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Aims: This study aimed to determine the relationships between mixed exposure 
to six air pollutants, namely, particulate matter with an aerodynamic diameter 
of 2.5 micrometers or less (PM2.5), PM with an aerodynamic diameter of 10 
micrometers or less (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), cobalt 
(CO) and ozone (O3), and insulin resistance (IR) indices in Chinese middle-aged 
and older populations.

Methods: A total of 2,219 participants from the China Health and Retirement 
Longitudinal Study (CHARLS), who are followed from 2011 to 2015, were 
included. Surface air pollutant concentration data were obtained from the China 
High Air Pollutants (CHAP) database. Multivariable linear regression analysis was 
used to examine the longitudinal associations between different air pollutants 
and various IR indices. Additionally, Bayesian kernel machine regression (BKMR), 
weighted quantile sum (WQS) regression, and quantile-based g computation 
(Qgcomp) were further utilized to assess the mixed effects of the six air 
pollutants.

Results: Fully adjusted linear models revealed that increases in the levels of the 
six air pollutants (in μg/m3) were associated with higher triglyceride–glucose–
body mass index (TyG-BMI; Beta = 0.027–0.128), triglyceride–glucose–waist 
circumference (TyG-WC; Beta = 0.155–0.674), and metabolic score for insulin 
resistance (METS-IR; Beta = 0.001–0.029) values during the four-year follow-
up period. Further mixture analysis indicated that combined exposure to the six 
air pollutants had a significant cumulative effect on the increases in these three 
IR indices. Among the pollutants, NO2 and O3 were identified as the primary 
contributor to the cumulative effect. The result of mediation analysis supported 
the mediating role of BMI in the relationship between air pollution and IR 
(mediation proportion: 49.1%–93.5%). The results from both subgroup analysis 
and sensitivity analysis supported the detrimental effects of air pollution on IR.

Conclusion: Both individual and mixed exposures to air pollution were 
significantly associated with IR in Chinese middle-aged and older individuals, 
with our study providing new evidence.
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Background

IR is one of the hallmark of diabetes and prediabetes, and is 
characterized primarily by the body’s biological response to insulin 
levels being lower than normal (1). IR is one of the most common 
metabolic disorders worldwide and is associated with various diseases, 
including type-2 diabetes, hypertension, stroke, and nonalcoholic fatty 
liver disease (2). Due to global aging and unhealthy lifestyle habits, the 
prevalence of IR is continuously increasing, contributing to the 
growing burden of chronic diseases worldwide (3). Focusing on the 
risk factors for IR is crucial for alleviating the associated disease 
burden and improving quality of life in populations.

Among various environmental and lifestyle factors contributing 
to IR, air pollution has emerged as a significant concern. Air pollution 
is a critical global challenge, severely impacting both the environment 
and human health. Long-term exposure to air pollution has been 
reported to affect endothelial function, alter the gut microbiota, the 
trigger systemic inflammation and IR (3–5). A systematic review 
identified particulate matter (PM) and nitrogen oxides (NOx) as two 
pollutants that are strongly associated with type-2 diabetes and other 
metabolic disorders (6–9). Several experiments have shown that 
exposure to those two air pollutants induces oxidative stress and 
disrupts insulin signaling pathways in animal models, supporting the 
metabolic impact of air pollution (10). Meanwhile, body mass index 
(BMI), a key measure of obesity, has been shown to be  a strong 
mediator between environmental exposure and metabolic disorders. 
Obesity-related inflammation, insulin signaling disruption, and 
altered lipid metabolism contribute to the development of IR, and 
BMI may mediate the effects of air pollution by influencing fat 
distribution and metabolic function (11, 12). Pollutants such as PM 
and NOx have been shown to exacerbate obesity-related inflammation 
by affecting adipose tissue and fat distribution (13, 14). Thus, 
we hypothesize that BMI may be one of the important mediators of 
the effect of air pollution exposure on IR. Explaining the mediating 
role that BMI plays in air pollution’s interference with insulin 
metabolic pathways would be crucial for developing public health 
strategies that target environmental risk factors.

Besides, many previous studies in related field have used single-
pollutant models, which may not accurately capture the real-world 
exposure scenarios of individuals who are typically exposed to 
multiple air pollutants simultaneously. As such, multipollutant models 
are critical for understanding the complex interactions between 
different pollutants and their effects on human health (15, 16). In 
addition, sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) 
are considered as other common air pollutants that significantly 
impact the health of middle-aged and older individuals (17, 18). Air 
pollutants such as SO₂, NO₂, and O₃ not only harm the respiratory 
system but also negatively impact cardiovascular and metabolic 
health. In addition to its role in metabolic dysfunction, SO₂ exposure 
has been linked to severe health outcomes, including increased risk of 
mortality (19). Long-term exposure to NO₂ has been shown to 
exacerbate adverse outcomes related to respiratory and cardiovascular 
diseases (20). O₃, a potent oxidant, is associated with an increased risk 
of mortality from respiratory and cardiovascular diseases, with both 
short-term and long-term exposure contributing to these outcomes 
(21). Although experimental evidence of the harmful effects of O3 and 
NO2 is more limited compared to PM, these pollutants are still 
considered critical indicators of air quality. Given the limited research, 

further studies are needed to explore which components of air 
pollution are most strongly associated with IR. Several indices, such 
as triglycerides and glucose (TyG) index and the metabolic score for 
insulin resistance (METS-IR), have been developed to assess IR (22, 
23). These indices are based on routine biochemical markers and are 
reliable tools for evaluating IR, closely correlating with the 
development and outcomes of various cardiovascular and endocrine 
diseases (24, 25). We intend to use different TyG indices and METS-IR 
as alternative outcomes to assess IR and conduct a systematic review 
of the impact of air pollution exposure on IR.

Given the growing body of evidence linking air pollution to IR, 
this study was designed to test the following specific hypotheses: (1) 
Exposure to higher levels of air pollutants, particularly PM, NO2 and 
O3, is associated with higher levels of IR in middle-aged and older 
individuals. (2) BMI mediates the association between air pollution 
and IR, amplifying its adverse metabolic effects.

Methods

Study population

The study population was drawn from the first wave (2011) and 
third wave (2015) of the China Health and Retirement Longitudinal 
Study (CHARLS), with relevant data collected from each participant 
during both waves (26). The exclusion criteria were as follows: (1) 
individuals aged <45 years; (2) individuals with missing data related 
to the primary outcome variables or covariates; and (3). variables with 
outliers (any continuous variable that differed from the overall mean 
by more than 3 standard deviations). Ultimately, this analysis included 
2,219 participants (Supplementary Figure 1). Further details about 
CHARLS can be  found in the original study. The CHARLS was 
approved by the Institutional Review Board of Peking University, and 
all participants were informed about the disclosure statement and 
signed informed consent forms (25, 26).

