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Introduction: Despite advancements in digital health, systematic evaluations of 
mobile applications (Apps) for diabetes management are limited.

Methods: Researchers conducted searches on PUBMED, EMBASE, COCHRANE, 
SCOPUS, and WEB OF SCIENCE from inception to August 2024. The researchers 
included randomized controlled trials (RCTs) that investigated the effectiveness 
of app-based interventions in health management among diabetic patients. 
Reviewers were paired and independently conducted the screening of studies, data 
extraction, and evaluation of study quality. The primary outcome of interest was 
the modification of hemoglobin A1c (HbA1c). The researchers utilized a random 
effects model to calculate the weighted mean differences (WMDs) and 95% 
confidence intervals (CIs) and used the I2 statistic to assess study heterogeneity. 
Publication bias for the primary outcomes underwent assessment. Studies were 
Appraised for quality using the Cochrane Risk of Bias assessment.

Results: 41 studies of 3911 initially identified articles that met the selection criteria. 
The results showed that Apps’ intervention significantly improved glycemic control 
in diabetic patients, with a mean reduction in HbA1c levels of 0.49% (95%CI: –0.65 
to –0.32%) compared to standard care. The analysis also revealed that Apps 
enhanced patient self-management behaviors. Subgroup analyses failed to resolve 
heterogeneity, but studies consistently observed improved HbA1c levels. The quality 
assessment results indicated that most studies performed well in the completeness 
of outcome data and selective reporting.

Discussion: This meta-analysis confirms that mobile health applications with 
practical technological functionalities and system architectures are beneficial 
in managing diabetes. These applications significantly reduced HbA1c levels 
and improved self-management behaviors. Although some studies exhibited a 
moderate risk of bias, the overall evidence supports using these applications as 
valuable tools in diabetes care. Future research should standardize application 
features, refine system architectures, and address bias issues to enhance.

Systematic Review Registration: PROSPERO (CRD42023441365).
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1 Introduction

Diabetes mellitus (DM) affects a staggering number of 
individuals worldwide, making it one of the most prevalent 
non-communicable diseases (1, 2). In 2023, researchers estimated 
that over 500 million people are living with diabetes, and this 
number continues to rise each year (3). Chronic hyperglycemia, 
which results from defects in insulin secretion, insulin action, or 
both, characterizes diabetes and often leads to severe 
complications (4). Effective diabetes management is crucial to 
mitigate its complications, which include cardiovascular diseases, 
neuropathy, nephropathy, and retinopathy (5). Diabetes 
management is complex and requires a multifaceted approach 
involving lifestyle modifications, regular monitoring of blood 
glucose levels, medication adherence, and patient education (6). 
Technological advancements, particularly the emergence of 
mobile health applications (Apps), have significantly influenced 
the landscape of diabetes care in recent years (7, 8). By improving 
hypertension and dyslipidemia, reducing blood glucose levels can 
significantly lower the risk of adverse clinical outcomes in patients 
with type 2 diabetes and effectively control treatment costs. 
Current clinical guidelines recommend that adult patients with 
type 2 diabetes aim to maintain glycated hemoglobin (HbA1c) 
levels below 7.0% (53 mmol/mol) as one of the key goals in 
glycemic management (9).

In recent years, several systematic reviews have explored the 
potential of digital health technologies in diabetes management. 
Developing specialized applications has provided diabetes patients 
with convenient and easily accessible tools. The use of mobile 
phones has become ubiquitous, and the development of 
specialized Apps offers convenient and accessible tools for 
individuals with diabetes (10). These Apps can perform various 
functions, including real-time monitoring of blood glucose levels, 
dietary tracking, physical activity monitoring, and providing 
personalized educational content (11). They also enable patients 
to share their health data with their healthcare providers, 
facilitating remote and timely medical advice (12). Studies have 
shown that well-designed diabetes management Apps can 
positively impact patients’ self-care behaviors and glycemic 
control (12, 13). For instance, researchers have found that apps 
incorporating reminder systems for medication adherence and 
goal-setting features improve treatment compliance (14). 
Moreover, some Apps use gamification elements to enhance user 
engagement and motivation, making the management process 
more enjoyable and sustainable (15, 16). However, despite the 
promising potential, there are several challenges to the widespread 
adoption and effective use of diabetes Apps (17, 18). Issues such 
as data accuracy, interoperability between different Apps and 
healthcare systems, and the digital divide among patients with 
varying levels of technological literacy require resolution (11).

Additionally, these Apps’ long-term efficacy and cost-
effectiveness in clinical practice require further investigation (19). 
Recent reviews have emphasized the potential of digital health 
technologies to improve medication adherence and patient 
engagement while addressing the challenges of long-term 
sustainability and accessibility (20, 21). Georgieva et al. highlighted 
the need for personalized technological support and the importance 

of overcoming barriers to adoption among older adult populations 
(20). In contrast, another review focused on the role of digital tools 
in T2DM management, noting their ability to reduce logistical 
barriers like travel costs and enhance adherence through convenient 
follow-ups (21). These issues underscore the need for further 
research into digital health interventions’ functionality and system 
architecture (17, 18). Moreover, the study pointed out significant 
research gaps in existing technologies regarding their applicability 
across diverse cultural contexts, patient populations, and long-term 
outcomes. Although the studies provide valuable insights, their 
limitations form the basis for the present research. Specifically, 
systematic reviews do not comprehensively assess digital health 
interventions’ functionality, intervention models, and effectiveness 
in reducing glycated hemoglobin (HbA1c). Additionally, key issues 
such as user adoption rates, implementation feasibility, and the 
scalability of these technologies in various healthcare settings 
remain insufficiently explored. Furthermore, these interventions’ 
long-term clinical efficacy and cost-effectiveness in clinical practice 
require further investigation (19). Therefore, this study aims to 
address these research gaps by comprehensively analyzing mobile 
health intervention technologies for diabetes management, 
focusing on application functionality, system architecture, 
and effectiveness.

Unlike previous systematic reviews, this systematic review and 
meta-analysis focused on exploring how mobile health interventions’ 
technological functionalities and system architectures influence 
outcomes in diabetes management. Recent findings have highlighted 
the role of digital technologies, such as mobile apps and 
teleconsultations, in enhancing patient adherence and optimizing 
diabetes care while stressing the need for standardized protocols to 
guide their effective integration into healthcare systems (21). By 
systematically analyzing functionalities and comparing intervention 
models, this study provides practical insights for developing more 
efficient digital health technologies and integrating them into existing 
healthcare systems. This systematic review and meta-analysis 
comprehensively evaluate technological functionalities and system 
architectures of mobile health interventions for managing type 2 
diabetes. Specifically, it examines the effectiveness of various 
intervention models in reducing glycated hemoglobin (HbA1c) levels 
and systematically analyzes diabetes management applications in 
terms of app functionality, intervention models, and technical 
implementation. Additionally, the study examines user adoption rates, 
implementation feasibility, and intervention coverage. By synthesizing 
evidence on the role of mobile applications in diabetes care, this 
research seeks to provide practical insights for optimizing digital 
health technologies and integrating them into routine clinical practice. 
Ultimately, it aims to improve health outcomes for adult patients with 
type 2 diabetes by enhancing the user experience and accessibility of 
mobile health interventions.

2 Methods

2.1 Protocol

This systematic review and meta-analysis were conducted 
strictly by the Preferred Reporting Items for Systematic Reviews 
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and Meta-Analyses (PRISMA) guidelines (22). The review 
protocol was registered on PROSPERO and is publicly available 
(CRD42023441365).

2.2 Search strategy

A comprehensive electronic search was conducted in PubMed, 
Embase, Scopus, Web of Science, and the Cochrane Library using 
broad and MeSH search terms. The search period spanned from 
the inception of each database to November 2024. The optimized 
search strategy incorporated the following keywords: “type 2 
diabetes,” “T2D,” “T2DM,” “diabetes,” “hyperglycemia,” and 
“hypertension.” Supplementary Table S1 reports the detailed 
search strategies.

2.3 Study selection

The researchers applied the following eligibility criteria for 
the review:

 • Patients with type 1 or type 2 diabetes, regardless of gender, race, 
or nationality.

 • The intervention involved patients who underwent mobile 
app-based interventions.

 • The comparison included standard care without mobile 
app-based interventions.

 • The primary outcome was the change in Hemoglobin A1c 
concentration, a percentage measure widely used for diagnosing 
and managing diabetes.

 • The study utilized randomized controlled trials, providing the 
highest evidence for intervention efficacy.

If a specific study did not fulfill any inclusion criteria, the 
researchers excluded it from the analysis. The researchers also 
excluded case reports, technical notes, and letters to the editor. Two 
authors (X.Y. and Z.L.) independently screened the titles and 
abstracts of all identified citations, with a full-text review when the 
abstract was insufficient to determine whether the study met the 
inclusion or exclusion criteria. Y.W. reviewed the selected literature. 
The researchers resolved discrepancies by mutual consensus.

2.4 Data collection

From each included article, the researchers adopted a systematic 
and rigorous data extraction process to ensure the accuracy and 
reliability of the data. The extracted information encompassed 
the following:

 • Publication details (author, year, country, study design, and 
sample size).

 • Characteristics of the participants (age, sex, diabetes type, and 
diabetes duration).

 • The details of the intervention (type, follow-up duration).
 • Outcomes (HbA1c at baseline and follow-up).

Two researchers (X.Y. and Z.L.) independently performed data 
extraction, with Y.W. reviewing the results and resolving discrepancies 
through consultation and discussion (23).

2.4.1 Data collection
The researchers appraised the risk of bias within the selected 

studies using the Cochrane Collaboration tool (24). This tool evaluates 
several key domains: the generation of random sequences, the 
concealment of allocation, the blinding of both participants and 
personnel, the blinding of outcome assessment, the handling of 
incomplete outcome data, the potential for selective reporting, and the 
presence of other biases. Two investigators (X.Y. and Z.L.) 
independently assigned each domain a low, unclear, or high-risk 
rating. Y.W. and the aforementioned investigators addressed 
disagreements in risk assessment through consensus discussions.

2.4.2 Meta-analysis
The principal endpoint under investigation was the variation in 

glycated hemoglobin (HbA1c) level. A random-effects meta-analysis 
determined the mean difference (MD) in HbA1c alterations between 
the experimental and control cohorts. The researchers utilized the 
software Review Manager v5.4.1 to input the mean differences and 
corresponding standard deviations (SD) of HbA1c changes within 
each group, both for the experimental and control arms. In cases 
where studies reported only the differences between groups rather 
than within groups, the researchers solicited additional data from the 
original authors. When studies provided the standard error (SE) 
instead of the SD, the researchers applied a conversion formula to 
derive the SD. For those studies that offered 95% confidence intervals 
(CI) rather than SD, the SD was estimated based on the guidelines 
outlined in Chapter 7.7.3.2 of the Cochrane Handbook. Studies were 
omitted from the meta-analysis if the SD, SE, or 95% CI data were 
inaccessible and the authors failed to provide the necessary 
information upon request.

Using a random-effects model, the researchers aggregated the 
effect sizes and their standard deviations (SDs). Although this model 
can lead to broader confidence intervals for the point estimates, the 
researchers selected it to account for the expected variability due to 
disparities in participant demographics and research methods across 
studies. The researchers quantified the degree of heterogeneity among 
the studies using the I2 statistic, classifying it as follows: 0–40% 
signifies low heterogeneity, 30–60% suggests moderate heterogeneity, 
50–90% denotes substantial heterogeneity, and 75–100% reflects 
considerable heterogeneity (25). The researchers assessed the stability 
of the findings through sensitivity analyses, which involved the 
iterative removal of individual studies, subsequent reevaluation of the 
dataset, and comparison of the outcomes with those from fixed-effects 
models. Furthermore, Cochran’s Q test was applied to evaluate the 
consistency of effect sizes, while publication bias was investigated by 
examining funnel plots and conducting Egger’s regression analysis.

