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Tourism development is important for the formulation of the national carbon 
reduction policy. China has put forward the goals of carbon peaking and carbon 
neutrality. Studying the impact of China’s tourism industry on carbon emissions 
is of great significance in scientifically formulating emission reduction policies 
and helping China to realize its carbon reduction goals. In this study, we simulate 
the complex relationship between the tourism industry and carbon emissions in 
China using machine learning models. This study is the first to employ interpretable 
machine learning to analyze the impact of the tourism industry on carbon emissions 
in China. Our findings demonstrate that sparrow search algorithm and random 
forest (SSA-RF) hybrid model can model the relationship between carbon emissions 
and tourism factors with low error. The expansion of the tourism industry positively 
contributes to the increase in carbon emissions. Our study highlights the need 
to consider tourism factors when formulating national carbon reduction policy.
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1 Introduction

Sea level rise and extreme weather events caused by global warming are a serious threat 
to the sustainable development of society (1, 2), and reducing carbon emissions is essential for 
controlling global warming. China’s role in mitigating global change and reducing emissions 
has become even more important after the United States withdrew from the Paris Agreement 
(3, 4). China is the world’s largest carbon emitter (5), and the Chinese Government is actively 
taking measures to reduce emissions and has formulated targets for such reductions (6, 7). 
China proposes to achieve carbon peaking by 2030 and carbon neutrality by 2050. These 
targets are not only significant for China, but also play an important role in slowing down 
global warming.

According to a report released by the International Energy Agency, carbon emissions 
from the tertiary industry grew at a rate of up to 50.43% from 2011 to 2018, which is an 
important contributor to the growth of carbon emissions, and the growth rate of carbon 
emissions from the tertiary industry is much larger than that of the primary and secondary 
industries. Tourism is an important part of the tertiary industry (8), and the 2021 United 
Nations Climate Change Conference formally passed the Glasgow Declaration, which 
emphasized practical and strong measures to help achieve the global commitment to zero 
carbon emissions by 2050. Most of the analysis of the factors affecting carbon emissions in 
the tourism industry uses decomposition analysis (9–11), which includes structural 
decomposition analysis (SDA) and index decomposition analysis (IDA). Using decomposition 
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method, total domestic tourists’ economic yield proved to be  the 
largest driver of carbon emission growth in China’s tourism industry, 
and total international tourists’ economic yield also contributed to 
the growth of carbon emissions in China’s tourism industry. Energy 
consumption intensity and energy consumption structure, on the 
other hand, are important factors in slowing down the carbon 
emissions of the tourism industry (9). There are other factors that 
have also contributed the growth of carbon emissions in China’s 
tourism industry, such as population and economic development 
(12). The factors influencing carbon emissions from the tourism 
industry are relatively well researched (13).

In recent years, more and more scholars have begun to focus 
on how tourism affects a region’s total carbon emissions, but there 
are no conclusive findings on how tourism affects a region’s total 
carbon emissions. Existing studies show that tourism reduces 
carbon emissions in Europe, but in Asia it contributes to the 
growth of regional carbon emissions. According to Lee and 
Brahmasrene (14), the tourism industry in Europe exerts a 
significant negative impact on carbon emissions. At the global 
scale, most studies show that tourism contributes to global carbon 
emissions (15). Air transport and visitor spending have hindered 
Australia’s progress toward achieving net-zero emissions (16). The 
relationship between tourism and regional carbon emissions is 
complex (17, 18). Tourism development has an obvious role to play 
in boosting a region’s economy, but tourism development may 
either promote or inhibit regional carbon emissions. Therefore, it 
is necessary to analyze the impact of tourism development on 
regional carbon emissions before deciding whether or not to 
mitigate carbon emissions by developing tourism. Currently, 
analyzing the impact of tourism on the region’s carbon emissions 
also mainly uses decomposition analysis. Visas et al. (19) analyzed 
the impact of tourism on energy consumption in the BRICS using 
decomposition method, the results reveal that the tourism 
promoted the energy consumption.

Over the past several years, the influence of artificial intelligence 
(AI) has expanded rapidly (20), and AI has been widely used in 
establishing carbon emission prediction models (21), with numerous 
studies demonstrating that AI models outperform traditional 
approaches in carbon emission forecasting (22). This is due to the fact 
that AI models are better able to capture the complex relationship 
between carbon emissions and influencing factors than traditional 
regression models. Despite the high prediction accuracy of the AI 
models, the models are poorly interpretable and have difficulty 
explaining the effects of variables on carbon emissions. Many cutting-
edge studies in the fields of chemistry (23), biology, and materials 
science (24) use machine learning models to explain the results of 
their studies, which are referred to as interpretable machine learning 
models in research. Interpretable machine learning models are not 
only a data fitting tool but also an analytical tool in research. 
We believe that interpretable machine learning techniques have great 
potential to reveal the complex relationship between tourism and 
carbon emissions. Although many previous papers have examined 
the relationship between carbon emissions and tourism, there are few 
studies using interpretable machine learning, and we are interested 
in filling a gap. Overall, the main goal of this paper is to analyze the 
impact of tourism factors on carbon emissions using interpretable 
ML, emphasizing that the development of tourism should also focus 
on the impact on global warming.