Assessment of the air pollution chemical 
composition

The China High Air Pollutants (CHAP) dataset was obtained from 
the National Earth System Science Data Center.1 This dataset provides 
long-term, full-coverage, high-resolution, and high-quality 
monitoring data and calculations of surface air pollutants across 
China. The dataset fully accounts for the spatiotemporal heterogeneity 
of air pollutants, utilizing artificial intelligence to generate data from 
big data sources such as ground measurement sources, satellite remote 
sensing products, atmospheric reanalysis, and model simulations. The 
dataset has undergone high-quality cross-validation (27–30). The 
spatial resolution for SO2, CO, and NO2 is 10 km, whereas that for 
PM2.5, PM10, and O3 is 1 km. Additionally, we obtained the average Air 
Quality Index (AQI) for the corresponding prefecture-level cities 
during the follow-up period to assess the air quality in the participants’ 
locations. We  calculated the average air pollutant concentrations 

1 https://www.geodata.cn
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during the follow-up period as the exposure and matched them to the 
city-level geocodes corresponding to each participant’s residential 
address (for privacy reasons, it was not feasible to obtain the details of 
an individual’s residential address from the CHARLS).

Assessment of IR

Four indices were used as proxies for IR: the TyG, TyG-body mass 
index (TyG-BMI) TyG-waist circumference (TyG-WC) and metabolic 
score for insulin resistance (METS-IR). The TyG was calculated as 
follows: ln [fasting triglyceride level (mg/dL) × fasting glucose level 
(mg/dL)/2] (31). The METS-IR was calculated as follows: 
Ln((2 × fasting glucose level (mg/dL) + fasting triglyceride 
level) × BMI)/Ln (high-density lipoprotein cholesterol level) (32). The 
calculation formulas for the remaining indices were as follows: 
TyG-WC = TyG × WC; and TyG-BMI = TyG × BMI. These indices 
were derived from laboratory tests conducted at both baseline and the 
end of follow-up.

Covariates

Covariates were selected from confounding factors identified in 
relevant studies. The sociodemographic information included sex, age, 
education level, marital status, place of residence, annual average 
expenditure, and health insurance status. The lifestyle information 
included smoking status, alcohol consumption status, the presence of 
hypertension, diabetes, dyslipidemia, nighttime sleep duration, the use 
of clean fuel for cooking (to assess indoor air pollution), and daily 
activity scores (see Supplementary Table 1 for the original scoring 
table). The blood biomarkers included C-reactive protein (CRP) levels 
and blood urea nitrogen (BUN) levels. Hypertension was defined as a 
systolic blood pressure ≥ 140 mmHg or diastolic blood 
pressure ≥ 90 mmHg, or a self-reported history of hypertension. 
Diabetes was defined as fasting blood glucose level ≥ 7.0 mmol/L or 
a self-reported history of diabetes. Dyslipidemia was defined as total 
cholesterol (TC) level ≥ 240 mg/dL, triglycerides level ≥ 150 mg/dL, 
low density lipoprotein cholesterol (LDL-C) level ≥ 160 mg/dL, high 
density lipoprotein cholesterol (HDL-C) level < 40 mg/dL, or a self-
reported dyslipidemia. Considering that other meteorological factors 
may also influence the outcomes, we obtained average temperature 
and humidity data from 2011 to 2015 for the prefecture-level cities 
where the participants resided. The annual average temperature data 
of the participants’ respective prefecture-level cities were obtained 
from the National Environmental Information Center under the 
National Oceanic and Atmospheric Administration, whereas the 
annual average humidity data were sourced from the China Ground 
Climate Data Daily Dataset (V3.0) provided by the National 
Meteorological Science Data Center. Inverse distance weighting was 
applied to interpolate the daily data, generating the corresponding 
raster data.

Statistical analysis

Continuous variables are described as the mean and standard 
deviation (M, SD) or interquartile range (IQR), whereas categorical 

variables are described as frequency and percentage (n, %). All 
confounding variables and the corresponding 2011 IR indices were 
included in the multivariate regression model to create the adjusted 
model. Subgroup analyses further stratified the study population by sex, 
age, education level, the place for residence, BMI, and indoor clean fuel 
usage. Bayesian kernel machine regression (BKMR) and weighted 
quantile sum (WQS) regression were further used to evaluate the effects 
of individual and combined exposure to multiple air pollutants on the 
IR indices (33, 34). BKMR involves the generation of a kernel function 
based on mixture variables, and the use of Bayesian sampling and 
analytical methods to produce relationship curves between the mixture 
components and the outcomes. Additionally, other pollutants can 
be held at specific quartile concentration levels to examine the effect of 
a single pollutant on an outcome (35). We grouped the pollutants on 
basis of the correlation coefficients among the six pollutants and 
included them in the BKMR model. The number of iterations was set to 
10,000 (11). In the WQS model, the dataset was randomly split into 
training and testing sets. Through maximum likelihood estimation and 
validation, the weight of each pollutant could be determined, which 
helped to overcome the multicollinearity issue commonly found in 
traditional regression methods (33). Mediation analysis was used to 
explore the mediating effect of BMI. We first assessed the association 
between air pollution and BMI using multiple linear regression, 
incorporating relevant covariates to control for confounding factors 
(age, sex, marital status, insurance coverage, education level, place of 
residence, cooking fuel usage, nighttime activities, daily physical activity, 
alcohol consumption status, smoking status, hypertension status, 
diabetes status, dyslipidaemia status, CRP level, BUN level, air humidity, 
and average temperature). Mediation analysis was conducted via the R 
package “mediation,” with the bootstrap method employed to estimate 
the standard errors of the mediated effects. The number of Monte Carlo 
simulations was set to 1,000 to obtain more accurate estimates. Finally, 
we conducted sensitivity analyses: (1) a quantile-based g computation 
(Qgcomp) model was used to analyze the cumulative effects of mixed 
pollution pollutant exposure; (11). (2) Patients with malignant tumors 
were excluded; and (3) patients using antihyperglycaemic medications 
(oral hypoglycaemic agents or insulin) were excluded (3). For the results 
of multiple linear regression, the false discovery rate (FDR) method was 
applied to adjust the p-values, reducing the likelihood of false positives. 
A p-value or FED of less than 0.05 was considered statistically 
significant. The significance codes were as follows: “***” for a P/FDR 
value <0.001, “**” for a P/FDR value <0.01, and “*” for a P/FDR value 
<0.05. All the statistical analyses were conducted using R version 4.4.1.

Results

Participant and air pollutant characteristics

A total of 2,219 participants, including 1,060 females and 1,159 
males, were ultimately included in our study (Table  1). Statistical 
differences were observed between the two sexes in terms of age, marital 
status, place of residence, smoking status, and alcohol consumption 
status. Figure 1 illustrates the spatial distribution of air pollutants in the 
provinces where the participants resided. There were significant 
regional variations in air pollution across China: during the follow-up 
period, the air quality in Northwest China and North China was notably 
worse than that in the Southwest and Southeast China. Table 1 also 
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TABLE 1 Baseline information of participants.