The researchers categorized interventions as ineffective if they 
observed no statistically or clinically significant differences between 
groups. Secondary outcomes included blood pressure, lipid profiles 
(total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides), 
fasting glucose levels, medication adjustments, and anthropometric 
measures (e.g., BMI, weight, and waist circumference). The researchers 
conducted subgroup analyses to explore the impact of age, diabetes 

https://doi.org/10.3389/fpubh.2025.1549568
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2025.1549568

Frontiers in Public Health 04 frontiersin.org

type, sample size, publication year, region, and intervention duration 
on the results. The researchers assessed publication bias using funnel 
plots and Egger’s linear regression test, considering p-values <0.05 as 
statistically significant.

3 Results

3.1 Study description

Our initial literature search yielded 3,911 citations. After removing 
duplicates, we retained 604 unique records. Upon reviewing the titles 
and abstracts, we deemed 1,380 articles ineligible and excluded these 
publications. During the full-text screening, we excluded an additional 
113 studies. Following the full-text assessment, we excluded another 113 
studies, with the details of these exclusions in Supplementary Table S2. 
Finally, we selected 41 studies for eligibility. Ultimately, 41 studies met 
the inclusion criteria, as illustrated in the PRISMA flowchart in Figure 1. 
Details on compliance with PRISMA 2020 are summarized in the 
PRISMA checklist, shown in Supplementary Table S3. The types of 
diabetes covered include type 1 diabetes (T1D) and type 2 diabetes 
(T2D); the numbers of related studies are 11 and 23, respectively. In 
seven studies, the participants had both T1D and T2D.

The characteristics of the included studies are presented in 
Tables 1, 2. The included researches were mainly published from 2011 
to 2023, among which the number was the largest from 2019 to 2020 
(12 studies, 29.27%). Most trials were conducted in China (n = 7) and 
the United States (n = 6). Despite the uneven distribution of studies, 
this systematic review included research from all six continents. Asia 
contributed 16 studies, Europe 14, North America 9 studies, Africa 1 
study, and Oceania 1. Based on World Bank criteria, economic status 
revealed that 25 studies were from high-income countries, 10 from 
upper-middle-income countries, and 6 from lower-middle-income 
countries (26).

All the incorporated studies were RCT, with a predominant 
emphasis on diabetes health management based on Apps. The 
included studies reported a mean duration of diabetes ranging from 
0.25 to 17.8 years. This review comprised 5,869 subjects from 41 
studies, with a sample size ranging from 22 to 452. The mean (SD) age 
of participants ranged from 10.4 (1.1) to 69.7 (10.2) years. This 
review’s App-based intervention focuses on several key areas, such as 
physical activity, dietary advice, emotional management, medication 
guidance, and other related aspects. The follow-up time of the 
intervention ranged from 3 to 24 months, with nine studies having a 
follow-up period exceeding 12 months. All included studies measured 
HbA1c outcomes at the baseline and endpoint in both the intervention 
and control groups.

3.2 Primary outcome

Figure 2 shows the summary results in reducing HbA1c among 
participants with DM. The random effects models showed that mobile 
phone App strategies were associated with a significant HbA1c 
reduction by −0.49 (95%CI: −0.65, −0.32) percentage points 
compared to standard diabetes care. Nonetheless, the studies had 
considerable heterogeneity in the overall pooled effect (I2 = 96.55%, 
p < 0.05). The Subgroup Analysis Forest Plot is presented in Figure 3, 

showing significant differences in the effects of the intervention across 
various populations and conditions. Overall, longer intervention 
durations, specific types of diabetes, and certain physiological 
subgroups demonstrated more pronounced effects, while some 
subgroups exhibited high heterogeneity or lacked statistical 
significance. These findings indicate that the intervention’s 
effectiveness varies among subgroups, providing a valuable reference 
for optimizing clinical applications and research design.

3.2.1 Type of diabetes
In 11 studies on T1D patients, the pooled result of the reduction 

level of HbA1c was −0.41 (95%CI: −0.68, −0.15), and I2 (%) was 
94.32. For the 23 studies on T2Ds, the pooled result of the reduction 
level of HbA1c was −0.52 (95%CI: −0.78, −0.28), and I2 (%) was 
96.17. For the 7 studies on both type 1 and type 2 diabetes, the pooled 
result of the reduction level of HbA1c was −0.44 (95%CI: −0.88, 0.01), 
and I2 (%) was 96.55.

3.2.2 Age
The age subgroup analysis indicated that participants less than 

52 years old had significantly decreased HbA1c levels [−0.44 (95%CI: 
−0.73, −0.14), I2 = 98.28%]. Similarly, patients aged 52 years and older 
had similar reductions in HbA1c levels [−0.46 (95%CI: −0.65, −0.27), 
I2 = 87.84%].

3.2.3 Sample size
The researchers performed a subgroup analysis based on sample 

size. The outcomes demonstrated that in the subgroup with a small 
sample size (less than 100 participants), the overall effect size for 
HbA1c reduction was statistically significant: −0.55 (95%CI: −0.86, 
−0.23), I2 = 93.91%. For the subgroup with a sample size exceeding 
100 participants, the aggregate reduction level of HbA1c is −0.42 
(95%CI: −0.61, −0.24), I2 = 96.27%.

3.2.4 Year of publication
A subgroup analysis was implemented to understand the 

variations related to the publication year. The analysis indicated that 
in the subgroup of studies published earlier than 2019, the reduction 
in HbA1c was [−0.65 (95%CI: −0.87, −0.44), I2 = 95.93%]. On the 
other hand, for studies published after 2019, the reduction in HbA1c 
was −0.32 (95%CI: −0.56, −0.07), with high heterogeneity 
(I2 = 94.89%).

3.2.5 Region
A subgroup analysis by region examined the regional differences 

in the research. The results demonstrated that for the subgroup of the 
Asia area, the reduction in HbA1c was −0.52 (95% CI: −0.86, −0.17), 
I2 = 97.36. For the subgroup of the non-Asia area, the reduction in 
HbA1c was −0.46 (95% CI: −0.65, −0.27), with high heterogeneity 
(I2 = 94.35%).

3.2.6 Duration of intervention
Of the 41 included studies, 11 had intervention duration shorter 

than 6 months, with a pooled HbA1c reduction level of −0.36 (95%CI: 
−0.86, 0.14). Sixteen studies had an intervention duration of 6 months 
and had a pooled reduction in HbA1c levels of −0.52 (95%CI: −0.76, 
−0.28). The remaining 14 studies with intervention duration longer 
than 6 months had a similar aggregate reduction in HbA1c of −0.52 
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(95%CI: −0.65, −0.32) compared to 6 months. There was significant 
heterogeneity in all the above three groups, with the I2 being more 
significant than 90%.

3.2.7 Bubble chart analysis of intervention types 
and time trends

Figure  4 evaluates the effectiveness of different mHealth 
interventions in blood glucose control, analyzing the relationship 
between intervention types and time trends. Most applications showed 
a neutral or insignificant effect on blood glucose control. However, 
studies with larger sample sizes demonstrated higher statistical power. 
Researchers found that Comprehensive Management Applications 
(CMA) and Education and Knowledge Support Applications (EKSA) 
were more effective in reducing HbA1c levels, suggesting that these 
intervention types could be key to optimizing glycemic management.

Further research into the effectiveness of CMA and EKSA and 
their potential applications in clinical treatment requires exploration. 
For interventions with less significant effects, such as Medication 
Adhesion Applications (MAA), larger-scale clinical trials are suggested 
to assess their practical impact. Additionally, future study designs 
should consider the potential influence of follow-up duration on 
intervention outcomes to enhance the effectiveness of mHealth 
applications in diabetes management.

3.2.8 Sankey diagram analysis
The flow of different mHealth intervention types is illustrated in 

Figure 4 using a Sankey diagram, highlighting their primary functions 
and associated technologies. Medication Adherence Applications 
(MAA) are primarily directed toward medication management and 
virtual support roles through automated calculation, analysis, and 
cloud storage with data synchronization technologies, demonstrating 
the potential to improve patient medication adherence. TA 
(Telemedicine Applications) are focused on health data monitoring, 
relying on remote data access technologies and platform support, and 
are associated with remote monitoring and guidance interventions. 
Behavior Support Applications (BSA) are directed toward reminders 
and personalized feedback, requiring real-time push notifications and 
remote communication technologies. They are related to motivational 
incentives and self-management support interventions. Education and 
Knowledge Support Applications (EKSA) focus on remote education 
and data management, leverage automated image recognition and 
virtual knowledge tools, and link to knowledge dissemination and 
reminder-based interventions. Comprehensive Management 
Applications (CMA), with their wide coverage of functionalities such 
as diet and exercise management, rely on integrated technologies and 
are associated with remote guidance and self-management 
support interventions.

FIGURE 1

PRISMA flowchart of study selection.

https://doi.org/10.3389/fpubh.2025.1549568
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu
 et al. 

10
.3

3
8

9
/fp

u
b

h
.2

0
2

5.154
9

56
8

Fro
n

tie
rs in

 P
u

b
lic H

e
alth

0
6

fro
n

tie
rsin

.o
rg

TABLE 1 Characteristics of included studies that incorporated smartphone App interventions.

Application 
type

References Country Participants 
(I/C)

Age years (I/C) I C Diabetes 
type

Diabates duration
years (I/C)

Outcomesa

Medication 

Adherence Apps 

(MAA)

Kamat et al. (27) India 59/59 47.2 ± 5.8/47.6 ± 6.6 30/29 29/30 T2D 4.2 ± 2.3/4.0 ± 2.2 ①②③④

Huang et al. (31) Singapore 25/25 51.5/52 9/13 11/8 T2D NR ①⑧⑦⑤③

Telemedicine Apps 

(TA)

Bujnowska-Fedak et al. 

(48)
Poland 50/50 53.1 ± 25.2/57.5 ± 27.4 26/21 25/23 T2D 8.1 ± 7.6/7.7 ± 6.8 ①③④⑤⑥

Klee et al. (47) Switzerland 28/27 13.6 ± 2.4/13.7 ± 2.4 21/7 10/17 T1D 7.5 ± 4.0/5.5 ± 3.25 ①

Crowley et al. (54) US 25/25 60 ± 8.4/60 ± 9.2 25/0 23/2 T2D 12 (IQR = 13)/12 (IQR = 9) ①④⑩

Baron et al. (58) UK 45/36 58.2 ± 13.6/55.8 ± 13.8 31/14 14/22 T1D/T2D NR ①④⑪

Ruiz De Adana et al. 

(59)
Spain 163/167 33.78 ± 9.77/36.22 ± 10.78 90/73 94/73 T1D ≥2 ①

Behavioral Support 

Apps (BSA)

Goyal et al. (32) Canada 46/46 14.1 ± 1.7/13.9 ± 1.5 21/25 20/26 T1D 7.1 ± 3.2/6.6 ± 3.2 ①

Knox et al. (55) UK 24/25 10.40 ± 1.1/10.89 ± 0.9 10/14 17/8 T1D ≥0.25 ①

Sevick et al. (63) US 131/132 NR 38/93 46/86 T2D NR ①⑧⑦⑨④②③

Ruissen et al. (28) Spain 111/115 51.5 ± 13.2/51.5 ± 10.9 71/40 73/42 T1D/T2D 16.9 ± 11.6/17.9 ± 12.3 ①

Hilmarsdóttir et al. 

(61)
Iceland 15/15 NR 9/6 10/5 T2D 4.9 ± 5.1/7.4 ± 4.4 ①②③④⑨⑦⑧⑫

Education and 

Knowledge Support 

Apps (EKSA)

Buysse et al. (49) Belgium 81/72 37 ± 14.7/38 ± 13.2 43/38 34/38 T1D/T2D NR ①

Zhou et al. (62) China 50/50 55.0 ± 13.1/53.5 ± 12.4 27/23 30/20 T1D/T2D 6.65 ± 5.14/6.63 ± 5.06 ①③④⑧

Or et al. (56) Hong Kong 33/30 69.3 ± 9.7/69.7 ± 10.2 14/19 6/24 T2D 13.9 ± 18.3/10.7 ± 8.1 ①④

Moattari et al. (64) Iran 22/22 23.35 NR NR T1D NR ①⑨⑦⑧⑫

Comprehensive 

Management Apps 

(CMA)

Rossi et al. (53) Italy 64/64 38.4 ± 10.3/34.3 ± 10.0 29/35 31/33 T1D 16.2 ± 10.0/15.0 ± 8.4 ①②④⑤⑦⑧⑨

Gunawardena et al. 