2 Methodology

2.1 Data sources

China’s carbon emissions data for 2000–2019 is from BP’s World 
Energy Statistics. The data on international tourism revenue (ITR), 
number of international tourist arrivals (ITA), foreign exchange 
earnings from international tourism transportation (ITT), total 
domestic tourism expenditure (DTE), and number of domestic 
tourists (DT) are sourced from the National Bureau of Statistics of 
China. We processed some of the missing data using autoregressive 
integrated moving average (ARIMA) method. ARIMA is a widely 
used statistical model for time series analysis and forecasting, and it is 
also widely used in data interpolation (25). Compared to other 
interpolation methods such as long short-term memory (LSTM) and 
conditional generative network (CNN), the ARIMA model is highly 
interpretable, whereas the internal mechanisms of LSTM and CNN 
are complex, and the LSTM and CNN models require a large amount 
of data to achieve good prediction accuracy. For this study, the data 
size is small, so we chose ARIMA for missing data.

2.2 Random forest

Random forest (RF) is a commonly used machine learning 
algorithm for regression prediction (26), which achieves high accuracy 
by constructing multiple decision trees and aggregating their prediction 
results. Compared to conventional deep learning algorithms, RF does 
not require large amounts of data and trains quickly. It has fewer 
hyperparameters, which are easier to adjust, whereas deep learning 
requires extensive time and data to train hyperparameters. Given the 
small scale of data in this study, using deep learning algorithms could 
lead to overfitting. This study uses the RF method to model the 
relationship between carbon emissions and the tourism industry in 
China. The training data for each base learner in RF is obtained 
through the bootstrap method, which involves randomly selecting a 
subset of the overall features, with the rest of the data constituting the 
out-of-bag samples (OOB) sample. The randomness of the algorithm 
is demonstrated in two ways: firstly, the training data for each tree is 
selected by random sampling; secondly, the tree features selected are 
also chosen randomly. This approach not only prevents model 
overfitting, but also enhances the differences between individual 
decision trees by adding randomness to the training process. With 
these steps, the constructed forest can improve the prediction accuracy 
by averaging the predictions of the trees as shown in the Equation 1:
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1
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n

i
i
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(1)

Where f  is the average, ( ), iT x O  is the output of each tree and n 
represent the trees.

2.3 Optimization algorithm

The particle swarm algorithm (PSO), an optimization algorithm 
developed by simulating the foraging behavior of birds, is a simple and 
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easy-to-implement optimization algorithm that is widely used in 
training machine learning models for hyperparameter optimization. 
The algorithm proposes the concept of particles to simulate birds in a 
flock, where particles learn and exchange information among 
themselves to achieve a globally optimal search. Each particle in the 
particle swarm algorithm has its own position and velocity, and the 
velocity of each example is updated according to Equations 2–4:
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where ( )i
jv  is the velocity of particle j at the i-th iteration, and is 

w the inertia weight. 1c  and 2c  are the learning factors, which control 
how close the particle is to its own optimal position jpbest  and the 
global optimal position jgbest . 1r  and 2r is a random number between 
0 and 1 to increase the randomness of the algorithm. ( )i

jx  is the 
position of the particle at the i-th iteration. minv  and maxv  are the 
minimum and maximum velocities of the particle. Equation 4 is the 
formula for particle position update.

The whale optimization algorithm (WOA) is a swarm optimization 
algorithm proposed by simulating the feeding behavior of humpback 
whales. The whale optimization algorithm consists of three steps 
surrounding the prey, bubble net attack method and prey search.

The behavior of surrounding prey is simulated by Equations 5–8:

 ( ) ( )D C X t X t∗= ⋅ −
  

 
(5)
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Where ( )X t∗  is the optimal solution (prey position), and ( )X t


 is 
the location of the whale. A



 and C


 are coefficient vectors that change 
dynamically as the algorithm iterates. a is a factor that decreases 
linearly from 2 to 0, and r  is a random forest between 0 and 1. When 
A


 is less than 1, the whale moves closer to the prey, and when A


 is 
greater than 1, the whale moves away from the prey, thus performing 
a global search.