Levels Overall Female Male p-value

N 2,219 1,060 1,159

Age [year, mean (SD)] 59.83 (9.07) 58.69 (9.59) 60.87 (8.43) <0.001

Education (%)
Beyond secondary 2,184 (98.4) 1,047 (98.8) 1,137 (98.1) 0.272

Secondary or above 35 (1.6) 13 (1.2) 22 (1.9)

Marry (%)
Married or cohabitation 1713 (77.2) 740 (69.8) 973 (84.0) <0.001

Else 506 (22.8) 320 (30.2) 186 (16.0)

Residence (%)
Rural 1837 (82.8) 834 (78.7) 1,003 (86.5) <0.001

Urban 382 (17.2) 226 (21.3) 156 (13.5)

Medical insurance (%)
No Insurance 116 (5.2) 62 (5.8) 54 (4.7) 0.245

Under Insurance 2,103 (94.8) 998 (94.2) 1,105 (95.3)

Annual average expenditure [Yuan, 

mean (SD)]
11694.77 (39468.41) 11607.77 (39763.33) 11774.33 (39213.74) 0.921

Daily activity level (%)

Low 1,150 (51.8) 446 (42.1) 704 (60.7) <0.001

Medium 487 (21.9) 275 (25.9) 212 (18.3)

High 582 (26.2) 339 (32.0) 243 (21.0)

Drinking or not (%)
No 1,467 (66.1) 937 (88.4) 530 (45.7) <0.001

Yes 752 (33.9) 123 (11.6) 629 (54.3)

Smoking or not (%)
No 1,280 (57.7) 988 (93.2) 292 (25.2) <0.001

Yes 939 (42.3) 72 (6.8) 867 (74.8)

Having hypertension or not (%)
No 1,296 (58.4) 601 (56.7) 695 (60.0) 0.129

Yes 923 (41.6) 459 (43.3) 464 (40.0)

Having dyslipidemia or not (%)
No 1,224 (55.2) 571 (53.9) 653 (56.3) 0.259

Yes 995 (44.8) 489 (46.1) 506 (43.7)

Having diabetes or not (%)
No 2094 (94.4) 987 (93.1) 1,107 (95.5) 0.018

Yes 125 (5.6) 73 (6.9) 52 (4.5)

WC [cm, mean (SD)] 85.77 (9.40) 86.60 (9.44) 85.00 (9.30) <0.001

BMI [kg/m2, mean (SD)] 23.61 (3.28) 24.35 (3.39) 22.94 (3.02) <0.001

Nighttime [hour, mean (SD)] 6.35 (1.88) 6.29 (1.91) 6.39 (1.85) 0.195

CRP [mg/L, mean (SD)] 1.89 (2.74) 1.80 (2.62) 1.97 (2.85) 0.163

BUN [mg/dL, mean (SD)] 15.52 (4.00) 14.79 (3.82) 16.19 (4.06) <0.001

PM2.5 [μg/m3, mean (SD)] 57.18 (19.52) 57.61 (19.24) 56.78 (19.77) 0.317

PM10 [μg/m3, mean (SD)] 96.96 (35.28) 97.92 (35.52) 96.08 (35.06) 0.22

O3 [μg/m3, mean (SD)] 84.71 (6.89) 84.86 (7.01) 84.56 (6.78) 0.312

NO2 [μg/m3, mean (SD)] 30.21 (9.97) 30.41 (9.97) 30.02 (9.97) 0.356

SO2 [μg/m3, mean (SD)] 31.71 (14.49) 32.24 (14.75) 31.22 (14.24) 0.098

CO [μg/m3, mean (SD)] 1110.20 (467.07) 1117.33 (468.25) 1103.68 (466.09) 0.492

TyG [mean (SD)] 8.73 (0.62) 8.81 (0.61) 8.65 (0.62) <0.001

TyG-BMI [mean (SD)] 208.46 (37.02) 216.72 (36.97) 200.91 (35.44) <0.001

TyG-WC [mean (SD)] 757.93 (116.59) 772.81 (112.92) 744.32 (118.27) <0.001

METS-IR [mean (SD)] 35.72 (6.72) 36.75 (6.66) 34.78 (6.64) <0.001

Annual average air humidity [%, mean 

(SD)]
69.48 (8.08) 69.29 (8.12) 69.65 (8.04) 0.293

Annual average temperature [°C, mean 

(SD)]
14.90 (4.52) 14.72 (4.60) 15.07 (4.44) 0.068
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presents the average concentrations (μg/m3) of six air pollutants during 
the follow-up period, revealing no significant differences in air pollution 
exposure between the two sexes. Additionally, we found that females 
had higher IR indices than males did (p < 0.001).

Figure  2 shows the correlation coefficients among the six air 
pollutants. PM2.5 and PM10 had the highest correlation coefficient 
(r2 = 0.93). The correlation coefficients between O3 and PM2.5, PM10, 
and CO were relatively low, while the remaining air pollutants 
exhibited varying degrees of correlation with each other.

Linear regression analysis of air pollutants 
and IR

Table 2 presents the associations between levels of exposure to air 
pollutants and IR indices as indicated by linear regression analysis. 
The model indicated that after adjustment for all confounding factors, 
an increase of 1 μg/m3 in the concentrations of PM2.5, PM10, SO2, NO2, 
CO, and O3 was associated with a potential increase of 0.155–0.674 in 
the TyG-WC value, a rise of 0.001–0.029 in the METS-IR value, and 
an increase of 0.027–0.128 in the TyG-BMI value. Although the results 
are inconsistent, they still suggest a potential positive association 
between exposure to air pollutants and IR.

Relationships between concurrent 
exposure to air pollution and IR

We further investigated the associations between the three IR 
indices—METS-IR, TyG-BMI and TyG-WC—and the six air pollutants 
using mixture models (Figures 3–5). BKMR also revealed a significant 
positive correlation between the NO₂ concentration and the an increase 
in the METS-IR and TyG-WC when the concentrations of other air 
pollutants were held at the 25th percentile. At the 50th percentile, the 

NO₂ concentration was positively correlated with the an increase in the 
TyG-BMI and TyG-WC, whereas at the 75th percentile, the NO₂ 
concentration was only positively correlated with only the an increase 
in the TyG-WC. The O₃ concentration was positively correlated with an 
increase in the TyG-WC when the concentrations of other air pollutants 
were held between the 25th and 75th percentiles. The WQS model, in 
which the weights of the six pollutants in the mixture were calculated, 
revealed that NO₂ and O₃ consistently had relatively high weights, 
indicating their predominant influence on IR. Dose–response curve 
analysis indicated that the effects of both NO₂ and O₃ exposure on IR 
were linear and positively correlated (Figures 3–5). Association between 
air pollution exposure and IR indices analyzed using multiple models.

Analysis of the mediating effect of BMI

Multiple linear regression revealed a consistent positive correlation 
between air pollution exposure and BMI (Supplementary Table 2). 
We conducted a mediation analysis based on adjusted linear models to 
investigate whether BMI potentially mediated the association between 
air pollution exposure and IR. As shown in Table 3, BMI significantly 
mediated the association between exposure to the six air pollutants and 
IR, with mediation proportions ranging from 49.1%–93.5% 
(FDR < 0.05). Additionally, we found that the effect of air pollution 
indicators on IR was primarily mediated by BMI, rather than through 
a direct effect (FDR for ACME <0.05 while FDR for ADE > 0.05).