(36)
Sri Lanka 35/32 52 ± 11.7 22/13 18/14 T2D 11 ± 6/11 ± 7 ①

Lee et al. (45) Korea 91/92 56.70 ± 7.16/55.55 ± 8.56 61/30 62/30 T2D 9.74 ± 6.01/9.72 ± 7.09 ①

Zhai et al. (33) China 60/58 54.12 ± 11.1/55.64 ± 14.2 30/30 28/30 T2D 11.7 ± 5.49/12.1 ± 3.25 ①

Sun et al. (72) China 44/47 67.9 ± 3.71/68.04 ± 4.45 19/25 18/29 T2D NR ①④⑤

Tang et al. (35) US 202/213 54.0 ± 10.7/53.5 ± 10.2 119/83 130/83 T2D NR ①④⑦

Kumar et al.(46) India 150/150 18–65 years 90/60 90/60 T2D > 1 ①

Wang et al. (43) China 106/106 52.6 ± 9.1/54.7 ± 10.3 64/46 52/58 T2D 8.1 ± 7.6/7.7 ± 6.8 ①③⑨⑤⑦⑧④

Han et al. (34) China 212/206 52.1 ± 9.2/51.8 ± 8.3 62/150 48/158 T2D 7.4 ± 1.5/7.2 ± 1.5 ①③④⑨⑤⑦⑧

Quinn et al. (50) US 62/56 52 ± 8.0/53.2 ± 8.4 31/31 28/28 T2D 8.2 ± 5.3/9.0 ± 7.0 ①③④⑧⑦⑨⑤

(Continued)
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Application 
type

References Country Participants 
(I/C)

Age years (I/C) I C Diabetes 
type

Diabates duration
years (I/C)

Outcomesa

Zamanillo-Campos 

et al. (66)
Spain 96/111 63 ± 10/61 ± 12 61/35 74/37 T2D

8.7 ± 5.1/8.2 ± 5.1 ①

Waki et al. (65) Japan 15/7 55.9 ± 10.8/59.7 ± 9.9 13/2 4/3 T2D >5 ①③④⑧⑦⑨

Zhang et al. (44) China 78/78 55 ± 11/52 ± 10 50/28 49/29 T1D/T2D 11.2 ± 5.6/12.7 ± 7.1 ①

Riangkam et al. (37) Thailand 43/43 50.30 ± 1.11/52.65 ± 0.88 25/18 27/16 T2D 7.1 ± 5.64/7.1 ± 5.44 ①

Wang et al. (70) China 60/60 45.13 ± 7.83/45.8 ± 8.38 33/37 31/29 T2D NR ①

Kirwan et al. (38) Australia 36/36 35.97 ± 10.67/34.42 ± 10.26 19/17 9/27 T1D 19.69 ± 9.64/18.19 ± 9.77 ①

Iljaz et al. (67) Slovenia 58/60 56.3 ± 10.5/54.7 ± 11.1 36/22 37/23 T2D 5.1 ± 5.7/5.7 ± 4.8 ①④⑨⑧⑦③⑫

Jeffrey et al. (68) Canada 22/22 13.98 ± 1.57/13.98 ± 1.76 11/11 16/6 T1D 6.08 ± 4.14/6.44 ± 4.45 ①

Anzaldo-Campos et al. 

(51)

Mexico 102/100 51.5 ± 11.4/52.5 ± 9.7 39/63 38/62 T2D NR ①⑤⑨⑧⑦③④

Bisio et al. (60) US 57/23 33.44/39.91 23/34 12/11. T1D 15.85/15.26 ①

Charpentier et al. (57) France 59/61 31.6 ± 12.5/36.8 ± 14.1 22/37 21/40 T1D 14.7 ± 9.1/16.9 ± 10.5 ①

Chatzakis et al. (69) Greece 40/40 13.5 ± 2.8/13.5 ± 2.8 NR NR T1D NR ①

Derkaoui et al. (71) Morocco 32/30 14 ± 6/17 ± 6 19/13 14/16 T1D 4 ± 4/6 ± 4 ①

Forjuoh et al. (73) US 99/95 57.7 ± 10.3/58.5 ± 11.9 46/53 42/53 T2D NR ①

Franc et al. (52) France 231/221 39.1/38.3 NR NR T1D/T2D 17.8/1.8 ①

a① Hemoglobin A1c, ② weight, ③ body mass index, ④ blood pressure (systolic/diastolic), ⑤ total cholesterol (mg/dL), ⑥ creatinine (mg/dL), ⑦ HDL-cholesterol (mg/dL), ⑧ LDL-cholesterol (mg/dL), ⑨ triglycerides (mg/dL), ⑩ Self-Care Inventory–Revised, ⑪ daily 
insulin dose, ⑫ cholesterol.

TABLE 1 (Continued)
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TABLE 2 Summary of HbA1c data by intervention.

Application 
type

References Intervention Follow-up 
(month)

HbA1c at 
baseline (I)

HbA1c at 
follow-up (I)

HbA1c at 
baseline 

(C)

HbA1c at 
follow-up 

(C)

MAA

Kamat et al. (27)

The “incentive group” used the mobile app which provided up to four medication 

reminders per dose, pill identification and counting, and financial rewards based on 

adherence scores; reminders.

6 9.0 ± 0.3 7.3 ± 0.2 9.0 ± 0.3 8.2 ± 0.3

Huang et al. (31)
Medisafe app for medication management; medication scheduling, reminders, tracking, 

data sharing, adherence assessments; research team as “Medfriend” on the app.
3 8.7 ± 2.4 9.0 ± 1.6 8.6 ± 1.5 9.4 ± 2.4

TA

Bujnowska-Fedak et al. 

(48)

Weekly data transmission; includes blood glucose levels, insulin doses, event specifics; 

real-time alerts; trend data presentation; trend data presentation.
24 7.63 ± 1.53 7.37 ± 1.27 7.61 ± 1.65 7.43 ± 1.49

Klee et al. (47)

Monthly blood glucose reviews and feedback for treatment adaptation; remote access to 

blood glucose data; bolus calculator for insulin dosing; meal tracking; data management 

and historical overview.

3 8.1 ± 1.4 7.8 ± 1.0 8.1 ± 0.9 8.3 ± 0.8

Crowley et al. (54)
Telemonitoring; Self-management support covering SMBG, hypoglycemia, medication use, 

diet, exercise, and complications; option to repeat modules; physician-guided management
6 10.5 ± 0.2 9.2 ± 0.4 10.5 ± 0.2 10.2 ± 0.4

Baron et al. (58)
self-monitoring, mobile-phone data transmissions, graphical and nurse-initiated feedback, 

and educational calls.
9 9.07 ± 1.72 8.56 ± 1.64 8.88 ± 1.68 8.93 ± 1.61

Ruiz De Adana et al. (59)
Includes insulin doses, carbohydrates consumed, physical activity, and other health data 

inputs; generates charts, graphs, and statistics for patient and clinician use.
6 7.0 ± 0.8 7.0 ± 0.8 7.0 ± 0.7 7.0 ± 0.7

BSA

Goyal et al. (32)
Wireless blood glucose reading transfer, out-of-range blood glucose trend alerts, coaching 

around out-of-range trend causes and fixes, point-based incentive system.
12 8.96 ± 0.7 8.96 ± 1.3 8.92 ± 0.6 8.96 ± 1.2

Knox et al. (55)
STAK-D website; physical activity goal setting; feedback; knowledge enhancement; self-

efficacy enhancement for diabetes self-management; interactions with project researchers.
6 7.15 ± 0.85 7.33 ± 1.38 7.00 ± 1.18 7.24 ± 0.77

Sevick et al. (63)

Mobile device (PDA) with dietary self-monitoring app; Dietary program adjusts targets 

based on metabolic rate; customizable meal entries; Real-time feedback on diet and 

physical activity via PDA.

6 7.7 ± 2.2 7.1 ± 1.3 7.5 ± 1.7 7.3 ± 1.6

Ruissen et al. (28)

Goal setting, tracking goal progress, automatic reminders, barrier identification, providing 

psychoeducation and targeted interventions; reminders are automatically triggered based 

on the set goals and tracked progress.

10.05 7.7 ± 1.3 7.3 ± 1.1 7.8 ± 1.3 7.7 ± 1.1

Hilmarsdóttir (61)

Digital lifestyle program; goal setting, self-monitoring, health-related tasks; nutrition; 

physical activity; stress management; clinic; gamified technology with health points and 

rewards, standard guidance and support; individualized encouragement based on app 

activity.

6 7.7 ± 2.0 7.0 ± 1.4 7.8 ± 1.9 7.7 ± 1.4

EKSA

Buysse et al. (49)

Immediate access to tele-education platform; education communication; user management 

via eConnecta platform allowing specific access to patient data; viewing data through tables 

and graphs; receive educational feedback via platform.

24 8.3 ± 3.7 7.3 ± 3.2 7.9 ± 3.3 7.4 ± 3.3

Zhou et al. (62)
Educational content; Regular advice and feedback; personalized feedback based on 

individual data entries; alerts for critical thresholds.
3 9.86 ± 2.38 7.91 ± 1.58 9.76 ± 2.51 8.97 ± 2.08

Or et al. (56)
Continuous monitoring and recording; educational materials available on demand; visual 

feedback; structured data presentation in graphs and tables.
3 7.4 ± 0.6 7.2 ± 0.8 7.3 ± 0.7 7.0 ± 0.7

Moattari et al. (64)
The site includes a variety of educational materials; interactivity; communication with 

healthcare providers; monitoring tools.
3 9.10 ± 1.29 7.07 ± 1.19 9.42 ± 1.78 8.82 ± 1.31

(Continued)
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(Continued)

Application 
type

References Intervention Follow-up 
(month)

HbA1c at 
baseline (I)

HbA1c at 
follow-up (I)

HbA1c at 
baseline 

(C)

HbA1c at 
follow-up 

(C)

CMA

Rossi et al. (53)

The DID system is a mobile software used as a carbohydrate/insulin bolus calculator that 

supports patients in managing carbohydrate counting through a food atlas, recording 

SMBG measurements, and calculates the most appropriate insulin dose to be injected at 

each meal.

6 8.4 ± 0.1 7.9 ± 0.1 8.5 ± 0.1 8.1 ± 0.1

Gunawardena et al. (36)

Smart Glucose Manager; reminds patients to monitor blood glucose, take medication, eat, 

and exercise as scheduled; real-time glucose values; provides options to view and export 

data; data calculation.

6 9.52 ± 1.10 7.2 ± 0.76 9.44 ± 1.37 8.17 ± 0.85

Lee et al. (45) Use of a digital integrated health care platform without assistance. 12 7.47 ± 0.38 7.2 ± 0.64 7.45 ± 0.36 7.52 ± 0.8

Zhai et al. (33)

Sync read of glucose values via cable-connected glucometer; support for diabetes self-

management including diet advice, emotional management, medication guidance; online 

instruction.

6 8.86 ± 1.15 6.7 ± 1.06 9.05 ± 1.23 7.22 ± 1.02

Sun et al. (72)

Bi-weekly medical advice and glucose monitoring reminders; monthly dietary 

recommendations based on dietary intake data from app; exercise guidance based on texted 

pedometer data.

6 7.84 ± 0.73 6.84 ± 0.77 7.88 ± 0.64 7.77 ± 0.87

Tang et al. (35)
Wireless remote monitoring tools; online logging of diet, activity, blood pressure, insulin 

doses, weight; secure messaging; medication adjustments; personalized education via PHR.
12 9.24 ± 1.59 8.10 ± 1.68 9.28 ± 1.74 8.33 ± 1.81

Kumar et al. (46)
Alerts; medication reminders; caloric tracking, health reports, educational content, real-

time tracking; easy navigation and personalized settings.
6 7.36 ± 1.04 7.10 ± 0.96 7.84 ± 1.37 7.97 ± 1.37

Wang et al. (43)
Web-based telemedicine system (U-Healthcare website); Bi-weekly analysis and advice on 

blood glucose, diet, exercise; advice personalized.
6 7.9 ± 0.7 6.8 ± 0.7 8.0 ± 0.8 7.4 ± 1.3

Han et al. (34)
Real-time data upload, color-coded display of blood glucose levels, feedback on behavioral 

impacts, and secure communication with healthcare providers.
6 7.95 ± 0.9 7.38 ± 1.1 8.03 ± 0.9 7.98 ± 0.1

Quinn et al. (50)
Real-time automated educational, behavioral, and motivational messaging based on 

patient-entered data; personalized feedback; health records.
12 9.9 ± 2.1 7.9 ± 1.7 9.2 ± 1.7 8.5 ± 1.8

Zamanillo-Campos et al. 