The bubble net attack is the algorithm and core to simulate the 
bubble net hunting behavior of whales (Equation 9).

 ( ) ( ) ( )'1 cos 2blX t D e l X tπ ∗+ = ⋅ ⋅ +
  

 (9)

where 'D


 denotes the current distance between the whale and the 
prey, b is a constant, and l  is a random number between −1 and 1.

To avoid a local optimal solution, the whale population performs 
a global search by randomly selecting another whale and moving away 
from it (Equation 10):

 ( )1 randX t X A D+ = − ⋅
  

 (10)

where ( )1X t +


 is the location of a randomly selected whale.
Sparrow search algorithm (SSA) is an intelligent optimization 

algorithm proposed based on the foraging and anti-predator behavior 
of sparrows. In the foraging process of sparrows, they are divided into 
finders and joiners. The discoverers are responsible for providing 
foraging areas and directions for the entire sparrow flock, while the 
joiners rely on the guidance of the discoverers for food. In addition, 
when a sparrow flock becomes aware of danger, it triggers anti-
predatory behavior. Discoverers have better adaptations and therefore 
finders can gain a larger search range than joiners. The finder’s 
location update method can be described as follows (Equation 11):
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where 1
,
t
i jX +  is the position of the sparrow i in dimension j  and 

maxt  is the maximum number of iterations. s is a random number 
between 0 and 1. 2Y  denotes the warning value, AN  denotes the safety 
value, the value range of 2Y  and AN  is 0–1 and 0.5–1, respectively. Z  
is a random number with normal distribution. D is the 1 d×  matrix, 
d  is the dimension of the optimization problem, and all elements of 
the matrix are 1. When 2Y AN< , it indicates that there are no 
predators in the range. The finder can perform a wide search 
operation. When 2Y AN< , it indicates that a predator has been 
found. At this time, all sparrows need to quickly fly to other safe 
places. The method of updating joiner locations is described as 
follows (Equation 12):
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where pX  is the current best position of the discoverer, and wX  is 
the worst position of the current discoverer. A is a 1 d×  matrix where 
each element of the matrix is randomly assigned a value of 1 or − 1 
and ( ) 1T TA A AA

−+ = , n the number of sparrows in the flock. When 
/ 2i n> , it means that the joiner i has a low fitness value and is very 

hungry and needs to fly elsewhere to forage for food. When aware of 
the danger, sparrow populations perform an anti-predatory behavior, 
the mathematical expression for which is (Equation 13):
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Where bX  is the global optimal position, β  is the parameter 
controlling the step size and obeys a normally distributed random 
number with mean 0 and variance 1. G  is a random number between 
−1 and 1, if  is the fitness value of the sparrow i, and gf  and wf  are the 
global optimum and global worst value. if  is the smallest constant that 
avoids a denominator of 0 in equation.

2.4 SHapley Additive exPlanation

The aim of interpretable machine learning is to learn how the 
model make predictions, and find the relationship between the input 
and output, more importantly, to answer the question of which input 
feature is important for driving prediction results. Model interpretable 
method can be  divided into two categories, local interpretable 
method and global interpretable method. Global interpretation can 
explain the importance distribution of features across the entire 
dataset, while local interpretation allows for a detailed analysis of the 
contribution of each feature to the prediction of a particular 
observation. SHapley Additive exPlanation (SHAP) enables not only 
local interpretation but also global interpretation, and SHAP makes 
use of the Shapley value concept in game theory, and by accurately 
calculating the contribution of each feature to the model output, it 
directly demonstrates the weight and influence of each feature in the 
model prediction (27). For feature i in the feature set S, the Shapley 
value is calculated as follows (Equation 14):

 { }

( ) { }( ) ( )( )
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! 1 !
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− −
Φ = ∪ −∑i
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S N S
v S i v S
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(14)

where N  denotes the set of all features, and S is any subset of 
features that does not contain feature i. S  is the number of features in 
the set S. ( )v S  is the contribution of the feature set S to the predicted 
output of the model. { }( )v S i∪  is the contribution of the feature set 

{ }S i∪  containing feature i to the predicted output of the model.

2.5 Hybrid model

SHAP is model-agnostic, so it can be applied to a wide range of 
machine learning models. The calculation of SHAP values is not 
directly related to the accuracy of the model, but the performance of 
the model may indirectly affect the stability of SHAP values. If the 
accuracy of model is high, it means that the model is performing well 
in capturing the relationship between features and outputs. As a 
result, the SHAP value is more reflective of the true impact of the 
features on the model’s predictions. In other words, in high accuracy 
models, SHAP values are more interpretive and results are more 
credible. Therefore, in this paper, the RF model is first optimized 
using the swarm optimization algorithm (PSO, WOA and SSA) to 
improve the prediction accuracy of the RF model and to ensure the 

stability of the subsequent SHAP analysis. We  optimized the 
hyperparameters (n_estimators and max_features) of the RF model 
using PSO and SSA, and three hybrid model (PSO-RF, WOA-RF and 
SSA-RF) are established. The flowchart of three hybrid models is 
shown in Figure 1.