Stratification of air pollution exposure in 
relation to IR

The relationships between exposure to air pollutants and IR 
indices stratified by age, gender, education level, residence, BMI, and 
cooking fuel type were shown in Tables 4–6. After adjusting for 

FIGURE 1

The geographic distribution of the study population and 6 air pollutants, along with AQI, from 2011 to 2015.
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FIGURE 2

Correlation heatmap of the six air pollutants: The numerical values and color intensity represent the magnitude of the correlation coefficient (r2), with 
red indicating positive correlation and blue indicating negative correlation.

TABLE 2 Results of the multivariable linear regression for different air pollutant exposure concentrations and four IR indices (By FDR).

TyG [β-coefficients(95%CI)] TyG-WC [β-coefficients(95%CI)]

Crude model Adjusted model Crude model Adjusted model

PM2.5 0.000 (−0.001, 0.002) −0.001 (−0.002, 0.001) PM2.5 1.127 (0.882, 1.371)*** 0.255 (0.080, 0.431)**

PM10 0.000 (−0.000, 0.001) −0.001 (−0.001, 0.001) PM10 0.661 (0.527, 0.796)*** 0.155 (0.043, 0.262)*

SO2 0.001 (−0.001, 0.002) −0.000 (−0.001, 0.001) SO2 1.444 (1.114, 1.774)*** 0.309 (0.025, 0.593)*

NO2 0.001 (−0.001, 0.004) −0.000 (−0.003, 0.002) NO2 2.255 (1.776, 2.732)*** 0.654 (0.302, 1.005)***

CO 0.000 (−0.000, 0.000) −0.000 (−0.000, 0.000) CO 0.032 (0.022, 0.042)*** 0.008 (−0.000, 0.016)

O3 0.004 (0.001,0.008)* 0.000 (−0.001, 0.001) O3 2.421 (1.723, 3.118)*** 0.674 (0.155, 0.193)*

TyG-BMI [β-coefficients(95%CI)] METS-IR [β-coefficients (95%CI)]

Crude model Adjusted model Crude model Adjusted model

PM2.5 0.324 (0.246, 0.402)*** 0.041 (−0.000, 0.086) PM2.5 0.063 (0.049, 0.077)*** 0.011 (0.002, 0.021)*

PM10 0.188 (0.144, 0.231)*** 0.027 (0.001, 0.052)* PM10 0.037 (0.029, 0.045)*** 0.006 (0.001, 0.012)*

SO2 0.448 (0.343, 0.553)*** 0.083 (0.020, 0.146)* SO2 0.090 (0.071, 0.109)*** 0.017 (0.002, 0.031)*

NO2 0.660 (0.508, 0.812)*** 0.130 (0.041, 0.220)** NO2 0.131 (0.104, 0.159)*** 0.029 (0.011, 0.042)**

CO 0.010 (0.006, 0.013)*** 0.003 (0.001, 0.005)** CO 0.002 (0.001, 0.002)*** 0.001 (0.001, 0.001)*

O3 0.628 (0.405, 0.850)*** 0.158 (0.029, 0.286)* O3 0.136 (0.096, 0.176)*** 0.022 (0.004, 0.049)

Adjusted Model: Age, sex, marital status, insurance coverage, education level, place of residence, cooking fuel usage, nighttime activities, daily physical activity, alcohol consumption status, 
smoking status, hypertension status, diabetes status, dyslipidaemia status, CRP level, BUN level, TyG/TyG-BMI/TyG-WC/METS-IR levels in 2011, air humidity, average temperature. ***for a 
P/FDR value <0.001, **for a P/FDR value <0.01, and *for a P/FDR value <0.05.
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potential confounders, we  detected a significant effect of the 
interaction effect between individuals with a BMI less than 24 kg/m2 
and those with a BMI greater than 24 kg/m2 in the subgroup analysis 
of O3’sthe effect of O3 exposure on the TyG-BMI. Overall, stronger 
associations between air pollution exposure and IR were observed in 
the subgroups of males, individuals with an education levels below a 
secondary level, those individuals living in rural areas, individuals 
those using clean energy for cooking, individuals with a BMI ≤ 24 kg/
m2, and those individuals aged ≤65 years.

Sensitivity analysis

First, we examined the associations between air pollution mixtures 
and IR indices via the Qgcomp model, and similar conclusions were 

drawn from the BKMR and WQS models. Supplementary Table 3 
presents the estimates, standard errors, and p-values for each IR 
indicator. Second, as shown in Supplementary Tables 4, 5, after 
excluding participants with self-reported malignancies (N = 2,196) 
and those on antidiabetic medications (N = 2099), the results of the 
linear regression analysis remained consistent with the primary 
findings, thereby enhancing the robustness of the study.

Discussion

This study investigated the relationships between mixed exposure 
to six air pollutants—PM2.5, PM10, SO2, NO2, CO, and O3—and IR 
indices in a cohort of middle-aged and older Chinese individuals over 
a four-year period. Owing to age-related metabolic changes, increased 

FIGURE 3

(a) Relationship between overall air pollution exposure and METS-IR assessed by BKMR model. (b) When other air pollutants were fixed at specific 
exposure percentiles (25, 50 and 75th), the effect of a particular median air pollutant on METS-IR estimated using BKMR. (c) The weight of each of six 
air pollutants assessed by WQS model. (d) The dose–response curves between each air pollutant and METS-IR.
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fat accumulation, and comorbidities such as hypertension, obesity, 
and dyslipidemia, which all increase the risk of IR, we  selected 
individuals aged 45 years and above for our study. By focusing on this 
high-risk group, we aimed to better understand the specific risks and 
mechanisms of air pollution exposure in individuals who are more 
susceptible to these conditions. This cohort choice allowed for a 
deeper investigation into air pollution’s role in metabolic health, 
particularly among high-risk individuals. Our findings indicated that 
both individual and combined exposure to these pollutants were 
significantly associated with increased IR, suggesting a complex and 
cumulative effect of air pollution on metabolic health. The mixed 
effect was driven primarily by NO2 and O3. Additionally, our study 
demonstrated the mediating effect of BMI on this causal relationship. 
The sensitivity analysis further confirmed our findings. Our study is 
one of the few epidemiological studies based on a Chinese cohort to 

explore the relationship between exposure to air pollutants and 
IR. These findings support the hypothesis that air pollution exposure 
has an adverse effect on IR.

Previous studies have confirmed the associations between 
exposure to air pollution and adverse health outcomes. A study by 
Jalali et.al (34) that included an Iranian cohort revealed that for every 
10 μg/m3 increase in PM2.5 exposure, the incidence of cardiovascular 
disease increased by 3% (95% CI = 1.016, 1.036). A cross-sectional 
study by VoPham et.al (36) also revealed that higher environmental 
PM2.5 exposure was associated with an increased likelihood of 
nonalcoholic fatty liver disease among hospitalized patients in the 
United  States. Similarly, extensive studies have investigated the 
association between PM exposure and IR (36–39). Li et  al. (37) 
conducted in vivo and in vitro experiments, which revealed that mice 
exposed to O3 exhibited presented increased glucose loads and 