(66)

DiabeText system sends automated text messages; including medication adherence, diet, 

and physical activity; integrates patient-generated data and routinely collected clinical data.
3 9.1 ± 1.3 7.7 ± 1.3 9.0 ± 1.0 7.6 ± 1.2

Waki et al. (65)

Automated data system feedback; text and voice input, automated advice; food recording 

and dietary evaluation (FoodLog): input by photo or text, nutritional evaluation, and diet 

advice.

3 7.3 ± 1.0 6.7 ± 0.7 6.4 ± 0.5 6.7 ± 0.5

Zhang et al. (44) App-based learning, diet, exercise, medication, insulin use; contact clinicians online. 6 9.14 ± 1.13 8.04 ± 1.38 9.14 ± 1.13 7.80 ± 1.14

Riangkam et al. (37)
Deliver diabetes-related knowledge; text content; quizzes; video links; self-monitoring of 

blood glucose; medication reminders; emergency call.
3 7.8 ± 0.50 7.2 ± 0.45 7.9 ± 0.53 7.7 ± 0.61

Wang et al. (70)
Hand-held clinic; blood glucose monitoring; dietary recording; exercise guidance; personal 

health reports; professional knowledge; community; health guide; health advice; follow-up.
6 8.62 ± 2.33 7.12 ± 2.01 8.68 ± 2.26 7.92 ± 2.15

Kirwan et al. (38)

Log blood glucose levels, insulin dosages, medications, diet, and physical activities; View 

data on customizable graphs and export via email; Weekly review of logged data by a CDE 

and Personalized text-message communication once a week for the first 6 months.

9 9.08 ± 1.18 7.80 ± 0.75 8.47 ± 0.86 8.58 ± 1.16

TABLE 2 (Continued)
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Application 
type

References Intervention Follow-up 
(month)

HbA1c at 
baseline (I)

HbA1c at 
follow-up (I)

HbA1c at 
baseline 

(C)

HbA1c at 
follow-up 

(C)

Iljaz et al. (67)

Bi-weekly data recording; Every 6–8 weeks COOP-WONCA charts completion; 

Individualized care interface; Educational material tailored to patient needs; Automated 

reminders and emergency warnings via email and SMS.

10 7.1 ± 1.5 6.4 ± 0.9 6.8 ± 1.2 6.7 ± 1.5

Jeffrey et al. (68)

Educational and practical content; Image recognition algorithm; co-designed with diabetes 

educators and dietitians; Android and iOS compatibility; iterative refinement based on user 

feedback.

3 8.41 ± 1.84 8.06 ± 1.43 8.35 ± 1.32 8.80 ± 1.60

Anzaldo-Campos et al. 

(51)

Glucose level checks; data uploaded to diabetes registry system; interactive surveys, text 

messages, educational videos, brochures on cell phone; automated reminders for surveys, 

alerts for abnormal glucose levels or missed appointments; access to culturally appropriate 

diabetes care videos.

10 11.19 ± 2.03 8.17 ± 2.13

10.90 ± 2.01 9.60 ± 2.71

Bisio et al. (60) CGM connectivity, smart bolus calculator, hypoglycemia and exercise risk warnings, and 

biweekly treatment optimization; cloud-based infrastructure for updates and monitoring; 

communication between smart insulin pens and the app to record insulin administration.

3.5 7.41 ± 1.18 7.11 ± 1.61 7.4 ± 1.8 7.1% ± 0.9

Charpentier et al. (57) Diabeo software features a bolus calculator with validated algorithms, incorporating SMPG 

levels, carbohydrate counts, physical activity, and personalized insulin dose adjustments for 

prandial and basal insulin. It also suggests adjustments for carbohydrate ratio, long-acting 

insulin, or pump basal rates based on SMPG targets.

6 9.11 ± 1.14 8.41 ± 1.04 8.91 ± 0.90 9.10 ± 1.16

Chatzakis et al. (69) Daily glucose measurements; database of 7,000 foods with carbohydrate and lipid content; 

adjustable parameters (insulin correction factor, carbohydrate factor, lipid factor); 

personalized bolus dose calculations based on meal content, physical activity, and 

individual insulin requirements.

12 7.9 ± 0.5 7.0 ± 0.4 7.8 ± 0.5 7.5 ± 0.5

Derkaoui et al. (71) Daily; educational on hypoglycemia and hyperglycemia management, insulin injections, 

dosing adaptation, blood glucose level entry, insulin dosage recording, physical activity, and 

diet logging.

3 8.3 ± 2.4 7.4 ± 1.5 8.2 ± 2.0 8.0 ± 1.8

Forjuoh et al. (73) Use of Diabetes Pilot™ software on PalmOS® device; recording and monitoring blood 

glucose, blood pressure, medication usage, physical activity, dietary intake; daily data entry 

encouraged; Food database; chart report.

12 9.2 ± 1.4 8.1 ± 1.4 9.2 ± 1.6 8.5 ± 1.6

Franc et al. (52) Mobile app for self-management; patient enters glycemia, physical activity, and ingested 

carbohydrates; App calculates insulin dose; automatic data transmission every 2 h; Nightly 

analytical messages.

12 9.1 ± 1.1 8.69 ± 1.1 9.1 ± 1.0 8.9 ± 1.0

TABLE 2 (Continued)
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Due to its broad functionality, CMA is the most effective tool for 
providing comprehensive health management support. All application 
types rely on integrated emerging technologies (e.g., AIGC). Given 
CMA’s potential for delivering holistic health management support, 
we  recommend further studies to evaluate its effectiveness and 
acceptability across different patient populations.

3.3 Quality assessment

The researchers appraised the quality assessment in the 41 
included studies using Cochrane Collaboration’s risk of bias tool, as 
displayed in Figure 5. Among the included studies, 97% demonstrated 
a low risk of bias in random sequence generation. However, allocation 
concealment and blinding of participants and personnel were at 

unclear risk of bias in nearly 60% of the studies. Regarding outcome 
assessment, except for 10% of the studies with high-risk bias, most 
other studies had low or uncertain risk bias. Researchers ensured that 
over 80% of the studies avoided incomplete outcome data, selective 
reporting, and other biases. Most of the included RCTs demonstrated 
a low risk of bias across various domains. However, some studies still 
had some areas of concern that could affect the results’ validity 
and generalizability.

3.4 Publication bias

As displayed in Figure 6, the funnel plot was asymmetrical, and 
Egger’s test yielded a p-value of 0.002, suggesting the presence of 
potential publication bias in the included studies.

FIGURE 2

Forest plot illustrating the effect of mobile health on HbA1c.
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4 Discussion

This analysis reports on the effects of mobile health (mHealth) 
management on glycemic control in the two major types of diabetes, 
type 1 diabetes (T1D) and type 2 diabetes (T2D). Across all included 
studies, we  observed an association between mobile-based health 
management and reduced HbA1c levels in diabetes patients. mHealth 
technologies have significantly enhanced the accessibility of healthcare 
in terms of geography, time, and cost while also improving the 
efficiency of healthcare professionals. Research shows that, in addition 
to providing information and educating participants on the 

importance of understanding their health status and making lifestyle 
changes, mHealth has markedly improved medication adherence (6, 
27–29). mHealth technologies enable patients to send symptom 
images via mobile devices and engage in remote communication with 
healthcare providers, reducing unnecessary travel and medical 
expenses and expanding healthcare coverage. These technologies are 
particularly beneficial in providing timely medical support for patients 
in remote areas or with mobility limitations (11, 27, 30). Subgroup 
analyses confirmed similar effects across different study settings. 
However, it is important to acknowledge the significant heterogeneity 
observed among these studies. This analysis also identifies several key 

FIGURE 3

Subgroup analysis forest plot.
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challenges and potential directions for optimizing mobile applications 
in diabetes management.

Most studies show that diabetes management Apps offer a variety 
of features, including blood glucose monitoring, physical activity 
instruction, dietary recording, medication reminders, and educational 
resources. The integration of these features markedly improves 
patients’ self-management abilities. Regular blood glucose monitoring 
and data recording help patients understand glucose patterns, adjust 
lifestyle choices, and modify medication use, thus optimizing blood 
glucose control (31–34). For example, in the “EMPOWER-D” study, 
participants could record diabetes-relevant data through an online 
platform, which included details on dietary habits, physical exercise, 
home blood pressure measurements, insulin administration, and body 
weight. These interactive visual representations of the data enabled 
participants to monitor their progress toward set objectives and to 
correlate blood glucose levels with adherence to medication regimens 
or lifestyle modifications (35). Moreover, reminder and notification 
features are essential for promoting adherence. In particular, 
medication reminder functions ensure timely medication adherence, 
reducing the risk of missed doses, which is crucial for diabetes 
management, and ensuring patients never forget their important 
health tasks (36–38). Despite these benefits, the variability in the 
effectiveness of different Apps reflects differences in design, 
functionality, and user engagement. Future research should focus on 
refining App features to enhance their overall efficacy. In mobile 

app-based diabetes health management, the type of diabetes is a 
crucial factor that affects prognosis. Previous studies have reported 
that T1D and T2D differ in pathophysiology, management needs, and 
intervention responses (29, 30, 39). According to the findings of this 
study, T2D patients may benefit more from mobile interventions due 
to their typically more manageable condition than T1D. T1D typically 
requires meticulous insulin management and glucose monitoring, 
whereas T2D management often focuses more on lifestyle changes 
and long-term self-management (40, 41). The differential impact of 
mobile Apps based on diabetes type highlights the importance of 
tailoring interventions to address specific needs. Apps designed with 
features and content that align with the distinct requirements of T1D 
versus T2D will likely result in more effective management outcomes. 
Future research should continue to explore these differences to refine 
App functionalities and improve their impact across diverse patient 
populations (42).

Regional diversity and variations in technology penetration 
significantly influence the feasibility and effectiveness of mobile health 
(mHealth) applications. In Asian countries such as India (27), China 
(33, 34, 43, 44), South Korea (45), and Sri Lanka (36), disparities in 
smartphone and internet penetration are shaped by regional, 
educational, and economic differences. For instance, in South Korea, 
where smartphone penetration is high, technology acceptance is 
relatively better (45). However, in rural or remote areas with lower 
educational levels (27, 33, 34, 44, 46), smartphone applications with 

FIGURE 4

Left: Intervention effect vs. follow-up time across different application types. Right: mapping of application types to functions, interventions, and 
technical implementations.
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FIGURE 5

Cochrane risk of bias summary.

FIGURE 6

Funnel plot of included studies.
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reminders and reward mechanisms improved patient medication 
adherence. This improvement was sustained even after 3 months, 
suggesting that the reward mechanisms might align closely with 
cultural incentives (47). Conversely, regions in India, Sri Lanka, and 
parts of China face challenges such as low smartphone penetration 
and limited patient technological literacy. These barriers may hinder 
initial usage, especially for older adults and individuals with low 
technological literacy (34, 43, 44). While technology acceptance is 
generally higher, regional disparities remain notable in Europe and 
North America (35, 47–52). For example, a study from Poland 
highlighted the role of internet penetration in accessing health-related 
information (48), particularly in remote areas where the availability of 
technology and patients’ educational backgrounds directly impacted 
intervention outcomes. Research from Switzerland focused on design 
challenges for adolescents and children (47), suggesting the 
simplification of interfaces and the incorporation of gamification to 
increase engagement, emphasizing cultural and age-specific 
adaptations (47). Moreover, technological barriers remain significant 
in certain regions. For instance, populations in remote areas or those 
with lower socioeconomic status often face challenges such as limited 
access to smart devices, inadequate network coverage, and low levels 
of digital literacy (34, 43, 44), making even basic installation and 
continuous updates of applications highly challenging. In 
environments with weaker technological infrastructure, data security 
and privacy concerns are often exacerbated. Patients may lack 
sufficient understanding of mobile device permissions, data 
transmission processes, and confidentiality mechanisms, which can 
reduce their willingness to use these technologies (31, 33, 47, 48). 
Therefore, merely iterating application functionalities is insufficient to 
overcome these technical shortcomings. A comprehensive approach 
is required, involving improvements to infrastructure, widespread 
promotion of digital health education, and strategic investments at the 
policy level. Such measures are essential to enhancing the accessibility 
and efficiency of mHealth on a broader scale (51, 52). Future research 
should systematically evaluate the root causes of technological barriers 
and collaborate with key stakeholders, including local governments, 
healthcare institutions, and mobile network operators, to develop a 
“technology-service-policy” integrated framework. This approach 
could provide diverse populations with more stable, user-friendly, and 
secure digital health management environments (43, 44).