2.6 Tapio decoupling index

The carbon emission decoupling index is an index that measures 
the relationship between economic growth and carbon emissions (28). 
It aims to evaluate the relationship between economic growth and 
greenhouse gas emissions in a country or region, i.e., whether 
economic growth is accompanied by a corresponding reduction in 
carbon emissions (29). Currently, the Tapio model is mostly used in 
the analysis of decoupling relationship. Compared with the previous 
OECD model (30), Tapio can more comprehensively reflect the 
multiple and complex relationships between environmental pressure 
and economic development, which can better help policy makers to 
develop feasible strategies to achieve a balance between economic 
growth and environmental protection. According to the definition 
given Tapio, the tourism carbon emission decoupling index can 
be calculated as follows (Equation 15):
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( )

1 1

1 1
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FIGURE 1

The flowchart of hybrid models.
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Where CE  is the carbon emission of China, and E is the revenue 
from tourism industry. CE∆  and E∆  are the change rates of carbon 
emissions and tourism revenues in China. The relationship between 
carbon emissions and tourism revenue can be  divided into three 
major types of states: coupling, decoupling and negative decoupling, 
as shown in Table 1.

3 Results and discussion

3.1 Optimal hybrid model selection

Based on existing research and data availability (31–34), we use 
international tourism revenue (ITR), number of international tourist 
arrivals (ITA), foreign exchange earnings from international tourism 
transportation (ITT), total domestic tourism expenditure (DTE), and 
number of domestic tourists as the input to the RF model, and China’s 
carbon emissions are the output of the model. N_estimators and max_
features are two important parameters of the RF model. Increasing the 
value of n_estimators usually improves the stability and performance 
of the model, as more trees means that the model can fit the data 
better. More trees also increase training time and memory 
consumption. Max_features values usually increase the diversity of the 
model, thus reducing the risk of overfitting. Small max_features value 
may result in a decrease in the performance of each tree, affecting the 
overall model performance. Conventional grid search is time-
consuming, so in this study, three swarm optimization algorithms 
were used to optimize the parameters of RF to obtain highly accurate 
models. When training the model, we use 80% of the dataset as the 
train set and 20% of the dataset as the test set. The division of the train 
and test sets is random. Figure 2 shows the prediction results of the 
three hybrid models and the unoptimized RF model on the test set.

As shown in Figure 2, the prediction results of the SSA-RF and 
WOA-RF models have the smallest deviation from the actual value of 
carbon emissions, which indicates that the two models are better able 
to simulate the relationship between carbon emissions and tourism 
indicators. The PSO-RF has large errors in predicting carbon emission 
values for 2001 and 2006, but the deviation between the model 
predictions and the actual values is small when predicting carbon 
emissions for 2015 and 2017. Whereas RF is the model with the largest 
deviation in prediction results among the four models, the model does 
not work well in each year of the test set.

In order to quantitatively compare the prediction accuracy of 
different machine learning models, we choose Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE), and Root Mean 
Square Error (RMSE) as the evaluation metrics of model performance. 
Evaluation metrics are calculated based on the prediction results of 
different machine learning prediction models, and the evaluation 
metrics are compared to measure the strengths and weaknesses of the 
prediction models. The formula for calculating the evaluation metrics 
are as follows:

 1

1 N
p a

i
MAE E E

N =
= −∑
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1 100%
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In Equations 16–18, pE  and aE  are the predicted and actual values 
of machine learning models. The calculation results of evaluation 
metrics are shown in Table 2.

MAE represents the mean absolute difference between the 
predicted value and the actual value. According to the MAE, the 
prediction accuracy is ranked from highest to lowest as SSA-RF > PSO- 
WOA-RF > PSO-RF > RF. The prediction accuracies of the hybrid 
models are all greatly improved compared to the single RF. The 
prediction accuracies of models SSA-RF, WOA-RF, and PSO-RF are 
improved by 1, 2, and 3%. An important feature of MAE is that it is 
insensitive to outliers because it only focuses on the mean of the 
absolute error, so we  need other metrics to evaluate the model 
comprehensively. According to the MAPE, the prediction accuracy 
ranked from highest to lowest is SSA-RF > WOA-RF > PSO-RF > 
RF. SSA-RF has the smallest MAPE value indicating that it has the best 

TABLE 1 Decoupling index classification criteria.