FIGURE 4

(a) Relationship between overall air pollution exposure and TyG-BMI assessed by BKMR model. (b) When other air pollutants were fixed at specific 
exposure percentiles (25, 50 and 75), the effect of a particular median air pollutant on TyG-BMI estimated using BKMR. (c). The weight of each of six air 
pollutants assessed by WQS model. (d) The dose–response curves between each air pollutant and TyG-BMI.
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impaired telomere homeostasis. Our study highlights the differential 
effects of various pollutants on IR. Furthermore, we initially found 
that PM10 exposure had a stronger positive effect on IR than did PM2.5 
exposure in both the linear regression and the mixture models. 
However, upon reanalysis with the BKMR model, we observed that 
PM2.5 exposure had a more significant contribution to the cumulative 
exposure effect on IR. We hypothesize that the diameter of fine PM 
may be  one of the main reasons for this difference (40). Recent 
evidence suggests that the diameter of fine PM is a key factor in 
determining whether extrapulmonary translocation occurs. 
Extrapulmonary translocation involves that fine PM, moving from the 
lungs into the bloodstream through the mediation of macrophages, 
potentially causing greater damage to cardiovascular function (41). 
However, the results of observational studies are often inconsistent. A 

meta-analysis shows that compared to PM2.5, PM10 exposure had a 
higher relative risk for diabetes (1.26 vs. 1.16) (42). We speculate that 
the larger particles of PM10 may remain in the respiratory tract for a 
longer duration and could induce a stronger immune response, 
oxidative stress, and other effects. Further experimental as well as 
epidemiological studies are needed to elucidate the 
mechanisms involved.

The biological mechanisms underlying the impact of air pollutants 
on IR remain difficult to elucidate. Several hypotheses have been proposed 
by researchers: some studies have suggested that exposure to air pollution 
might affect insulin function by inducing inflammatory responses and 
oxidative stress (11–14), and interference with energy metabolism could 
be another possible mechanism. In mouse model, Rajagopalan et al. (43) 
revealed that exposure to high concentrations of PM2.5 impaired energy 

FIGURE 5

(a) Relationship between overall air pollution exposure and TyG-WC assessed by BKMR model. (b). When other air pollutants were fixed at specific 
exposure percentiles (25, 50 and 75th), the effect of a particular median air pollutant on TyG-WC estimated using BKMR. (c). The weight of each of six 
air pollutants assessed by WQS model. (d) The dose–response curves between each air pollutant and TyG-WC.
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expenditure in brown adipose tissue and 18FDG-PET uptake. Their 
transcriptomic analysis also indicated that air pollution has an epigenetic 
impact on biological systems. Recent evidence suggested that air pollution 
exposure could also influence the development of metabolic syndrome 
through the mediation of the gut microbiota (38).

Notably, while all six pollutants showed associations with the IR 
indices, the strength of these associations varied. This underscores the 
need for integrated air quality management strategies that consider the 
combined effects of multiple pollutants, rather than focusing on individual 
pollutants in isolation. In real-world conditions, individuals experience 
simultaneous exposure to multiple air pollutants rather than a single 
pollutant (15). Epidemiological evidence on the combined effects of 
exposure to air pollution mixtures on IR in the general population 
remains limited. In this study, to assess the mixed effects of all six air 
pollutants on IR more accurately, we applied three different statistical 
approaches: BKMR, WQS regression and Qgcomp. These methods 
captured complex pollutant interactions, offering a clearer understanding 
of their combined health effects. A common feature of these three 
methods is their ability to handle nonlinear and interaction effects in 
multivariate exposure data through different functions, making them 
particularly suitable for analyzing complex environmental exposures (44, 
45). Dong et al. (15) used the BKMR and WQS regression to investigate 
the associations between mixed exposure to PM1, PM2.5, PM10, NO2, and 
O3 and the risk of sarcopenia in middle-aged and older individuals. 
He et al. (46) applied the same methods and revealed consistent positive 
correlation between combined exposure to heavy metals and the 
incidence of stroke cases, with lead exposure being the dominant factor 
driving the mixed effect. BKMR helped to reveal the complexity of the 
nonlinear relationships and interactions among pollutants. Additionally, 
WQS regression quantified the contribution of each pollutant to IR, 
thereby highlighting the dominant role of NO2 in mixed exposures, 

providing strong support for understanding the relative importance of 
pollutants. Finally, Qgcomp, as a complement to the above two 
approaches, further validated the heterogeneous effects observed. 
Compared with single-pollutant analyses, the mixed-exposure analyses 
provide a more comprehensive understanding compared to single 
pollutant analyses, highlighting the joint effects of multiple pollutants. 
These findings carry important public health implications, suggesting the 
need to pay greater attention to the combined effects of pollutant exposure 
on health. They also emphasize the necessity of considering the synergistic 
effects of pollutants when developing air quality management policies.

Our mediation analysis further confirms BMI’s mediating role 
between air pollution and IR. Given BMI’s established link to metabolic 
disorders, our findings suggest that air pollution influences IR through 
its effects on body composition. Air pollutants have been confirmed to 
be associated with the onset and progression of obesity (47, 48). The use 
of a broader range of statistical methods has also provided causal 
evidence for the impact of air pollution on obesity, which is consistent 
with the findings of other researchers. Studies have reported that air 
pollution can trigger a systemic chronic inflammatory response, which 
is closely related to obesity. We hypothesize that air pollutants may 
activate the immune system, where these cytokines not only induce 
inflammation but also promote fat accumulation, leading to obesity 
(49). Additionally, chronic inflammation may alter the secretion 
function of adipocytes, contributing to weight gain and the onset of 
IR. In addition, our subgroup analysis results indicate that the impact 
of air pollution exposure on IR is more significant in males, individuals 
with an education level below secondary level, individuals living in 
rural areas and using clean energy for cooking, and with a BMI ≤ 24 
and aged ≤65 years. We propose the following hypothesis to better 
explain these findings: first, males or younger middle-aged individuals 
may systematically engage in more outdoor work, leading to higher 

TABLE 3 Mediating role of BMI between air pollutant exposure concentrations and IR scores (By adjusted model).

M = BMI ACME ADE Prop. 
Mediated(95%CI)

FDR

X Y Estimate(95%CI) FDR Estimate(95%CI) FDR

PM2.5

METS-IR

0.022 (0.016, 0.030) <2e-16 0.006 (−0.003, 0.010) 0.33 0.792 (0.590, 1.170) <2e-16

PM10 0.013 (0.009, 0.020) <2e-16 0.003 (−0.002, 0.010) 0.37 0.799 (0.572, 1.220) <2e-16

SO2 0.032 (0.023, 0.040) <2e-16 0.008 (−0.005, 0.020) 0.36 0.794 (0.568, 1.190) <2e-16

NO2 0.047 (0.034, 0.060) <2e-16 0.017 (0.001, 0.030) 0.12 0.732 (0.546, 0.980) <2e-16

CO 0.000 (0.000, 0.001) <2e-16 0.000 (0.000, 0.001) 0.12 0.533 (0.311, 0.950) <2e-16

R O3 0.033 (0.019, 0.050) <2e-16 0.018 (−0.006, 0.040) 0.27 0.651 (0.378, 1.220) <2e-16

PM2.5

TyG-BMI

0.124 (0.087, 0.160) <2e-16 0.009 (−0.034, 0.060) 0.81 0.935 (0.671, 1.510) <2e-16

PM10 0.071 (0.049, 0.090) <2e-16 0.001 (−0.029, 0.030) 0.97 0.991 (0.692, 1.730) <2e-16

