplication by SX yields: (6) ZY =

[

β̂ SX
SY

]

ZX + µ̂i.

Substitution of rX,Y = β̂ SX
SY
: in Equation 6 yields: (7) ZY = rX,YZX + µ̂i.

TABLE 2 The STD-mean ratio.

Variable SD Mean Ratio

Dum_vaccine 0.4767 0.6507 73.26%

MedianAge 6.40 28.75 22.26%

PopulationSize 96,486.48 52,172.13 184.94%

RANK2013 74.1146 118.1978 62.70%

This ratio reflects the relative variation of the explanatory variables in percentage terms,

thereby offering additional justification for reporting the standardized (beta) coefficients.

egen z_Xi = std(Xi)

where i = 1, 2, 3, 4, 5 and the variables are

X1 = 1ln
(

Cum_Deaths
)

i,t

X2 = Dum Vaccine i,t × t

X3 = MedianAgei
X4 = PopulationSizei
X5 = RANK2013i

2. Estimating the random-effects regression using the standardized

variables with the Stata command:

xtreg z_X1 z_X2 z_X3 zX4 z_X5, re

This model corresponds to Equations 3, 4 above. The time-

invariant variables also exhibit a cross-sectional dimension—that

is, variation across cities. This is evident in Tables 1, 2, where the

standard deviations are clearly non-zero. Accordingly, we believe

that the standardized beta coefficients are valid within the random-

effects framework.

4 Results

This section presents the estimation results of the empirical

models described in the previous section. Table 3 summarizes these

findings. Columns (1) and (2) display the results from estimating

Equations 1–4 using a random-effects approach, which accounts

for serial correlation in the city-specific dummy variables over time

[see, for example, (18), p. 489–490]. Column (2) provides the results

from the standardized model given by Equation 2.

The findings suggest that the projected mortality growth rate

increases with both median age and population size, while it

decreases with higher vaccine availability and improved municipal

socio-economic rankings.

Table A1 compares the random-effects and fixed-effects

estimation methods. Despite differences in model specifications,

both approaches yield consistent estimates for the impact of

the vaccine era—the only time-varying covariate—on mortality

rates. Specifically, the fixed-effects model estimates a daily decline

in mortality of approximately 5.25 × 10−7 during the vaccine

era, while the random-effects model indicates a slightly smaller

reduction of 4.62× 10−7 per day.

Figure 1 illustrates the relative impact of each variable on the

daily COVID-19 mortality rate following a one standard deviation

increase. This figure is based on the results from Column (2)
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TABLE 3 Regression analysis and covariates weights.

Variables (1) VARIABLES (2)

1ln(Cum_Deaths) Z
[

1ln(Cum_Deaths)
]

Constant −0.00223∗∗∗ Constant −0.00646

(0.000392) (0.00917)

Dum_vaccine×t −5.25×10−7∗∗∗
Z

[

dum_vaccine× t
]

(4) −0.0149∗∗∗

(1.33×10−7) (0.00379)

MedianAge 0.000132∗∗∗ Z
[

MedianAge
]

(2) 0.114∗∗∗

(1.81×10−5) (0.0155)

PopulationSize 1.32×10−8∗∗∗
Z

[

PopulationSize
]

(1) 0.171∗∗∗

(7.87×10−10) (0.0102)

RANK2013 −7.47×10−6∗∗∗
Z [RANK2013] (3) −0.0743∗∗∗

(1.54×10−6) (0.0153)

Observations 70,085 Observations 70,085

CityCode 167 CityCode 167

Wald Chi2(4) 409.48∗∗∗ 688.35∗∗∗

Coef (Dum_vaccine× t)+ Coef (MedianAge) 0.0988∗∗∗ [0.0574, 0.1401]

Coef (Dum_vaccine× t)+ Coef (PopulationSize) 0.1561∗∗∗ [0.1278, 0.1845]

ln(Cum_Deaths) is an approximation to the daily growth rate of COVID19 mortality. t is the time variable (t = 11, 12, 13, · · · , 560 where 11 = March 11, 2020 (Beginning of the COVID19

pandemic); 285= December 20, 2020 (first date of vaccination); 560= September 21, 2021).

Column (1) presents the results from the following random effects regressionmodel: yit−λyi = β0 (1− λ)+β1 (xit1 − λxi1)+· · ·+βk (xitk − λxik)+(νit − λνi), where λ = 1−
[

σ 2
u

(σ 2
u+Tσ 2

a )

]
1
2

and νit = ai + uit .

Here, yit is the dependent variable, while xit1 , · · · , xitk are the independent variables. The coefficients β0 ,β1 , · · · ,βk denote the parameters to be estimated. The term ai–refers to a vector of

generic dummy variables (one for each locality, excluding the base category). The error term uit represents the classical random disturbance, which satisfies the standard assumptions of the

OLS regression model. Importantly, the composite error term νit exhibits serial correlation over time, which is addressed within the random effects regression framework [(18), p. 489–490].