State %∆CE %∆E T

Decoupling Strong decoupling 0< 0> 0T <

Weak decoupling 0> 0> 0 0.8T≤ <

Recessive decoupling 0< 0< 1.2T >

Coupling Expansive coupling 0> 0> 0.8 1.2T≤ ≤

Recessive coupling 0< 0< 0.8 1.2T≤ ≤

Negative 

decoupling

Expansive negative 

decoupling
0> 0> 1.2T >

Weak negative decoupling 0< 0< 0 0.8T≤ <

Strong negative 

decoupling
0> 0< 0T <

FIGURE 2

Prediction results of models.
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FIGURE 3

SHAP value of tourism factors.

prediction performance. SSA-RF is the optimal model can also 
be found based on the value of RMSE. In Figure 2. We can see that 
both SSA-RF and WOA-RF possess good prediction results, but based 
on the evaluation metrics we are able to determine that SSA-RF is the 
best prediction model.

3.2 The influence of tourism factors on 
China’s carbon emissions

To analyze the influence of tourism industry on carbon emissions 
in China, scatter plots of SHAP values are plotted as shown in Figure 3.

This figure of SHAP values shows the impact of different features 
on the carbon emissions. In the figure of SHAP values, the horizontal 
axis indicates the SHAP value (effect on carbon emission) and the 
vertical axis indicates the different features (DT, ITT, DTE, ITR, ITA). 
The color from red to blue indicate the feature values from high to 
low. Negative values of SHAP indicate that the feature has a 
decreasing impact on the carbon emissions, while positive values 
indicate an increasing impact. The SHAP values for DT, ITT, DTE, 
and ITR are uniformly distributed across both the negative and 
positive sides of the scale, indicating that these features can either 

positively or negatively influence model predictions. The uniform 
variation of SHAP values with changes in DT, ITT, DTE, and ITR 
suggests a linear effect of these features on carbon emissions in 
China. This uniformity implies that as the values of these features 
increase or decrease, their impact on the model’s prediction of carbon 
emissions consistently follows a linear trend, either enhancing or 
reducing the predicted emissions. On the other hand, the SHAP 
values for international tourist arrivals (ITA) are predominantly 
found in the positive region. This concentration in the positive 
spectrum indicates that ITA significantly contributes to increasing 
the predicted value of the model’s output, suggesting a positive 
relationship between ITA and carbon emissions in China.

Figure 4 shows the average SHAP values for DT, ITT, DTE, ITR 
and ITA. The largest values for DT and ITT indicate that DT and ITT 
drive the growth of carbon emissions in China, and the smallest SHAP 
value for ITA indicates that ITA has the least impact on the growth of 
carbon emissions in China. The smallest impact of ITA on China’s 
carbon emissions can also be observed in Figure 3, where the SHAP 
value of ITA is closest to the 0-axis.

3.3 Decoupling analysis between tourism 
industry and carbon emissions

According to the Equation 14, the decoupling index of carbon 
emissions and tourism in China from 2000 to 2019 is calculated, and 
the results are shown in Figure 5. Weak decoupling in 2001 and 2002 
indicates that tourism revenue is growing faster than carbon 
emissions, but carbon emissions are still increasing. The shift from 
strong negative decoupling to strong decoupling between 2003 and 

TABLE 2 Evaluation metrics of models.

SSA-RF WOA-RF PSO-RF RF

MAE 20.21 24.69 24.29 34.19

MAPE 4 4.01 5.12 6.94

RMSE 23.12 25.02 29.70 38.96
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2004 suggests that economic policies or environmental protection 
measures during this period promoted economic growth while 
reducing carbon emissions. Both decoupling and coupling states 
existed from 2005 to 2009, and in 2009, the decoupling state was a 
strong negative decoupling, illustrating the fact that tourism revenues 
were decreasing at the same time that carbon emissions were 
increasing, and that the policies of this period seriously threatened the 
sustainability of society.

From 2010 to 2019, the decoupling state shows a steady weak 
decoupling, and the growth rate of tourism revenue is greater than the 
increase rate of carbon emissions in this period, but policy guidance 

should also be strengthened to focus on environmental protection 
while boosting tourism revenue.

4 Conclusions and policy 
recommendations

4.1 Conclusion

This paper firstly compares the results of different machine 
learning models in predicting China’s carbon emissions, and then 

FIGURE 4

SHAP value of DT, ITT, DTE, ITR, ITA.