SO2 0.179 (0.127, 0.230) <2e-16 0.009 (−0.067, 0.090) 0.86 0.952 (0.650, 1.580) <2e-16

NO2 0.263 (0.189, 0.350) <2e-16 0.052 (−0.038, 0.150) 0.39 0.836 (0.629, 1.170) <2e-16

CO 0.001 (0.000. 0.002) <2e-16 0.005 (0.002, 0.010) 0.12 0.579 (0.354, 1.030) <2e-16

O3 0.185 (0.104, 0.270) <2e-16 0.233 (0.088, 0.380) 0.11 0.796 (0.438, 1.720) 0.06

PM2.5

TyG-WC

0.308 (0.226, 0.400) <2e-16 0.159 (−0.000, 0.320) 0.12 0.659 (0.457, 1.000) <2e-16

PM10 0.176 (0.126, 0.230) <2e-16 0.103 (0.006, 0.210) 0.12 0.632 (0.439, 0.970) <2e-16

SO2 0.447 (0.321, 0.570) <2e-16 0.137 (−0.140, 0.380) 0.43 0.765 (0.519, 1.480) <2e-16

NO2 0.653 (0.493, 0.820) <2e-16 0.413 (0.081, 0.740) 0.12 0.613 (0.448, 0.900) <2e-16

CO 0.007 (0.004, 0.010) <2e-16 0.007 (−0.001, 0.010) 0.16 0.491 (0.269, 1.140) <2e-16

O3 0.465 (0.270, 0.680) <2e-16 0.532 (0.036, 1.030) 0.12 0.467 (0.266, 0.930) <2e-16

ACME, Average Causal Mediation Effect. ADE, Average Direct Effect. Prop. Mediated, Proportion of Mediation. M, Mediation variable. Bold values indicate statistically significant results (P/FDR < 0.05).
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TABLE 4 Subgroup analyses of air pollutant exposure concentrations and METS-IR (By adjusted model).

N (%) PM2.5 PM10 O3

β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction

Gender 0.47 0.37 0.92

Female 1,060 (47.77) 0.01 (−0.01–0.02) 0.50 0.00 (−0.01–0.01) 0.73 0.02 (−0.02–0.05) 0.52

Male 1,159 (52.23) 0.02 (0.01–0.03) 0.06 0.01 (0.01–0.02) 0.04 0.03 (−0.01–0.06) 0.41

Education 0.41 0.36 0.89

Secondary- 2,184 (98.42) 0.01 (0.01–0.02) 0.06 0.01 (0.01–0.01) 0.07 0.02 (−0.00–0.05) 0.32

Secondary+ 35 (1.58) 0.04 (−0.06–0.14) 0.42 0.02 (−0.04–0.09) 0.61 0.05 (−0.23–0.34) 0.86

Residence 0.30 0.07 0.20

Rural 1837 (82.79) 0.01 (0.01–0.02) 0.50 0.01 (0.01–0.01) 0.05 0.03 (−0.00–0.06) 0.24

Urban 382 (17.21) 0.00 (−0.02–0.03) 0.06 −0.00 (−0.02–0.01) 0.61 0.01 (−0.05–0.07) 0.86

Cooking fuel type 0.74 0.56 0.46

Clean fuel 1,220 (54.98) 0.01 (−0.00–0.02) 0.82 0.01 (−0.00–0.01) 0.30 0.03 (−0.00–0.07) 0.24

Non-clean fuel 999 (45.02) 0.01 (−0.00–0.02) 0.17 0.01 (−0.00–0.01) 0.23 0.00 (−0.04–0.04) 0.93

BMI 0.37 0.45 0.09

≤24 1,224 (55.16) 0.01 (−0.00–0.02) 0.26 0.01 (−0.00–0.01) 0.16 0.05 (0.02–0.08) 0.04

> 24 995 (44.84) −0.01 (−0.02–0.01) 0.50 −0.01 (−0.01–0.00) 0.32 −0.02 (−0.05–0.02) 0.52

Age 0.35 0.35 0.83

≤65 1,131 (50.97) 0.01 (0.01–0.03) 0.03 0.01 (0.01–0.02) 0.11 0.02 (−0.02–0.06) 0.43

> 65 1,088 (49.03) 0.01 (−0.00–0.02) 0.29 0.01 (−0.00–0.01) 0.32 0.02 (−0.02–0.06) 0.43

N (%)

NO2 SO2 CO

β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction

Gender 0.70 0.61 0.93

Female 1,060 (47.77) 0.02 (−0.01–0.05) 0.20 0.01 (−0.02–0.03) 0.63 0.00 (−0.00–0.00) 0.26

Male 1,159 (52.23) 0.04 (0.01–0.06) 0.02 0.03 (0.01–0.05) 0.09 0.00 (0.01–0.01) 0.07

Education 0.62 0.88 0.23

Secondary- 2,184 (98.42) 0.03 (0.01–0.05) 0.01 0.02 (0.01–0.03) 0.09 0.00 (0.01–0.01) 0.07

Secondary+ 35 (1.58) 0.05 (−0.09–0.19) 0.62 0.03 (−0.09–0.15) 0.63 0.00 (−0.00–0.01) 0.17

Residence 0.30 0.46 0.77

Rural 1837 (82.79) 0.03 (0.01–0.05) 0.01 0.02 (0.01–0.03) 0.09 0.00 (0.01–0.01) 0.07

Urban 382 (17.21) 0.01 (−0.04–0.06) 0.68 0.01 (−0.02–0.05) 0.57 0.00 (−0.00–0.00) 0.23

(Continued)
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TABLE 5 Subgroup analyses of air pollutant exposure concentrations and TyG-BMI (By adjusted model).

PM2.5 PM10 O3

N (%) β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction

Gender 0.30 0.34 0.95

Female 1,060 (47.77) −0.01 (−0.09–0.06) 0.83 0.02 (−0.02–0.06) 0.55 0.17 (−0.02–0.36) 0.15

Male 1,159 (52.23) 0.05 (−0.02–0.11) 0.63 0.03 (−0.00–0.07) 0.19 0.13 (−0.04–0.31) 0.21

Education 0.63 0.71 0.94

Secondary- 2,184 (98.42) 0.02 (−0.03–0.07) 0.63 0.03 (0.01–0.05) 0.17 0.16 (0.03–0.29) 0.03

Secondary+ 35 (1.58) 0.19 (−0.31–0.69) 0.63 0.20 (−0.09–0.50) 0.39 0.41 (−0.99–1.82) 0.57

Residence 0.40 0.27 0.30

Rural 1837 (82.79) 0.03 (−0.03–0.08) 0.63 0.03 (0.01–0.06) 0.17 0.18 (0.03–0.32) 0.03

Urban 382 (17.21) −0.05 (−0.18–0.08) 0.63 0.00 (−0.05–0.06) 0.97 0.11 (−0.17–0.39) 0.49

Cooking fuel type 0.38 0.31 0.72

Clean fuel 1,220 (54.98) 0.01 (−0.06–0.08) 0.87 0.02 (−0.02–0.06) 0.46 0.16 (−0.02–0.34) 0.15