Cultural and social factors profoundly affect the adoption and 
user experience of mHealth applications. Factors such as patients’ 
educational levels, religious beliefs, occupations, and attitudes toward 
health management can significantly influence mHealth acceptance 
and long-term adherence (27, 31, 36, 45, 53). In environments where 
family or community support is central, such support significantly 
enhances user retention. Among multilingual or multiethnic 
populations, cultural adaptations—including localized language 
versions and dietary data—are critical (31, 34, 52, 53). However, 
superficial localization efforts, such as language translation and 
dietary adjustments, cannot eliminate cultural barriers. Certain 
social groups may hold conservative or skeptical attitudes toward 
mobile health (mHealth) technologies, particularly in regions lacking 
trust in digital innovations and healthcare institutions. These 
populations often rely more heavily on traditional care methods or 
health advice from family and friends (34, 43). Furthermore, varying 
beliefs and values shape perceptions of disease management and 
personal responsibility, leading to differences in mHealth adoption 

and adherence. In some cultural contexts, excessive reliance on 
“external assistance” or discomfort with high-tech interventions may 
reduce the frequency of use and adherence to mHealth applications 
(33, 50). Without a thorough understanding of these cultural factors 
during the design and implementation phases, achieving meaningful 
behavioral changes or health benefits can be  challenging. Future 
research should systematically account for multi-layered cultural 
factors and collaborate with local health authorities and community 
leaders to develop targeted intervention strategies and educational 
programs to address this. Such efforts are essential for effectively 
promoting mHealth technologies and ensuring their long-term 
impact across diverse cultural contexts (33, 51). Recommendations 
for region-specific modifications suggest that localized reward 
mechanisms (e.g., points systems, medication discounts) and 
optimized application interfaces and features (e.g., automated data 
uploads, streamlined operations) are essential to lowering usage 
barriers (27, 31, 47, 50). Some studies have utilized behavior change 
models, such as the Transtheoretical Model, to motivate participants 
by tailoring content based on language, education level, or ethnicity 
(38, 53). Action plans generated within applications encourage 
patients to take responsibility for managing their health and promote 
behavior change. These plans have proven effective in improving 
medication adherence and routine self-monitoring, such as 
reminding patients to adjust insulin doses or monitor blood pressure 
(27, 45). However, the frequency and personalization of such content 
require optimization. In some cultural contexts, patients show lower 
acceptance of message-based services, which may limit intervention 
effectiveness (40). Future research should prioritize localization and 
cultural adaptation strategies (50, 51). Researchers should develop 
differentiated interventions for populations with diverse 
socioeconomic and cultural backgrounds. Additionally, multicenter 
and long-term randomized clinical trials are needed to validate 
further interventions’ effectiveness and scalability (33, 45, 47, 51). 
Such efforts are essential to driving the global adoption and 
optimization of mHealth applications.

Analysis of the observed high heterogeneity revealed several 
potential reasons for significant differences among studies, including 
the diversity of application functionalities, patient demographics, and 
differences in study design. First, regarding application functionalities, 
different types of mobile health applications—such as comprehensive 
management applications (CMAs), behavioral support applications, 
and medication adherence applications—exhibited significant 
differences in their intervention goals and functional implementations. 
Comprehensive management applications (CMAs) and education and 
knowledge support applications (EKSAs) demonstrated higher 
effectiveness, whereas applications focused solely on medication 
adherence showed weaker effects on glycemic control, as illustrated in 
Figure 3 (I2 = 94.32%). Additionally, the depth of technology use, such 
as automated analytics, remote monitoring, and real-time feedback, 
may have further amplified the impact of functional differences on 
outcomes. Second, the diversity in patient demographics may 
significantly influence intervention effectiveness. For instance, patients 
with different diabetes types, ages, education levels, and regional 
backgrounds exhibit varying technology acceptance, adherence, and 
usage patterns. For example, the pooled HbA1c improvement for type 
1 diabetes patients was −0.41 (I2 = 94.32%), for type 2 diabetes 
patients was −0.52 (I2 = 96.17%), and for combined type 1 and type 2 
diabetes patients was −0.44 (I2 = 96.55%). Additionally, age subgroup 

https://doi.org/10.3389/fpubh.2025.1549568
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2025.1549568

Frontiers in Public Health 16 frontiersin.org

analysis (below 52 years: I2 = 98.28%; 52 years and above: I2 = 87.84%) 
revealed differences in intervention effects across age groups. Third, 
heterogeneity in study designs further exacerbated inconsistencies in 
overall results. Factors such as intervention duration, sample size, 
follow-up periods, and the quality of bias control varied widely. 
Studies with longer intervention durations generally reported better 
outcomes than those with shorter durations. In contrast, studies with 
larger sample sizes demonstrated more substantial statistical power 
than those with smaller samples. Subgroup analyses also revealed 
differences in outcomes based on region (Asian studies: I2 = 97.36%; 
non-Asian studies: I2 = 94.35%) and publication period (before 2019: 
I2 = 95.93%; after 2019: I2 = 94.89%). These differences likely result 
from technological advancements, healthcare resources, and cultural 
contexts. The sources of high heterogeneity highlight the need for 
future research to adopt more standardized designs, fully consider 
variations in patient and application characteristics, and employ 
standardized methods to reduce result inconsistencies. Moreover, 
larger-scale clinical trials are needed to validate the real-world 
effectiveness of different intervention types.

Research literature has highlighted the effects of mHealth 
interventions on diabetes complications, such as retinopathy, kidney 
damage, cardiovascular events, and long-term health metrics. Studies 
have associated these interventions with reduced incidence rates of 
microvascular complications, myocardial infarction, and diabetes-
related mortality (34, 43, 44, 54–57). Additionally, many studies have 
addressed psychosocial aspects, such as “fear of hypoglycemia,” 
depression, and anxiety, finding that mHealth interventions did not 
impose additional psychological burdens. In some cases, these 
interventions even alleviated the fear of hypoglycemia and improved 
patients’ quality of life (49, 51, 58–60). Studies have emphasized the 
potential value of sustained glycemic improvements in reducing 
complication risks and called for future research with more extended 
follow-up periods and more comprehensive outcome metrics. These 
should include blood pressure, lipid profiles, mental health, and 
cardiovascular event rates to evaluate the multidimensional impacts 
of mHealth interventions (34, 61). Although current research has 
preliminarily demonstrated benefits beyond glycemic control, 
researchers must focus on and validate findings for other 
complications and long-term health outcomes (62–64). The duration 
of intervention is a critical factor in determining its efficacy. Longer 
interventions allow patients to adapt to the app, develop good 
management habits, and achieve more significant health outcomes 
(48, 49). In contrast, short-term interventions may only partially 
utilize the app’s functionalities or lead to limited improvements in 
health status (31, 47, 56). Extending the intervention duration can 
enhance app usage frequency and adherence while providing 
continuous feedback and support, reinforcing behavior change. As 
such, intervention duration is crucial for maximizing the advantages 
of mobile applications in diabetes management. More extended 
intervention periods are generally associated with more sustained 
effects (57, 65).

A few studies focus on personal health records (PHRs) or 
cloud-sharing platforms (27, 32, 33, 54). However, many studies 
have explicitly reported cases of technical integration between 
mobile intervention tools and EHRs. For example, “DiabeText” 
integrates patient-generated data into existing EHR systems to 
enable personalized management (28, 34, 35, 47, 59). While some 
studies conducted within established healthcare networks or remote 

monitoring systems have demonstrated the overall benefits of 
EHR-based diabetes management, they lack detailed discussions on 
interoperability (28, 56). For healthcare providers, EHRs enable 
flexible scheduling of care services, saving time and improving 
service quality. They provide a coordinated platform that enhances 
teamwork, promotes consistent and high-quality care, and supports 
continuity of care. mHealth fosters collaboration within teams and 
across institutions by sharing patient information, thereby 
improving healthcare delivery’s overall quality and efficiency. 
Feedback from care providers highlights that patients can directly 
contact their assigned nurses, increasing communication efficiency, 
optimizing resource utilization, and enhancing productivity (28, 
34). Current research primarily focuses on evaluating the 
effectiveness of mHealth applications, with limited systematic 
exploration of how to achieve seamless integration between 
mHealth and EHRs. Critical issues such as ensuring information 
security, standardizing data interfaces, and enabling clinicians to 
access and utilize real-time patient-generated data remain 
underexplored (66, 67). Future studies should delve deeper into 
integrating mHealth and EHRs, addressing the bidirectional flow of 
clinical and self-monitoring data. Such efforts are crucial for 
advancing personalized care and comprehensive healthcare 
management (28, 35).

Studies have explored the potential of “AI-driven personalized 
features” in diabetes management. For example, image recognition 
technologies such as FoodLog (65) and the iSpy application (68) help 
patients automatically log or analyze dietary intake, effectively reducing 
the cognitive burden of manual data entry. AI-enabled directly 
observed therapy (DOT) enhances the accuracy of medication 
adherence monitoring (27). Systems like POWER2DM (28), Diabeo 
(57), and Euglyca (69) employ personalized algorithms to assist with 
insulin dose calculations or provide targeted intervention 
recommendations based on real-time blood glucose trends and lifestyle 
data. These advancements demonstrate AI’s feasibility and practical 
value in offering “individualized, real-time” support for diabetes 
management while fostering personalized care and stronger 
connections between patients and healthcare providers. Healthcare 
providers noted that mHealth applications tailored to patient needs 
enhance trust and security by enabling continuous communication (34, 
37, 46, 51, 60, 70). Flexible scheduling offers patients with night shifts 
or busy schedules a convenient way to express emotions and 
strengthens the patient-provider relationship, ultimately improving 
satisfaction and treatment adherence. However, replacing face-to-face 
interactions with online services may weaken direct communication, 
potentially affecting care quality. Some providers expressed concerns 
that the lack of in-person interaction might lead to misunderstandings 
about patients’ conditions (39).

Additionally, applications with remote monitoring capabilities, 
including features such as alerts for abnormal readings, have proven 
more effective in improving clinical parameters by prompting timely 
interventions (28, 57, 70). While these explorations have shown 
promising results, most studies remain limited to basic automation 
and personalized feedback, falling short of demonstrating the 
potential of multidimensional data integration or advanced deep-
learning models in long-term disease management. Future research 
combining patient behavior characteristics, dynamic blood glucose 
changes, and lifestyle information to design and evaluate high-level 
intelligent algorithms could significantly enhance patient engagement, 

https://doi.org/10.3389/fpubh.2025.1549568
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2025.1549568

Frontiers in Public Health 17 frontiersin.org

overall health outcomes, and the quality of patient-provider 
relationships (37, 38, 62, 66, 68).

Integrating gamification elements into interventions has 
significantly improved patient engagement and adherence, offering 
stronger behavioral reinforcement than traditional reminders and 
reinforcement features (27, 47, 61). For example, transforming the 
monotonous task of medication adherence into engaging in interactive 
activities improved medication compliance and glycemic control 
(HbA1c). It maintained a degree of adherence even after the 
intervention ceased (45, 47). Some studies have highlighted the 
potential of gamified applications primarily from design or user 
experience perspectives, especially for specific groups such as 
adolescents. Incorporating reward systems and challenge mechanisms 
has been shown to attract users more effectively (27, 47, 61). Future 
research should focus on designing a comprehensive framework based 
on behavioral indicators to evaluate the unique contributions of 
gamification elements to user engagement, health management, and 
long-term adherence. Additionally, studies should explore the 
adaptability and acceptance of gamified designs among different 
demographic groups (61).