FIGURE 5

Decoupling index from 2000 to 2019.
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analyzes the influence of international tourism revenue, number of 
international tourist arrivals, foreign exchange earnings from 
international tourism transportation, total domestic tourism 
expenditure, and number of domestic tourists on China’s carbon 
emissions using SHAP values. Finally, the decoupling index is used 
to analyze the decoupling relationship between tourism revenue and 
carbon emissions in China. The main conclusions are as follows:

SSA-RF is able to capture the complex relationship between 
tourism factors and China’s carbon emissions, and the predictions of 
SSA-RF model have the lowest MAE, MAPE and RMSE. Domestic 
tourists and international tourism transportation have the largest 
SHAP values, and these two factors have the greatest impact on 
changes in China’s carbon emissions. According to the SHAP value 
analysis, the growth of China’s tourism industry shows a linear 
relationship with the increase in China’s carbon emissions, i.e., the 
expansion of the tourism industry is directly proportional to the 
increase in carbon emissions. Over the past decade, China’s tourism 
revenues have continued to grow, while at the same time the trend of 
increasing carbon emissions has slowed down, showing a decoupling 
between tourism revenues and carbon emissions.

4.2 Policy implications

Considering the role of tourism in contributing to the growth of 
China’s carbon emissions, China should strongly promote a 
low-carbon transition in the tourism industry. Firstly, the accounting 
of carbon emissions from tourism should be strengthened, and the 
tourism industry should specify clear goals and paths for low-carbon 
development. Actively develop low-carbon and environmentally 
friendly tourism products and strengthen low-carbon and 
environmental protection education during tourists’ travels.

Transportation plays an extremely important role in the 
low-carbon transition of tourism, as confirmed in our study. 
Governments should encourage the use of public transportation by 
tourists, for example, by installing bicycle rental stations and walking 
paths in tourist destinations, and by improving orientation information 
to help tourists make better use of these services. In regional tourism, 
resources can be shared through multi-regional cooperation to jointly 
promote low-carbon transportation strategies, such as the construction 
and operation of cross-regional public transportation systems.

The transportation process for foreigners traveling into China also 
has a significant impact on China’s carbon emissions, and carbon 
emissions from air transits can be reduced by cooperating on direct 
flights to popular tourist destinations. Increase multilingual signage 
on public transportation and actively guide foreign tourists to use 
public transportation.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding authors.

Author contributions

JS: Conceptualization, Writing – original draft, Writing – review 
& editing. SF: Conceptualization, Writing – review & editing. MZ: 
Data curation, Writing  – review & editing. WQ: Formal analysis, 
Writing – review & editing. CW: Writing – original draft, Writing – 
review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by National Social Science Fund of China (No. 23BF084), Research 
Project of Anhui University of Science & Technology (No. 
2023yjrc30), Anhui Provincial Social Science Innovation and 
Development Research Project (No. 2024CXQ052) and Hainan 
Tropical Ocean University (No. RHDRC202211).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
 1. Shu EG, Porter JR, Hauer ME, Sandoval Olascoaga S, Gourevitch J, Wilson B, et al. 

Integrating climate change induced flood risk into future population projections. Nat 
Commun. (2023) 14:7870. doi: 10.1038/s41467-023-43493-8

 2. Marsooli R, Lin N, Emanuel K, Feng K. Climate change exacerbates hurricane flood 
hazards along US Atlantic and gulf coasts in spatially varying patterns. Nat Commun. 
(2019) 10:3785. doi: 10.1038/s41467-019-11755-z

 3. Shan Y, Huang Q, Guan D, Hubacek K. China CO2 emission accounts 2016–2017. 
Sci Data. (2020) 7:54. doi: 10.1038/s41597-020-0393-y

 4. Terhaar J, Frölicher TL, Aschwanden MT, Friedlingstein P, Joos F. Adaptive 
emission reduction approach to reach any global warming target. Nat Clim Chang. 
(2022) 12:1136–42. doi: 10.1038/s41558-022-01537-9

 5. Friedlingstein P, et al. Global carbon budget 2019. Earth Sys Sci Data. (2019) 
11:1783–838. doi: 10.5194/essd-11-1783-2019

 6. Li L, Zhang Y, Zhou T, Wang K, Wang C, Wang T, et al. Mitigation of China’s carbon 
neutrality to global warming. Nat Commun. (2022) 13:5315. doi: 
10.1038/s41467-022-33047-9

https://doi.org/10.3389/fpubh.2025.1550395
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1038/s41467-023-43493-8
https://doi.org/10.1038/s41467-019-11755-z
https://doi.org/10.1038/s41597-020-0393-y
https://doi.org/10.1038/s41558-022-01537-9
https://doi.org/10.5194/essd-11-1783-2019
https://doi.org/10.1038/s41467-022-33047-9