Column (2) reports the random-effect regression analysis where each variable is converted to the standard normal distribution function: (Xi) =
Xi−X
σX

where X is the average and σX is the

standard deviation of Xi . The relative weight of each variable is given in the left side of column (2).

99% confidence intervals are given in square brackets. Standard errors are given in parentheses.
∗∗∗p<0.01.

of Table 3. A standard deviation (SD) represents one standard

deviation from the mean of each variable. The figure shows

that the largest impacts on the mortality growth rate come

from the population size and median age, with a one standard

deviation increase in these variables corresponding to increases

of 0.171 and 0.114 standard deviations, respectively. Conversely,

the smallest impacts are observed from a one standard deviation

decrease in socio-economic ranking (0.0743) and vaccination

availability (0.0149).

Referring to the COVID19 vaccinations, the outcomes

demonstrate that they are less effective in the case of

infection, which is a necessary condition of mortality from

the disease. Infected persons belong to a separate risk group.

This, in turn, raises the contingent likelihood of mortality

from the disease. The main contribution to mortality

prospects is population size.6 This may be explained on the

6 City density is not always correlated with city size. The Pearson

correlation between these two variables is 0.3814.

FIGURE 1

Relative contributions of explanatory variables. The figure describes
the relative contribution of each variable to the daily mortality rate
from COVID19 following a one standard deviation increase and is
based on the outcomes obtained from column (2) in Table 3. Std
equals 1 for one standard deviation from the mean of each variable.
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grounds of elevated number of interactions in more crowded

cities (6).

The outcomes reported at the bottom of Table 3 further

corroborate these findings. In the case of one standard deviation

increase of both median age and availability of vaccinations, the

combined contribution to mortality growth rate is still positive

[+0.0988 with 99% confidence interval (0.0574, 0.1401)]. The null

hypothesis according to which the coefficients of these two variables

offset each other is rejected at the 1% significance level.

In the case of one standard deviation increase of both

population size and availability of vaccinations, the combined

contribution to mortality growth rate is still positive [+0.1561

with 99% confidence interval (0.1278, 0.1845)]. The null hypothesis

according to which the coefficients of these two variables offset each

other is rejected at the 1% significance level.

5 Discussion

This study employs panel data to analyze the COVID-19

mortality growth rate across 167 municipalities in Israel from

March 2020 to September 2021. The findings indicate several key

factors influencing mortality rates. Population size emerges as the

primary contributor, likely due to increased interactions in densely

populated areas. Additionally, the median age of the population

shows a significant positive association with mortality growth

rate, reflecting age’s established role as a risk factor for COVID-

19 severity. In contrast, socio-economic ranking and vaccination

status exhibit negative associations, although higher vaccination

rates and older populations still correlate with increased mortality

growth rates.

The study underscores the importance of tailored public health

interventions. Given reduced vaccine efficacy in already-infected

individuals, early identification and targeted medical interventions

are crucial. Municipal-level coordination is recommended to

implement strategies such as timely medication provision and

medical outreach to high-risk groups. These efforts are essential

for mitigating COVID-19mortality disparities across diverse socio-

demographic settings.

Limitations of the study include its focus on data solely

from 2020 to 2021, without accounting for subsequent changes

in coronavirus strains. To enhance the study’s relevance,

future iterations should consider extending the timeframe to

include 2022 and 2023 to capture evolving viral dynamics

more comprehensively. Additionally, exploring the critical mass

of vaccinated individuals needed to achieve herd immunity

against COVID-19 would provide valuable insights for future

research directions.

6 Conclusions

To investigate the COVID19 mortality growth rate, panel data

was used in this study. As part of the study, we observe the rate of

increase in mortality of COVID19 in each of the cities and localities

sampled in Israel from March 11, 2020 (first documentation of

COVID19 cases) to September 21, 2021 (date of availability of

vaccines, December 20, 2020).

Israel provides an interesting case study of the COVID19

pandemic, with three salient features: (1) High urbanization levels

and non-uniform distribution of population densities, which,

in turn, might increase the spread of the pandemic (6, 7);

(2) Disparities in household income groups and socio-economic

ranking (8); and (3) The early initiation of a nationwide vaccination

campaign, which resulted in the full vaccination (i.e., receipt of two

vaccine doses) ofmore than half the population by the end ofMarch

2021 (9).

The objective of the current study is to investigate the

relative contribution of the following factors to the daily

COVID19 mortality growth rate: vaccination status, population

size, socio-economic ranking and median age of population of 167

municipalities, covering almost 94 percent of the Israeli population.