Mobile applications can provide additional features such as real-
time communication, group chats, instant feedback, and remote 
monitoring. These functionalities allow healthcare professionals to 
offer tailored medication adjustments and lifestyle change 
recommendations by recording and transmitting data on blood 
glucose, blood pressure, food intake, and physical activity (27, 71). By 
reminding participants to conduct regular self-monitoring (e.g., 
blood glucose or blood pressure) and providing optimized 
medication recommendations (e.g., insulin dose adjustments), these 
applications help participants make timely interventions, avoid 
potential complications, and maintain or improve treatment 
outcomes. Some patients have reported improved behavioral control, 
enhanced quality of life, and better health outcomes after using 
mHealth services (37, 61, 70). mHealth provides tools for self-
management support and health behavior change (27, 45, 57, 62), 
enabling patients to access information and better understand their 
condition conveniently. Features such as trend charts and health data 
monitoring increase disease awareness, encourage a more proactive 
outlook, and strengthen self-management skills. Frequent health 
tracking and data-driven feedback further reinforce this process. 
Many applications integrate remote monitoring devices, such as 
accelerometers, food intake sensors, and wearable sensor patches, 
with Bluetooth technology to achieve efficient data integration and 
communication, improving intervention precision and user 
experience (41). Real-time data collection from blood glucose or 
blood pressure sensors enables applications to send abnormal reading 
alerts to physicians, facilitating timely interventions. Other features, 
such as Bluetooth-enabled wearable devices and trend charts, further 
enhance intervention efficacy (54, 58).

Age is another critical factor that cannot be overlooked. Younger 
individuals tend to exhibit greater adaptability and proficiency in 
app-based diabetes management tools. For example, younger patients 
are more likely to utilize real-time monitoring, interactive education 
modules, and social sharing components to enhance their disease 
awareness and self-management skills (55). In contrast, older patients 
face unique challenges. As age increases, vision, cognitive processing 
speed, and familiarity with technology tend to decline, potentially 
hindering seamless interaction with applications (72).

Additionally, device malfunctions, poorly designed user 
interfaces, and low data interoperability can reduce patient satisfaction 
(51, 59, 67). Some patients, particularly older ones, may discontinue 
use due to technological difficulties or unfamiliarity, underscoring the 
need to improve patient engagement and adherence (28, 31, 33, 61). 
The primary barriers for older adults using mHealth applications 
include low familiarity with smartphones and related technologies, 
limited digital literacy, and the complexity of interface operations, 
which may lead to a steep learning curve (28, 31, 33, 48, 61, 67, 72). 
However, the literature broadly agrees that these barriers are not 
insurmountable. With the proliferation of technology, simplified 
interface designs, and enhanced training and support measures, the 
potential for older adults to adopt mHealth applications remains 
promising (28, 61, 67). Several studies have highlighted strategies to 
improve the user experience and adherence of older patients, such as 
optimizing interface designs (e.g., larger fonts and fewer operational 
steps), introducing automated data entry functions (e.g., automatic 
synchronization with glucometers), and providing continuous remote 
support (48, 49, 61, 72). For instance, research has shown that after an 
adaptation period of 3 to 6 months with remote guidance, older 
patients gradually mastered using mHealth applications and achieved 
significant improvements in health metrics such as glycemic control 
(48, 61). Other studies have emphasized the need for more 
personalized and user-friendly designs for older users, such as 
reducing manual data input and enhancing real-time feedback 
features to lower technological barriers (31, 33, 48, 61). Despite these 
advancements, most studies have not profoundly explored the specific 
barriers older populations face or the corresponding solutions. Future 
research should focus on digital health literacy and long-term usage 
behaviors of older adults, designing more inclusive systems to serve 
this important demographic better and improve health management 
outcomes (31, 61, 72).

In summary, factors such as diabetes type, age, geographic region, 
and intervention duration significantly influence the effectiveness of 
app-based diabetes interventions. Future efforts should optimize the 
design and functionality of mobile health (mHealth) technologies to 
address the characteristics and needs of diverse patient populations, 
thereby enhancing the overall effectiveness of diabetes management 
and improving patients’ quality of life.

While mHealth interventions offer notable advantages, such as 
improving healthcare accessibility and empowering patients with self-
management capabilities, they also face significant technical and 
usability challenges. Patients, particularly older adults and those with 
lower education levels may struggle with technological barriers due to 
limited digital literacy. Issues like device malfunction, unstable 
networks, and poor data interoperability further constrain the 
practical utility of these interventions. Additionally, concerns around 
data privacy breaches, the absence of standardized procedures, and 
unclear divisions of responsibility may introduce legal and ethical 
dilemmas. Furthermore, mHealth can increase healthcare providers’ 
workloads, as additional time and effort are required for patient 
education and data monitoring, potentially disrupting regular 
workflows. The reduced face-to-face interaction between patients and 
providers may also limit nonverbal communication and emotional 
engagement, potentially hindering the development of deeper patient-
provider relationships.

The strengths of this meta-analysis include its broad research 
sample, encompassing studies conducted across various regions and 
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healthcare settings, as well as data from diabetic patients of different 
ages and disease durations, thereby enhancing the generalizability and 
applicability of the findings. Rigorous data analysis methods were 
employed, adhering strictly to systematic review methodologies, 
ensuring the study’s scientific validity, consistency, and reliability.

Several limitations of this study warrant consideration. First, 
significant heterogeneity among existing studies may affect the 
stability and generalizability of the results. Second, while some 
studies demonstrated high methodological quality, others exhibited 
limitations, such as small sample sizes or short follow-up periods, 
which may undermine the accuracy of the findings. Funnel plot 
analysis and Egger’s test suggest the presence of publication bias, 
which may overestimate the observed effects or overlook negative 
results. Despite efforts to include gray literature, incomplete 
disclosure of information or missing data for quality assessment 
prevented the inclusion of certain studies. Moreover, critical 
research data from companies or institutions may remain 
undisclosed due to commercial confidentiality or intellectual 
property concerns, further exacerbating publication bias. This 
tendency to publish positive findings while internalizing negative 
or nonsignificant results highlights the need for improved 
transparency. Expanding data access and fostering collaborations 
with industry stakeholders and non-public platforms may mitigate 
these biases in future research.

Future research should focus on increasing sample sizes, 
extending follow-up durations, and evaluating the effectiveness of 
mHealth interventions across diverse cultural and healthcare systems. 
Leveraging advanced technologies such as artificial intelligence and 
the Internet of Things can enhance the precision of data analysis and 
intervention strategies while strengthening privacy protections and 
advancing standardization. Addressing the needs of specific patient 
populations, particularly through adaptive designs tailored for older 
adults, will be key to driving the further development of mHealth 
technologies in diabetes management.

5 Conclusion

This review provides a comprehensive summary of the existing 
evidence on mobile application-based interventions in diabetes 
management. The findings indicate that these tools offer patients 
convenient services such as blood glucose monitoring, dietary 
planning, exercise guidance, and health education, significantly 
enhancing patients’ self-management awareness and capabilities. 
However, several practical challenges exist in clinical practice, 
including technical issues, user acceptance, data security and privacy 
protection, variations in digital literacy, and adaptability to different 
cultural and economic contexts. These barriers have limited the 
widespread adoption and sustainability of these interventions. 
Furthermore, it is essential to acknowledge the limitations of this 
study and the included literature, such as variability in study design 
and quality, publication bias, and heterogeneity, which may affect the 
stability and generalizability of the results.

In light of these findings, future research and practice should not 
only focus on the sustained impact of these tools on diabetes 
management and their potential to improve patient’s quality of life but 

also aim to optimize intervention design, enhance technical and 
privacy safeguards, and address potential publication and selection 
biases in study design. To improve external validity and 
generalizability, larger-scale, multicenter, and long-term randomized 
controlled trials should include more diverse populations and settings, 
particularly vulnerable groups such as the older adult, low-income 
populations, and ethnic minorities, to evaluate the real-world 
effectiveness of these interventions in different cultural and social 
contexts. Additionally, strengthening digital literacy education and 
refining legal and regulatory frameworks can effectively mitigate 
barriers related to technical concerns and privacy issues. As mobile 
technologies continue to evolve, these improvements will help unlock 
the full potential of digital health management in diabetes care, 
ultimately leading to significant improvements in patient’s health 
outcomes and quality of life.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

XY: Conceptualization, Formal analysis, Investigation, 
Methodology, Software, Visualization, Writing  – original draft, 
Writing – review & editing. YW: Conceptualization, Formal analysis, 
Project administration, Resources, Supervision, Validation, Writing – 
original draft, Writing  – review & editing. ZL: Data curation, 
Investigation, Software, Supervision, Visualization, Writing – original 
draft, Writing – review & editing. EJ: Funding acquisition, Project 
administration, Resources, Writing – original draft, Writing – review 
& editing.

Funding

The author(s) declare that no financial support was received for 
the research, authorship, and/or publication of this article.

Acknowledgments

The authors would like to express their gratitude to Dayao 
Community Hospital in Muping District, Yantai City, Shandong 
Province, and Hanyang University for their support and provision of 
essential infrastructure for this work.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

https://doi.org/10.3389/fpubh.2025.1549568
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yu et al. 10.3389/fpubh.2025.1549568

Frontiers in Public Health 19 frontiersin.org

Generative AI statement

The authors declare that no Generative AI was used in the creation 
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Author disclaimer

The views expressed herein are solely those of the authors and do 
not necessarily reflect the positions of either Dayao Community 
Hospital or Hanyang University.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpubh.2025.1549568/
full#supplementary-material

References
 1. Karachaliou F, Simatos G, Simatou A. The challenges in the development of diabetes 

prevention and care models in low-income settings. Front Endocrinol. (2020) 11:518. 
doi: 10.3389/fendo.2020.00518

 2. Levengood TW, Peng Y, Xiong KZ, Song Z, Elder R, Ali MK, et al. Team-based care 
to improve diabetes management: a community guide Meta-analysis. Am J Prev Med. 
(2019) 57:e17–26. doi: 10.1016/j.amepre.2019.02.005

 3. Federation ID. Idf diabetes atlas reports (2023). Available at: https://diabetesatlas.
org/atlas-reports/?report-year=2023. (Accessed July 7, 2024).