Shao et al. 10.3389/fpubh.2025.1550395

Frontiers in Public Health 09 frontiersin.org

 7. Shan Y, Guan D, Hubacek K, Zheng B, Davis SJ, Jia L, et al. City-level climate 
change mitigation in China. Sci Adv. (2018) 4:eaaq0390. doi: 10.1126/sciadv. 
aaq0390

 8. Lenzen M, Sun YY, Faturay F, Ting YP, Geschke A, Malik A. The carbon 
footprint of global tourism. Nat Clim Chang. (2018) 8:522–8. doi: 10.1038/ 
s41558-018-0141-x

 9. Luo F, Moyle BD, Moyle CLJ, Zhong Y, Shi S. Drivers of carbon 
emissions in China’s tourism industry. J Sustain Tour. (2020) 28:747–70. doi: 
10.1080/09669582.2019.1705315

 10. Zha J, Fan R, Yao Y, He L, Meng Y. Framework for accounting for tourism carbon 
emissions in China: an industrial linkage perspective. Tour Econ. (2021) 27:1430–60. 
doi: 10.1177/1354816620924891

 11. Ma H, Liu J, Xi J. Decoupling and decomposition analysis of carbon 
emissions in Beijing’s tourism traffic. Environ Dev Sustain. (2022) 24:5258–74. doi: 
10.1007/s10668-021-01657-w

 12. Mou D. Tourism energy consumption estimation and driving factors of carbon 
emissions based on LMDI and panel data models. J Comput Methods Sci Eng. (2024) 
24:1839–49. doi: 10.3233/JCM-230007

 13. Zha J, Dai J, Ma S, Chen Y, Wang X. How to decouple tourism growth from carbon 
emissions? A case study of Chengdu, China. Tour Manag Perspect. (2021) 39:100849. 
doi: 10.1016/j.tmp.2021.100849

 14. Lee JW, Brahmasrene T. Investigating the influence of tourism on economic 
growth and carbon emissions: evidence from panel analysis of the European Union. Tour 
Manag. (2013) 38:69–76. doi: 10.1016/j.tourman.2013.02.016

 15. Sun Y-Y, Gossling S, Zhou W. Does tourism increase or decrease carbon 
emissions? A systematic review. Ann Tour Res. (2022) 97:103502. doi: 10.1016/j.annals. 
2022.103502

 16. Sun Y-Y, Gossling S, Babakhani N. Macro-scale decarbonisation 
of tourism: insights from Australia. J Sustain Tour. (2023) 1-25:1–25. doi: 10.1080/ 
09669582.2023.2242608

 17. Gössling S, Balas M, Mayer M, Sun Y-Y. A review of tourism and climate change 
mitigation: the scales, scopes, stakeholders and strategies of carbon management. Tour 
Manag. (2023) 95:104681. doi: 10.1016/j.tourman.2022.104681

 18. Segarra V, Brida JG, Cárdenas-García PJ. On the relationships between tourism 
demand, carbon dioxide emissions and economic growth: a literature review. J Policy 
Res Tour, Leis Events. (2024) 6:1–42. doi: 10.1080/19407963.2024.2331792

 19. Visas H, Rehan R, Ul-Haq J, Cheema AR, Khanum S, Hye QMA. Does tourism 
increase energy consumption in BRICS countries? J Tour Manag Res. (2023) 10:94–106. 
doi: 10.18488/31.v10i1.3402

 20. Jiang Z, Liu J, Leung AK. Tracking spatial heterogeneity of local degree of 
saturation in unsaturated soils at different scales via X-ray computed tomography. J Rock 
Mech Geotech Eng. (2025). doi: 10.1016/j.jrmge.2024.12.004

 21. Zhao J, Kou L, Wang H, He X, Xiong Z, Liu C, et al. Carbon emission prediction 
model and analysis in the Yellow River basin based on a machine learning method. 
Sustain For. (2022) 14:6153. doi: 10.3390/su14106153

 22. Zhao Y, Liu R, Liu Z, Liu L, Wang J, Liu W. A review of macroscopic carbon 
emission prediction model based on machine learning. Sustain For. (2023) 15:6876. doi: 
10.3390/su15086876

 23. Schütt KT, Arbabzadah F, Chmiela S, Müller KR, Tkatchenko A. Quantum-
chemical insights from deep tensor neural networks. Nat Commun. (2017) 8:13890. doi: 
10.1038/ncomms13890

 24. Schmidt J, Marques MR, Botti S, Marques MA. Recent advances and applications 
of machine learning in solid-state materials science. Npj Comput Mater. (2019) 5:83. doi: 
10.1038/s41524-019-0221-0