The conventional empirical model uses different units of

measurement of each explanatory variable. Unlike previous studies,

we estimate a model with identical units of measurement, namely

one standard deviation of each independent variable. This target is

achieved by normalizing all the variables in the regression model.

Findings suggest population size of cities as the factor providing

the highest contribution to projected mortality growth rate

increase. This may be explained on the grounds of elevated number

of interactions in more crowded cities (6, 14, 15). Compared to

population size, the second factor producing positive contribution

to COVID19 projected death growth rate is the median age

of the population in the municipality. Indeed, the academic

literature to date shows that a salient risk factor for infection and

mortality from SARS-COV2 is age (2, 10, 11). The components

providing a negative contribution include socio-economic ranking

and vaccination. The outcomes also show that a one standard

deviation rise in both vaccination and median age is still associated

with an increase in COVID19 projected mortality growth rate.

Given the reduced effectiveness of the BNT162b2 vaccine for

the group of individuals who are already infected from SARS-

COV2 virus, which is a necessary condition of mortality from the

disease, care should be taken in an effort to accelerate the COVID19

identification. Therefore, the public policy repercussions of our

study include the need for better coordination at a municipal level

between health and municipal and welfare services, particularly

in large cities. Examples may include: (1) Reporting on isolated

individuals above 65 years or those belonging to risk factor groups

to health authorities; (2) immediate intervention by provision

of medication, such as Regeneron, efficiently given one-three

days after the COVID19 identification (16); (3) a complementary

nursing and medical intervention strategy, such as, directed phone

or house calls; (4) training of municipal employees to generate a

higher awareness to risk factors (e.g., age, comorbidity, vaccination

status), particularly given that antibody responses were reduced for

susceptible populations and therefore they might be more prone

to breakthrough infections (17). (5) Supply of monitoring and

saturation devices for risk factor groups.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1548294
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Arbel et al. 10.3389/fpubh.2025.1548294

Author contributions

YuA: Conceptualization, Formal analysis, Writing – original

draft, Writing – review & editing. YiA: Conceptualization,

Formal analysis, Writing – original draft, Writing – review

& editing. AK: Conceptualization, Formal analysis, Writing –

original draft, Writing – review & editing. MK: Conceptualization,

Formal analysis, Writing – original draft, Writing – review

& editing.

Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.

Acknowledgments

The authors are grateful to Chaim Fialkoff for

helpful comments.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. World Health Organization. Coronavirus. Available online at: https://www.
who.int/health-topics/coronavirus#tab=tab_1 and https://www.who.int/emergencies/
diseases/novel-coronavirus-2019 (Accessed May 18, 2025).

2. Wu Z, McGoogan JM. Characteristics of and important lessons from the
coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of
72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA.
(2020) 323:1239–42. doi: 10.1001/jama.2020.2648

3. Barro RJ, Ursua JF, Weng J. The Coronavirus and the Great Influenza Pandemic:
Lessons from the “Spanish Flu” for the Coronavirus’s Potential Effects on Mortality and
Economic Activity. Cambridge, MA: National Bureau of Economic Research (2020).
doi: 10.3386/w26866

4. The Economist. The Economist: The pandemic’s True Death Toll (2021, October 8).
Available online at: https://www.economist.com/graphic-detail/coronavirus-excess-
deaths-estimates (Accessed May 18, 2025).

5. Pan American Health Organization. Purple Death: The Great Flu of 1918.
Available online at: https://www.paho.org/en/who-we-are/history-paho/purple-
death-great-flu-1918#:$\sim$:text=The%20United%20States%20lost%20675%2C000,
and%20the%20Vietnam%20War%20combined (Accessed May 18, 2025).

6. Hamidi S, Ewing R, Sabouri S. Longitudinal analyses of the
relationship between development density and the COVID-19 morbidity
and mortality rates: early evidence from 1,165 metropolitan counties in the
United States. Health Place. (2020) 64:102378. doi: 10.1016/j.healthplace.2020.
102378

7. Arbel Y, Fialkoff C, Kerner A, Kerner M. Do population density, socio-
economic ranking and Gini Index of cities influence infection rates from coronavirus?
Israel as a case study. Ann Reg Sci. (2022) 68:181–206. doi: 10.1007/s00168-021-
01073-y

8. OECD Economic Surveys. (2020). Available online at: https://www.oecd.org/en/
publications/2020/09/oecd-economic-surveys-israel-2020_d68c1e17.html (Accessed
May 18, 2025).

9. Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N,
et al. Protection of BNT162b2 Vaccine Booster against Covid-19 in Israel.N Engl J Med.
(2021) 385:1393–400. doi: 10.1056/NEJMoa2114255

10. Public Health England. Disparities in the Risk and Outcomes of COVID-19.
(2020). Available online at: https://www.gov.uk/government/publications/covid-19-
review-of-disparities-in-risks-and-outcomes (Accessed May 18, 2025).