Non-clean fuel 999 (45.02) 0.04 (−0.04–0.11) 0.63 0.03 (−0.00–0.07) 0.19 0.16 (−0.02–0.35) 0.15

(Continued)

TABLE 4 (Continued)

N (%)

NO2 SO2 CO

β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction

Cooking fuel type 0.91 0.73 0.90

Clean fuel 1,220 (54.98) 0.03 (0.01–0.06) 0.02 0.02 (0.01–0.04) 0.09 0.00 (0.01–0.01) 0.07

Non-clean fuel 999 (45.02) 0.02 (−0.01–0.05) 0.18 0.01 (−0.01–0.03) 0.51 0.00 (−0.00–0.00) 0.17

BMI 0.59 0.98 0.13

≤24 1,224 (55.16) 0.02 (−0.00–0.04) 0.18 0.01 (−0.01–0.03) 0.44 0.00 (−0.00–0.00) 0.71

> 24 995 (44.84) −0.00 (−0.03–0.03) 0.94 −0.01 (−0.03–0.01) 0.45 0.00 (−0.00–0.00) 0.23

Age 0.57 0.87 0.14

≤65 1,131 (50.97) 0.02 (−0.00–0.04) 0.18 0.01 (−0.01–0.03) 0.33 0.00 (0.01–0.01) 0.07

> 65 1,088 (49.03) 0.04 (0.01–0.07) 0.01 0.02 (−0.00–0.04) 0.13 0.00 (−0.00–0.00) 0.26

Bold values indicate statistically significant results (P/FDR < 0.05).
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TABLE 5 (Continued)

PM2.5 PM10 O3

N (%) β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction

BMI 0.14 0.41 0.01

≤24 1,224 (55.16) 0.02 (−0.03–0.07) 0.63 0.02 (−0.01–0.05) 0.39 0.23 (0.09–0.38) 0.01

> 24 995 (44.84) −0.07 (−0.14–0.01) 0.63 −0.01 (−0.04–0.03) 0.76 −0.07 (−0.25–0.11) 0.49

Age 0.24 0.27 0.45

≤65 1,131 (50.97) 0.04 (−0.02–0.11) 0.63 0.05 (0.01–0.08) 0.17 0.23 (0.04–0.41) 0.03

> 65 1,088 (49.03) −0.00 (−0.07–0.07) 0.98 0.01 (−0.03–0.04) 0.82 0.08 (−0.10–0.26) 0.49

N (%)

NO2 SO2 CO

β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction

Gender 0.65 0.44 0.75

Female 1,060 (47.77) 0.11 (−0.03–0.24) 0.17 0.06 (−0.03–0.16) 0.32 0.00 (−0.00–0.01) 0.10

Male 1,159 (52.23) 0.14 (0.02–0.26) 0.08 0.09 (0.01–0.18) 0.09 0.00 (0.01–0.01) 0.05

Education 0.69 0.73 0.13

Secondary- 2,184 (98.42) 0.13 (0.04–0.22) 0.03 0.08 (0.02–0.15) 0.06 0.00 (0.01–0.01) 0.02

Secondary+ 35 (1.58) 0.25 (−0.50–0.99) 0.63 0.26 (−0.29–0.82) 0.44 0.02 (0.01–0.03) 0.06

Residence 0.27 0.44 0.29

Rural 1837 (82.79) 0.14 (0.04–0.24) 0.03 0.09 (0.02–0.16) 0.06 0.00 (0.01–0.01) 0.05

Urban 382 (17.21) 0.03 (−0.19–0.25) 0.88 0.05 (−0.10–0.20) 0.57 0.01 (0.01–0.01) 0.06

Cooking fuel type 0.47 0.81 0.94

Clean fuel 1,220 (54.98) 0.12 (−0.00–0.25) 0.10 0.09 (−0.00–0.18) 0.12 0.00 (0.01–0.01) 0.05

Non-clean fuel 999 (45.02) 0.14 (0.01–0.27) 0.10 0.08 (−0.01–0.17) 0.18 0.00 (0.01–0.01) 0.07

BMI 0.39 0.68 0.30

≤24 1,224 (55.16) 0.07 (−0.03–0.17) 0.21 0.04 (−0.04–0.11) 0.41 0.00 (−0.00–0.00) 0.61

> 24 995 (44.84) 0.01 (−0.12–0.13) 0.92

−0.01 (−0.09–

0.08) 0.86 0.00 (−0.00–0.01) 0.07

Age 0.90 0.68 0.25

≤65 1,131 (50.97) 0.13 (0.01–0.26) 0.10 0.11 (0.02–0.20) 0.06 0.00 (0.01–0.01) 0.02

> 65 1,088 (49.03) 0.13 (−0.00–0.26) 0.10 0.05 (−0.04–0.14) 0.37 0.00 (−0.00–0.00) 0.22

Bold values indicate statistically significant results (P/FDR < 0.05).
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TABLE 6 Subgroup analyses of air pollutant exposure concentrations and TyG-WC (By adjusted model).

N (%) PM2.5 PM10 O3

β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction

Gender 0.66 0.63 0.92

Female 1,060 (47.77) 0.22 (−0.04–0.49) 0.15 0.12 (−0.04–0.28) 0.20 0.72 (−0.04–1.48) 0.13

Male 1,159 (52.23) 0.27 (0.03–0.51) 0.06 0.17 (0.02–0.32) 0.05 0.61 (−0.11–1.33) 0.15

Education 0.53 0.88 0.43

Secondary- 2,184 (98.42) 0.26 (0.09–0.44) 0.02 0.15 (0.04–0.26) 0.02 0.65 (0.13–1.18) 0.07

Secondary+ 35 (1.58) 0.91 (−1.26–3.08) 0.51 1.34 (−0.17–2.86) 0.17 2.29 (−4.09–8.68) 0.54

Residence 0.34 0.20 0.99

Rural 1837 (82.79) 0.29 (0.10–0.48) 0.02 0.19 (0.07–0.31) 0.02 0.70 (0.12–1.27) 0.07

Urban 382 (17.21) −0.09 (−0.59–0.40) 0.78 −0.12 (−0.41–0.16) 0.44 0.62 (−0.61–1.86) 0.39

Cooking fuel type 0.58 0.55 0.74

Clean fuel 1,220 (54.98) 0.23 (−0.02–0.47) 0.11 0.12 (−0.03–0.27) 0.18 0.58 (−0.11–1.26) 0.15

Non-clean fuel 999 (45.02) 0.28 (0.02–0.55) 0.07 0.18 (0.02–0.35) 0.05 0.88 (0.06–1.70) 0.09

BMI 0.33 0.71 0.33

≤24 1,224 (55.16) 0.28 (0.06–0.49) 0.03 0.19 (0.06–0.33) 0.02 1.09 (0.44–1.74) 0.01

> 24 995 (44.84) −0.02 (−0.30–0.25) 0.86 −0.04 (−0.21–0.13) 0.68 0.07 (−0.67–0.82) 0.85

Age 0.25 0.26 0.59

≤65 1,131 (50.97) 0.33 (0.10–0.56) 0.02 0.20 (0.05–0.34) 0.02 0.77 (0.05–1.49) 0.04