 25. Luo H, Wang C, Li C, Meng X, Yang X, Tan Q. Multi-scale carbon emission 
characterization and prediction based on land use and interpretable machine learning 
model: a case study of the Yangtze River Delta region, China. Appl Energy. (2024) 
360:122819. doi: 10.1016/j.apenergy.2024.122819

 26. Noh S, Lee S. Forecasting meteorological drought conditions in South Korea using 
a data-driven model with lagged global climate variability. Sustain For. (2024) 16:6485. 
doi: 10.3390/su16156485

 27. Aras S, Van MH. An interpretable forecasting framework for energy 
consumption and CO2 emissions. Appl Energy. (2022) 328:120163. doi: 
10.1016/j.apenergy.2022.120163

 28. Liu F, Kang Y, Guo K. Is electricity consumption of Chinese counties decoupled 
from carbon emissions? A study based on Tapio decoupling index. Energy. (2022) 
251:123879. doi: 10.1016/j.energy.2022.123879

 29. Meng H, Hu Y, Dong Z. The spatiotemporal decoupling relationship between 
economic development, energy consumption, and carbon dioxide emissions in Xinjiang 
Province from 2006 to 2020. Sustainability. (2024) 16:6421. doi: 10.3390/su16156421

 30. Ruffing K. Indicators to measure decoupling of environmental pressure from 
economic growth. Sustain Indic. (2007) 67:211.

 31. Katircioglu ST. International tourism, energy consumption, and environmental 
pollution: the case of Turkey. Renew Sust Energ Rev. (2014) 36:180–7. doi: 10.1016/j.rser. 
2014.04.058

 32. Ng TH, Lye CT, Lim YS. A decomposition analysis of CO2 emissions: evidence 
from Malaysia’s tourism industry. Int J Sustain Dev World Ecol. (2016) 23:266–77. doi: 
10.1080/13504509.2015.1117534

 33. Malik MAS, Shah SA, Zaman K. Tourism in Austria: biodiversity, environmental 
sustainability, and growth issues. Environ Sci Pollut Res. (2016) 23:24178–94. doi: 
10.1007/s11356-016-7609-x

 34. Lin Y-H, Nitivattananon V. A low-emission pathway for tourism passenger 
transport in small and medium-sized urban destinations–case of Yilan, Taiwan. Int J 
Tour Cities. (2024) 4:43. doi: 10.1108/IJTC-02-2024-0043

https://doi.org/10.3389/fpubh.2025.1550395
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1126/sciadv.aaq0390
https://doi.org/10.1126/sciadv.aaq0390
https://doi.org/10.1038/s41558-018-0141-x
https://doi.org/10.1038/s41558-018-0141-x
https://doi.org/10.1080/09669582.2019.1705315
https://doi.org/10.1177/1354816620924891
https://doi.org/10.1007/s10668-021-01657-w
https://doi.org/10.3233/JCM-230007
https://doi.org/10.1016/j.tmp.2021.100849
https://doi.org/10.1016/j.tourman.2013.02.016
https://doi.org/10.1016/j.annals.2022.103502
https://doi.org/10.1016/j.annals.2022.103502
https://doi.org/10.1080/09669582.2023.2242608
https://doi.org/10.1080/09669582.2023.2242608
https://doi.org/10.1016/j.tourman.2022.104681
https://doi.org/10.1080/19407963.2024.2331792
https://doi.org/10.18488/31.v10i1.3402
https://doi.org/10.1016/j.jrmge.2024.12.004
https://doi.org/10.3390/su14106153
https://doi.org/10.3390/su15086876
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1016/j.apenergy.2024.122819
https://doi.org/10.3390/su16156485
https://doi.org/10.1016/j.apenergy.2022.120163
https://doi.org/10.1016/j.energy.2022.123879
https://doi.org/10.3390/su16156421
https://doi.org/10.1016/j.rser.2014.04.058
https://doi.org/10.1016/j.rser.2014.04.058
https://doi.org/10.1080/13504509.2015.1117534
https://doi.org/10.1007/s11356-016-7609-x
https://doi.org/10.1108/IJTC-02-2024-0043

	Understanding the environmental health implications of tourism on carbon emissions in China
	1 Introduction
	2 Methodology
	2.1 Data sources
	2.2 Random forest
	2.3 Optimization algorithm
	2.4 SHapley Additive exPlanation
	2.5 Hybrid model
	2.6 Tapio decoupling index

	3 Results and discussion
	3.1 Optimal hybrid model selection
	3.2 The influence of tourism factors on China’s carbon emissions
	3.3 Decoupling analysis between tourism industry and carbon emissions

	4 Conclusions and policy recommendations
	4.1 Conclusion
	4.2 Policy implications


	References