 4. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 
(2011) 34:S62–9. doi: 10.2337/dc11-S062

 5. Collaboration ERF. Life expectancy associated with different ages at diagnosis of 
type 2 diabetes in high-income countries: 23 million person-years of observation. Lancet 
Diabetes Endocrinol. (2023) 11:731–42. doi: 10.1016/s2213-8587(23)00223-1

 6. Chamberlain JJ, Doyle-Delgado K, Peterson L, Skolnik N. Diabetes technology: 
review of the 2019 American Diabetes Association standards of medical care in diabetes. 
Ann Intern Med. (2019) 171:415–20. doi: 10.7326/m19-1638

 7. Duke DC, Barry S, Wagner DV, Speight J, Choudhary P, Harris MA. Distal 
technologies and type 1 diabetes management. Lancet Diabetes Endocrinol. (2018) 
6:143–56. doi: 10.1016/s2213-8587(17)30260-7

 8. Hughes MS, Addala A, Buckingham B. Digital technology for diabetes. N Engl J 
Med. (2023) 389:2076–86. doi: 10.1056/NEJMra2215899

 9. Proctor E, Silmere H, Raghavan R, Hovmand P, Aarons G, Bunger A, et al. 
Outcomes for implementation research: conceptual distinctions, measurement 
challenges, and research agenda. Adm Policy Ment Health Ment Health Serv Res. (2011) 
38:65–76. doi: 10.1007/s10488-010-0319-7

 10. Ashrafzadeh S, Hamdy O. Patient-driven diabetes care of the future in the 
technology era. Cell Metab. (2019) 29:564–75. doi: 10.1016/j.cmet.2018.09.005

 11. Fleming GA, Petrie JR, Bergenstal RM, Holl RW, Peters AL, Heinemann L. 
Diabetes digital app technology: benefits, challenges, and recommendations. A 
consensus report by the European Association for the Study of diabetes (EASD) and the 
American Diabetes Association (ADA) diabetes technology working group. Diabetes 
Care. (2020) 43:250–60. doi: 10.2337/dci19-0062

 12. Hou C, Carter B, Hewitt J, Francisa T, Mayor S. Do Mobile phone applications 
improve glycemic control (Hba1c) in the self-Management of Diabetes? A systematic 
review, meta-analysis, and grade of 14 randomized trials. Diabetes Care. (2016) 
39:2089–95. doi: 10.2337/dc16-0346

 13. Bene BA, O'Connor S, Mastellos N, Majeed A, Fadahunsi KP, O'Donoghue J. 
Impact of mobile health applications on self-management in patients with type 2 
diabetes mellitus: protocol of a systematic review. BMJ Open. (2019) 9:e025714. doi: 
10.1136/bmjopen-2018-025714

 14. Huang Z, Lum E, Jimenez G, Semwal M, Sloot P, Car J. Medication management 
support in diabetes: a systematic assessment of diabetes self-management apps. BMC 
Med. (2019) 17:127. doi: 10.1186/s12916-019-1362-1

 15. de Ridder M, Kim J, Jing Y, Khadra M, Nanan R. A systematic review on incentive-
driven mobile health technology: as used in diabetes management. J Telemed Telecare. 
(2017) 23:26–35. doi: 10.1177/1357633x15625539

 16. Cahn A, Akirov A, Raz I. Digital health technology and diabetes management. J 
Diabetes. (2018) 10:10–7. doi: 10.1111/1753-0407.12606

 17. Fisher L, Dickinson WP. New technologies to advance self-management support 
in diabetes: not just a bunch of cool apps! Diabetes Care. (2011) 34:240–3. doi: 10.2337/
dc10-1830

 18. Wangler J, Jansky M. Attitudes and experiences of registered diabetes specialists 
in using health apps for managing type 2 diabetes: results from a mixed-methods study 

in Germany 2021/2022. Arch Public Health. (2023) 81:36. doi: 10.1186/
s13690-023-01051-0

 19. Tsuji S, Ishikawa T, Morii Y, Zhang H, Suzuki T, Tanikawa T, et al. Cost-
effectiveness of a continuous glucose monitoring mobile app for patients with type 2 
diabetes mellitus: analysis simulation. J Med Internet Res. (2020) 22:e16053. doi: 
10.2196/16053

 20. Georgieva N, Tenev V, Kamusheva M, Petrova G. Diabetes mellitus—digital 
solutions to improve medication adherence: scoping review. Diabetology. (2023) 
4:465–80. doi: 10.3390/diabetology4040040

 21. Zaki S, Sharma S, Vats H, editors. Digital health technologies for type 2 diabetes 
management: a systematic review. 2023 International Conference on Recent Advances 
in Electrical, Electronics & Digital Healthcare Technologies (REEDCON); (2023) IEEE.

 22. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. 
The Prisma 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 
(2021) 372:n71. doi: 10.1136/bmj.n71

 23. Cui M, Wu X, Mao J, Wang X, Nie M. T2dm self-management via smartphone 
applications: a systematic review and Meta-analysis. PLoS One. (2016) 11:e0166718. doi: 
10.1371/journal.pone.0166718

 24. Training C. Cochrane handbook for systematic reviews of interventions version 
5.1.0. (2023).

 25. Pal K, Eastwood SV, Michie S, Farmer AJ, Barnard ML, Peacock R, et al. Computer-
based diabetes self-management interventions for adults with type 2 diabetes mellitus. 
Cochrane Database Syst Rev. (2013) 2013:CD008776. doi: 10.1002/14651858.CD008776.pub2

 26. Blogs WB. World Bank country classifications by income level for 2024–2025 
(2024). Available at: https://blogs.worldbank.org/en/opendata/world-bank-country-
classifications-by-income-level-for-2024-2025 (Accessed October 17, 2024).

 27. Kamat T, Dang A, Dang D, Rane P. Impact of integrated medication reminders, 
gamification, and financial rewards via smart phone application on treatment adherence 
in uncomplicated type II diabetes patients: a randomized. Open Label Trial J Diabetol. 
(2021) 12:447–55. doi: 10.4103/jod.jod_35_21

 28. Ruissen MM, Torres-Peña JD, Uitbeijerse BS, Arenas de Larriva AP, Huisman 
SD, Namli T, et al. Clinical impact of an integrated E-health system for diabetes 
self-management support and shared decision making (Power2dm): a randomised 
controlled trial. Diabetologia. (2023) 66:2213–25. doi: 10.1007/s00125-023-06006-2

 29. Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes 
mellitus: different pathways to failure. Nat Rev Endocrinol. (2020) 16:349–62. doi: 
10.1038/s41574-020-0355-7

 30. Laspe I, Meier JJ, Nauck MA. Comparison of insulin-treated patients with 
ambiguous diabetes type with definite type 1 and type 2 diabetes mellitus subjects: a 
clinical perspective. Diabetes Metab J. (2023) 47:140–6. doi: 10.4093/dmj.2021.0322

 31. Huang Z, Tan E, Lum E, Sloot P, Boehm BO, Car J. A smartphone app to improve 
medication adherence in patients with type 2 diabetes in Asia: feasibility randomized 
controlled trial. JMIR Mhealth Uhealth. (2019) 7:e14914. doi: 10.2196/14914

 32. Goyal S, Nunn CA, Rotondi M, Couperthwaite AB, Reiser S, Simone A, et al. A 
Mobile app for the self-management of type 1 diabetes among adolescents: a randomized 
controlled trial. JMIR Mhealth Uhealth. (2017) 5:e82. doi: 10.2196/mhealth.7336

 33. Zhai Y, Yu W. A Mobile app for diabetes management: impact on self-efficacy 
among patients with type 2 diabetes at a community hospital. Med Sci Monit. (2020) 
26:e926719. doi: 10.12659/msm.926719

 34. Han CY, Zhang J, Ye XM, Lu JP, Jin HY, Xu WW, et al. Telemedicine-assisted 
structured self-monitoring of blood glucose in management of T2dm results of a 
randomized clinical trial. BMC Med Inform Decis Mak. (2023) 23:182. doi: 10.1186/
s12911-023-02283-4

https://doi.org/10.3389/fpubh.2025.1549568
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1549568/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1549568/full#supplementary-material
https://doi.org/10.3389/fendo.2020.00518
https://doi.org/10.1016/j.amepre.2019.02.005
https://diabetesatlas.org/atlas-reports/?report-year=2023
https://diabetesatlas.org/atlas-reports/?report-year=2023
https://doi.org/10.2337/dc11-S062
https://doi.org/10.1016/s2213-8587(23)00223-1
https://doi.org/10.7326/m19-1638
https://doi.org/10.1016/s2213-8587(17)30260-7
https://doi.org/10.1056/NEJMra2215899
https://doi.org/10.1007/s10488-010-0319-7
https://doi.org/10.1016/j.cmet.2018.09.005
https://doi.org/10.2337/dci19-0062
https://doi.org/10.2337/dc16-0346
https://doi.org/10.1136/bmjopen-2018-025714
https://doi.org/10.1186/s12916-019-1362-1
https://doi.org/10.1177/1357633x15625539
https://doi.org/10.1111/1753-0407.12606
https://doi.org/10.2337/dc10-1830
https://doi.org/10.2337/dc10-1830
https://doi.org/10.1186/s13690-023-01051-0
https://doi.org/10.1186/s13690-023-01051-0
https://doi.org/10.2196/16053
https://doi.org/10.3390/diabetology4040040
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1371/journal.pone.0166718
https://doi.org/10.1002/14651858.CD008776.pub2
https://blogs.worldbank.org/en/opendata/world-bank-country-classifications-by-income-level-for-2024-2025
https://blogs.worldbank.org/en/opendata/world-bank-country-classifications-by-income-level-for-2024-2025
https://doi.org/10.4103/jod.jod_35_21
https://doi.org/10.1007/s00125-023-06006-2
https://doi.org/10.1038/s41574-020-0355-7
https://doi.org/10.4093/dmj.2021.0322
https://doi.org/10.2196/14914
https://doi.org/10.2196/mhealth.7336
https://doi.org/10.12659/msm.926719
https://doi.org/10.1186/s12911-023-02283-4
https://doi.org/10.1186/s12911-023-02283-4


Yu et al. 10.3389/fpubh.2025.1549568

Frontiers in Public Health 20 frontiersin.org

 35. Tang PC, Overhage JM, Chan AS, Brown NL, Aghighi B, Entwistle MP, et al. 
Online disease Management of Diabetes: engaging and motivating patients online with 
enhanced resources-diabetes (Empower-D), a randomized controlled trial. J Am Med 
Inform Assoc. (2013) 20:526–34. doi: 10.1136/amiajnl-2012-001263

 36. Gunawardena KC, Jackson R, Robinett I, Dhaniska L, Jayamanne S, Kalpani S, 
et al. The influence of the smart glucose manager mobile application on diabetes 
management. J Diabetes Sci Technol. (2019) 13:75–81. doi: 10.1177/1932296818804522

 37. Riangkam C, Sriyuktasuth A, Pongthavornkamol K, Kusakunniran W, 
Sriwijitkamol A. Effects of a Mobile health diabetes self-management program on 
Hba1c, self-management and patient satisfaction in adults with uncontrolled type 2 
diabetes: a randomized controlled trial. J Health Res. (2022) 36:878–88. doi: 10.1108/
JHR-02-2021-0126

 38. Kirwan M, Vandelanotte C, Fenning A, Duncan WJ. Diabetes self-management 
smartphone application for adults with type 1 diabetes: randomized controlled trial. J 
Med Internet Res. (2013) 15:e235. doi: 10.2196/jmir.2588

 39. Menart-Houtermans B, Rütter R, Nowotny B, Rosenbauer J, Koliaki C, Kahl S, 
et al. Leukocyte profiles differ between type 1 and type 2 diabetes and are associated with 
metabolic phenotypes: results from the German diabetes study (GDS). Diabetes Care. 
(2014) 37:2326–33. doi: 10.2337/dc14-0316

 40. Reynolds AN, Akerman AP, Mann J. Dietary fibre and whole grains in diabetes 
management: systematic review and meta-analyses. PLoS Med. (2020) 17:e1003053. doi: 
10.1371/journal.pmed.1003053

 41. Thomas NJ, Jones AG. The challenges of identifying and studying type 1 diabetes 
in adults. Diabetologia. (2023) 66:2200–12. doi: 10.1007/s00125-023-06004-4

 42. Zhang Y, Li X, Luo S, Liu C, Xie Y, Guo J, et al. Use, perspectives, and attitudes 
regarding diabetes management Mobile apps among diabetes patients and Diabetologists 
in China: National web-Based Survey. JMIR Mhealth Uhealth. (2019) 7:e12658. doi: 
10.2196/12658

 43. Wang G, Zhang Z, Feng Y, Sun L, Xiao X, Wang G, et al. Telemedicine in the 
management of Type 2 diabetes mellitus. Am J Med Sci. (2017) 353:1–5. doi: 10.1016/j.
amjms.2016.10.008

 44. Zhang L, He X, Shen Y, Yu H, Pan J, Zhu W, et al. Effectiveness of smartphone 
app-based interactive management on glycemic control in Chinese patients with poorly 
controlled diabetes: randomized controlled trial. J Med Internet Res. (2019) 21:e15401. 
doi: 10.2196/15401

 45. Lee YB, Kim G, Jun JE, Park H, Lee WJ, Hwang YC, et al. An integrated digital 
health care platform for diabetes management with Ai-based dietary management: 48-
week results from a randomized controlled trial. Diabetes Care. (2023) 46:959–66. doi: 
10.2337/dc22-1929

 46. Kumar DS, Prakash B, Chandra BS, Kadkol PS, Arun V, Thomas JJ, et al. 
Technological innovations to improve health outcome in type 2 diabetes mellitus: a 
randomized controlled study. Clin Epidemiol Glob Health. (2021) 9:53–6. doi: 10.1016/j.
cegh.2020.06.011