11. Losso JN, Losso MN, Toc M, Inungu JN, Finley JW. The young age
and plant-based diet hypothesis for low SARS-CoV-2 infection and COVID-
19 pandemic in Sub-Saharan Africa. Plant Foods Hum Nutr. (2021) 76:270.
doi: 10.1007/s11130-021-00907-6

12. Johnston J, Dinardo J. EconometricMethods. Fourth Edition. Singapore: McGraw
Hill International Editions (1997).

13. Kmenta J. Elements of Econometrics. Second Edition. Ann Arbor, MI: The
University of Michigan Press (1997). doi: 10.3998/mpub.15701

14. Velasco JM, Tseng W-C, Chang C-L. Factors affecting the cases and
deaths of COVID-19 victims. Int J Environ Res Public Health. (2021) 18:674.
doi: 10.3390/ijerph18020674

15. Chin ET, Ryckman T, Prince L, Leidner D, Alarid-Escudero F, Andrews JR,
et al. COVID-19 in the California state prison system: an observational study of
decarceration, ongoing risks, and risk factors. J Gen Intern Med. (2021) 36:3096–102.
doi: 10.1007/s11606-021-07022-x

16. Torrence R. Regeneron Cocktail Wins Nod for Use to Prevent COVID-19. New
York, NY: BloombergCom (2021). p. 1–2.

17. Lustig Y, Sapir E, Regev-Yochay G, Cohen C, Fluss R, Olmer L, et al. BNT162b2
COVID-19 vaccine and correlates of humoral immune responses and dynamics: a
prospective, single-centre, longitudinal cohort study in health-care workers. Lancet
Respir Med. (2021) 9:999–1009. doi: 10.1016/S2213-2600(21)00220-4

18. Wooldridge JM. Introductory Econometrics A Modern Approach. 4th ed. South-
Western Cengage Learning (2009).

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1548294
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://doi.org/10.1001/jama.2020.2648
https://doi.org/10.3386/w26866
https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates
https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates
https://www.paho.org/en/who-we-are/history-paho/purple-death-great-flu-1918#:${sim }$:text=The%20United%20States%20lost%20675%2C000,and%20the%20Vietnam%20War%20combined
https://www.paho.org/en/who-we-are/history-paho/purple-death-great-flu-1918#:${sim }$:text=The%20United%20States%20lost%20675%2C000,and%20the%20Vietnam%20War%20combined
https://www.paho.org/en/who-we-are/history-paho/purple-death-great-flu-1918#:${sim }$:text=The%20United%20States%20lost%20675%2C000,and%20the%20Vietnam%20War%20combined
https://doi.org/10.1016/j.healthplace.2020.102378
https://doi.org/10.1007/s00168-021-01073-y
https://www.oecd.org/en/publications/2020/09/oecd-economic-surveys-israel-2020_d68c1e17.html
https://www.oecd.org/en/publications/2020/09/oecd-economic-surveys-israel-2020_d68c1e17.html
https://doi.org/10.1056/NEJMoa2114255
https://www.gov.uk/government/publications/covid-19-review-of-disparities-in-risks-and-outcomes
https://www.gov.uk/government/publications/covid-19-review-of-disparities-in-risks-and-outcomes
https://doi.org/10.1007/s11130-021-00907-6
https://doi.org/10.3998/mpub.15701
https://doi.org/10.3390/ijerph18020674
https://doi.org/10.1007/s11606-021-07022-x
https://doi.org/10.1016/S2213-2600(21)00220-4
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Arbel et al. 10.3389/fpubh.2025.1548294

Appendix

TABLE A1 Fixed vs. random e�ect regression.

Procedure (1) (2)

Random e�ect Fixed-e�ect

Variables 1ln(Cum_Deaths) 1ln(Cum_Deaths)

Constant –0.00223∗∗∗ 0.00141∗∗∗

(0.000392) (4.60× 10–5)

Dum_vaccine×t –5.25× 10–7∗∗∗ –4.62× 10–7∗∗∗

(1.33× 10–7) (1.34× 10–7)

MedianAge 0.000132∗∗∗ –

(1.81× 10–5) –

PopulationSize 1.32× 10–8∗∗∗ –

(7.87× 10–10) –

RANK2013 –7.47× 10–6∗∗∗ –

(1.54× 10–6) –

Observations 70,085 70,085

Number of CityCode 167 167

Wald Chi2(4) 409.48∗∗∗ –

F(1, 69,917) – 11.90∗∗∗

Standard errors are given in parentheses.
∗∗∗P<0.01.
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