> 65 1,088 (49.03) 0.20 (−0.07–0.47) 0.20 0.11 (−0.05–0.28) 0.22 0.57 (−0.18–1.33) 0.18

N (%)

NO2 SO2 CO

β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction β (95%CI) FDR P for interaction

Gender 0.83 0.84 0.76

Female 1,060 (47.77) 0.64 (0.11–1.16) 0.02 0.26 (−0.16–0.67) 0.34 0.01 (−0.01–0.02) 0.44

Male 1,159 (52.23) 0.64 (0.16–1.12) 0.02 0.35 (−0.05–0.74) 0.19 0.01 (−0.00–0.02) 0.24

Education 0.82 0.69 0.22

Secondary- 2,184 (98.42) 0.66 (0.31–1.02) 0.00 0.31 (0.02–0.60) 0.14 0.01 (−0.00–0.02) 0.24

Secondary+ 35 (1.58) 0.53 (−2.63–3.69) 0.75 0.27 (−2.38–2.92) 0.84 0.04 (−0.03–0.11) 0.41

Residence 0.69 0.86 0.60

Rural 1837 (82.79) 0.68 (0.30–1.06) 0.00 0.35 (0.04–0.66) 0.14 0.01 (−0.00–0.02) 0.24

Urban 382 (17.21) 0.25 (−0.72–1.23) 0.66 0.09 (−0.64–0.82) 0.84 0.01 (−0.02–0.03) 0.59

(Continued)
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levels of exposure (46). The protective effect of endogenous estrogen 
may also contribute to the observed sex differences (50). Individuals 
with lower education levels and those living in rural areas may have 
poorer health management, imbalanced nutritional intake, or a lack of 
awareness regarding the hazards of air pollution, increasing their 
vulnerability to the effects of air pollution exposure. In populations 
with a BMI ≤ 24, there is no obvious indication of obesity. Individuals 
with lower BMI may have lower muscle mass levels, and muscle mass 
plays a crucial role in maintaining blood glucose control. Air pollution 
may affect insulin sensitivity through related pathways, and this impact 
could be more pronounced in individuals with lower muscle mass, who 
have greater difficulty maintaining glucose homeostasis (50, 53). As for 
individuals using clean energy for cooking, we hypothesize that, on the 
one hand, they may take more proactive health management measures 
regarding indoor air quality, leading them to underestimate the risks of 
outdoor environmental pollution (51). On the other hand, their overall 
environmental exposure may not have significantly improved, and they 
might even be more affected by external air pollution because they live 
in more polluted areas. Therefore, this group may be more sensitive to 
external pollution. The findings from some subgroup analyses in our 
study may be inconsistent with those of previous studies. Further social, 
psychological, and medical interventions need to be implemented to 
increase the adaptability of vulnerable populations to air pollution.

Our study, which was based on a cohort of middle-aged and older 
participants in China, utilized data from a four-year follow-up period. 
This large-scale, long-term longitudinal design effectively captured the 
long-term effects of air pollution on IR, overcoming the time-effect 
limitations inherent in cross-sectional studies. We analyzed the impact 
of six air pollutants on IR, providing a more accurate reflection of real-
world exposure to pollutants. The mixed-effect analysis helps to reveal 
the interactions between different pollutants, enhancing the external 
validity and reliability of our findings. This discovery has significant 
public health implications, offering new evidence to policymakers and 
highlighting the importance of controlling air pollution, particularly 
by reducing the concentrations of major pollutants, such as NO2, to 
prevent metabolic diseases in middle-aged and older individuals. 
Moreover, the identification of BMI as a mediating factor provides new 
directions for health management and intervention.

However, the following limitations should be equally considered: 
Some limitations arise from the availability of data in the CHARLS 
database. Owing to the design aimed at protecting participants’ privacy, 
we could only estimate the annual average air pollution exposure at the 
administrative level of the participants’ locations, which might 
introduce some bias in individual exposure estimation. Some studies 
have suggested that individuals living farther from city centers are more 
likely to be exposed to higher levels of air pollution, as they spend more 
time commuting. Relying solely on the average pollutant concentrations 
in the prefecture-level city of the participants’ residence as the overall 
exposure measure may overlook this issue. We  calculated the 
participants’ daily activity scores on the basis of the household 
questionnaire used in the CHARLS to assess their activity levels. This 
score primarily serves as a retrospective subjective measure and cannot 
determine whether the participants mainly engage in indoor or outdoor 
activities. This limitation should be  considered given that outdoor 
physical activities can increase pollutant inhalation and exacerbate 
harm, depending on the pollutant concentration and exercise intensity 
(52). A key limitation of our study is the lack of covariates related to the 
daily dietary patterns in the CHARLS, as well as the absence of other T
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indicators of IR, such as blood insulin levels. We calculated different IR 
indices on the basis of the available data. Although these indices can 
represent an individual’s IR level to some extent, the hyperinsulinaemic–
euglycaemic clamp is still regarded as the gold standard for assessing IR 
(18, 19). Due to the differing focuses of the various IR indices—for 
example, the TyG-BMI and TyG-WC place more emphasis on body 
measurements, whereas the METS-IR takes fasting blood glucose levels 
into account—the effects of different air pollutants on the various IR 
indices are not consistent. Interestingly, exposure to the six air pollutants 
was not significantly associated with the TyG index, but there was some 
association with both the TyG-BMI and TyG-WC. This may suggest 
that air pollution exposure primarily influences IR through its effect on 
obesity-related indicators. Our mediation analysis results also partially 
support this notion. Besides, some of the self-report questionnaire 
results might be subject to recall bias. We did not consider the short-
term effects of air pollution exposure. Given the conclusions and 
limitations of this study, future research should consider employing 
randomized controlled trial designs to better simulate the impact of air 
pollution exposure. Nevertheless, our study provides valuable insights 
and serves as a foundation for future investigations.

Conclusion

In conclusion, our study obtained new evidence on the association 
between air pollution exposure and IR in a large cohort of Chinese 
middle-aged and older individuals. Both individual pollutants and 
their combined exposure significantly influenced IR. These findings 
underscore the need for policy interventions aimed at reducing air 
pollution, particularly in urban areas, to protect vulnerable 
populations from the detrimental health effects of pollutant exposure. 
Further research is needed to explore the biological mechanisms 
underlying these associations and to develop effective strategies for 
mitigating the health risks posed by expose to air pollution.
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Glossary

CHARLS - China Health and Retirement Longitudinal Study

CHAP - China High Air Pollutants

PM - Particulate matter

SO2 - Sulfur dioxide

NO2 - Nitrogen dioxide

CO - Cobalt

O3 - Ozone

NOx - Nitrogen oxides

AQI - Air quality index

TyG - Triglyceride-Glucose

TyG-BMI - Triglyceride–glucose–body mass index

TyG-WC - Triglyceride–glucose–waist circumference

METS-IR - Metabolic score for insulin resistance

CRP - C-reactive protein

BUN - Blood urea nitrogen

BKMR - Bayesian kernel machine regression

WQS - Weighted quantile sum

Qgcomp - Quantile-based g computation

BMI - Body mass index

WC - Waist circumference

IR - Insulin resistance

IQR - Interquartile range
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