 47. Klee P, Bussien C, Castellsague M, Combescure C, Dirlewanger M, Girardin C, 
et al. An intervention by a patient-designed do-it-yourself Mobile device app reduces 
Hba1c in children and adolescents with type 1 diabetes: a randomized double-crossover 
study. Diabetes Technol Ther. (2018) 20:797–805. doi: 10.1089/dia.2018.0255

 48. Bujnowska-Fedak MM, Puchała E, Steciwko A. The impact of Telehome care on 
health status and quality of life among patients with diabetes in a primary care setting 
in Poland. Telemed J E Health. (2011) 17:153–63. doi: 10.1089/tmj.2010.0113

 49. Buysse H, Coremans P, Pouwer F, Ruige J. Sustainable improvement of Hba(1c) 
and satisfaction with diabetes care after adding telemedicine in patients on adaptable 
insulin regimens: results of the telediabetes randomized controlled trial. Health 
Informatics J. (2020) 26:628–41. doi: 10.1177/1460458219844369

 50. Quinn CC, Shardell MD, Terrin ML, Barr EA, Ballew SH, Gruber-Baldini AL. 
Cluster-randomized trial of a Mobile phone personalized behavioral intervention for 
blood glucose control. Diabetes Care. (2011) 34:1934–42. doi: 10.2337/dc11-0366

 51. Anzaldo-Campos MC, Contreras S, Vargas-Ojeda A, Menchaca-Díaz R, Fortmann 
A, Philis-Tsimikas A. Dulce wireless Tijuana: a randomized control trial evaluating the 
impact of project Dulce and Short-term Mobile technology on glycemic control in a 
family medicine clinic in northern Mexico. Diabetes Technol Ther. (2016) 18:240–51. 
doi: 10.1089/dia.2015.0283

 52. Franc S, Hanaire H, Benhamou PY, Schaepelynck P, Catargi B, Farret A, et al. 
Diabeo system combining a Mobile app software with and without Telemonitoring 
versus standard care: a randomized controlled trial in diabetes patients poorly controlled 
with a basal-bolus insulin regimen. Diabetes Technol Ther. (2020) 22:904–11. doi: 
10.1089/dia.2020.0021

 53. Rossi MC, Nicolucci A, Lucisano G, Pellegrini F, Di Bartolo P, Miselli V, et al. 
Impact of the "diabetes interactive diary" telemedicine system on metabolic control, risk 
of hypoglycemia, and quality of life: a randomized clinical trial in type 1 diabetes. 
Diabetes Technol Ther. (2013) 15:670–9. doi: 10.1089/dia.2013.0021

 54. Crowley MJ, Edelman D, McAndrew AT, Kistler S, Danus S, Webb JA, et al. 
Practical telemedicine for veterans with persistently poor diabetes control: a randomized 
pilot trial. Telemed J E Health. (2016) 22:376–84. doi: 10.1089/tmj.2015.0145

 55. Knox E, Glazebrook C, Randell T, Leighton P, Guo B, Greening J, et al. Skip 
(supporting kids with diabetes in physical activity): feasibility of a randomised controlled 
trial of a digital intervention for 9-12 year olds with type 1 diabetes mellitus. BMC Public 
Health. (2019) 19:371. doi: 10.1186/s12889-019-6697-1

 56. Or C, Tao D. A 3-month randomized controlled pilot trial of a patient-centered, 
computer-based self-monitoring system for the care of type 2 diabetes mellitus and 
hypertension. J Med Syst. (2016) 40:81. doi: 10.1007/s10916-016-0437-1

 57. Charpentier G, Benhamou PY, Dardari D, Clergeot A, Franc S, Schaepelynck-
Belicar P, et al. The Diabeo software enabling individualized insulin dose 
adjustments combined with telemedicine support improves Hba1c in poorly 
controlled type 1 diabetic patients: a 6-month, randomized, open-label, parallel-
group, multicenter trial (Telediab 1 study). Diabetes Care. (2011) 34:533–9. doi: 
10.2337/dc10-1259

 58. Baron JS, Hirani S, Newman SP. A randomised, controlled trial of the effects 
of a Mobile telehealth intervention on clinical and patient-reported outcomes in 
people with poorly controlled diabetes. J Telemed Telecare. (2017) 23:207–16. doi: 
10.1177/1357633x16631628

 59. Ruiz de Adana MS, Alhambra-Expósito MR, Muñoz-Garach A, Gonzalez-Molero 
I, Colomo N, Torres-Barea I, et al. Randomized study to evaluate the impact of 
telemedicine care in patients with type 1 diabetes with multiple doses of insulin and 
suboptimal Hba(1c) in Andalusia (Spain): Platedian study. Diabetes Care. (2020) 
43:337–42. doi: 10.2337/dc19-0739

 60. Bisio A, Anderson S, Norlander L, O'Malley G, Robic J, Ogyaadu S, et al. Impact 
of a novel diabetes support system on a cohort of individuals with type 1 diabetes treated 
with multiple daily injections: a multicenter randomized study. Diabetes Care. (2022) 
45:186–93. doi: 10.2337/dc21-0838

 61. Hilmarsdóttir E, Sigurðardóttir ÁK, Arnardóttir RH. A digital lifestyle program 
in outpatient treatment of type 2 diabetes: a randomized controlled study. J Diabetes Sci 
Technol. (2021) 15:1134–41. doi: 10.1177/1932296820942286

 62. Zhou W, Chen M, Yuan J, Sun Y. Welltang  - a smart phone-based diabetes 
management application  - improves blood glucose control in Chinese people with 
diabetes. Diabetes Res Clin Pract. (2016) 116:105–10. doi: 10.1016/j.diabres.2016.03.018

 63. Sevick MA, Korytkowski M, Stone RA, Piraino B, Ren D, Sereika S, et al. 
Biophysiologic outcomes of the enhancing adherence in type 2 diabetes (enhance) trial. 
J Acad Nutr Diet. (2012) 112:1147–57. doi: 10.1016/j.jand.2012.05.008

 64. Moattari M, Hashemi M, Dabbaghmanesh MH. The impact of electronic 
education on metabolic control indicators in patients with diabetes who need insulin: a 
randomised clinical control trial. J Clin Nurs. (2013) 22:32–8. doi: 
10.1111/j.1365-2702.2012.04200.x

 65. Waki K, Aizawa K, Kato S, Fujita H, Lee H, Kobayashi H, et al. Dialbetics with a 
multimedia food recording tool, Foodlog: smartphone-based self-management for type 
2 diabetes. J Diabetes Sci Technol. (2015) 9:534–40. doi: 10.1177/1932296815579690

 66. Zamanillo-Campos R, Fiol-deRoque MA, Serrano-Ripoll MJ, Mira-Martínez S, 
Ricci-Cabello I. Development and evaluation of Diabetext, a personalized Mhealth 
intervention to support medication adherence and lifestyle change behaviour in patients 
with type 2 diabetes in Spain: a mixed-methods phase ii pragmatic randomized 
controlled clinical trial. Int J Med Inform. (2023) 176:105103. doi: 10.1016/j.
ijmedinf.2023.105103

 67. Iljaž R, Brodnik A, Zrimec T, Cukjati I. E-healthcare for diabetes mellitus type 2 
patients - a randomised controlled trial in slovenia. Zdr Varst. (2017) 56:150–157. doi: 
10.1515/sjph-2017-0020

 68. Alfonsi JE, Choi EEY, Arshad T, Sammott SS, Pais V, Nguyen C, et al. Carbohydrate 
counting app using image recognition for youth with type 1 diabetes: pilot randomized 
control trial. JMIR Mhealth Uhealth. (2020) 8:e22074. doi: 10.2196/22074

 69. Chatzakis C, Floros D, Papagianni M, Tsiroukidou K, Kosta K, Vamvakis A, et al. 
The beneficial effect of the Mobile application Euglyca in children and adolescents with 
type 1 diabetes mellitus: a randomized controlled trial. Diabetes Technol Ther. (2019) 
21:627–34. doi: 10.1089/dia.2019.0170

 70. Wang Y, Li M, Zhao X, Pan X, Lu M, Lu J, et al. Effects of continuous care for 
Patients with type 2 diabetes using Mobile health application: a randomised controlled 
trial. Int J Health Plann Manag. (2019) 34:1025–35. doi: 10.1002/hpm.2872

 71. Derkaoui N, Benyakhlef S, Rami I, El Mehraoui O, Messaoudi N, Charif H, et al. 
Effectiveness of a new smartphone application on type 1 diabetes control and self-
management in times of Covid-19: randomized controlled trial. Rev Diab Stud. (2023) 
19:71. doi: 10.1900/RDS.2023.19.71

 72. Sun C, Sun L, Xi S, Zhang H, Wang H, Feng Y, et al. Mobile phone-based 
telemedicine practice in older Chinese patients with type 2 diabetes mellitus: 
randomized controlled trial. JMIR Mhealth Uhealth. (2019) 7:e10664. doi: 10.2196/10664

 73. Forjuoh SN, Bolin JN, Huber JC Jr, Vuong AM, Adepoju OE, Helduser JW, et al. 
Behavioral and technological interventions targeting glycemic control in a racially/
ethnically diverse population: a randomized controlled trial. BMC Public Health. (2014) 
14:71. doi: 10.1186/1471-2458-14-71

https://doi.org/10.3389/fpubh.2025.1549568
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1136/amiajnl-2012-001263
https://doi.org/10.1177/1932296818804522
https://doi.org/10.1108/JHR-02-2021-0126
https://doi.org/10.1108/JHR-02-2021-0126
https://doi.org/10.2196/jmir.2588
https://doi.org/10.2337/dc14-0316
https://doi.org/10.1371/journal.pmed.1003053
https://doi.org/10.1007/s00125-023-06004-4
https://doi.org/10.2196/12658
https://doi.org/10.1016/j.amjms.2016.10.008
https://doi.org/10.1016/j.amjms.2016.10.008
https://doi.org/10.2196/15401
https://doi.org/10.2337/dc22-1929
https://doi.org/10.1016/j.cegh.2020.06.011
https://doi.org/10.1016/j.cegh.2020.06.011
https://doi.org/10.1089/dia.2018.0255
https://doi.org/10.1089/tmj.2010.0113
https://doi.org/10.1177/1460458219844369
https://doi.org/10.2337/dc11-0366
https://doi.org/10.1089/dia.2015.0283
https://doi.org/10.1089/dia.2020.0021
https://doi.org/10.1089/dia.2013.0021
https://doi.org/10.1089/tmj.2015.0145
https://doi.org/10.1186/s12889-019-6697-1
https://doi.org/10.1007/s10916-016-0437-1
https://doi.org/10.2337/dc10-1259
https://doi.org/10.1177/1357633x16631628
https://doi.org/10.2337/dc19-0739
https://doi.org/10.2337/dc21-0838
https://doi.org/10.1177/1932296820942286
https://doi.org/10.1016/j.diabres.2016.03.018
https://doi.org/10.1016/j.jand.2012.05.008
https://doi.org/10.1111/j.1365-2702.2012.04200.x
https://doi.org/10.1177/1932296815579690
https://doi.org/10.1016/j.ijmedinf.2023.105103
https://doi.org/10.1016/j.ijmedinf.2023.105103
https://doi.org/10.1515/sjph-2017-0020
https://doi.org/10.2196/22074
https://doi.org/10.1089/dia.2019.0170
https://doi.org/10.1002/hpm.2872
https://doi.org/10.1900/RDS.2023.19.71
https://doi.org/10.2196/10664
https://doi.org/10.1186/1471-2458-14-71

	Technological functionality and system architecture of mobile health interventions for diabetes management: a systematic review and meta-analysis of randomized controlled trials
	1 Introduction
	2 Methods
	2.1 Protocol
	2.2 Search strategy
	2.3 Study selection
	2.4 Data collection
	2.4.1 Data collection
	2.4.2 Meta-analysis

	3 Results
	3.1 Study description
	3.2 Primary outcome
	3.2.1 Type of diabetes
	3.2.2 Age
	3.2.3 Sample size
	3.2.4 Year of publication
	3.2.5 Region
	3.2.6 Duration of intervention
	3.2.7 Bubble chart analysis of intervention types and time trends
	3.2.8 Sankey diagram analysis
	3.3 Quality assessment
	3.4 Publication bias

	4 Discussion
	5 Conclusion

	References

