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Background: Hand, foot, and mouth disease (HFMD) poses a significant risk 
to children. While most studies focus on the individual effects of temperature 
or relative humidity, the combined effect of these factors and their temporal 
variations remain unclear. Understanding these effects is essential for designing 
effective public health interventions.

Methods: Using daily meteorological and HFMD case data collected from 2010 
to 2019 in 16 cities in Yunnan Province, China, we compared three composite 
indices (Humidex, heat index, and temperature–humidity index) to identify the 
indices that best captured the combined effect of temperature and humidity on 
HFMD risk. An extended time-varying distributed lag nonlinear model (DLNM) 
was used to examine how these effects shifted over time across population 
subgroups. Relative risk (RR) values at the 1%, 25%, 75%, and 99% quantiles were 
extracted to represent effects at extremely, moderately low, moderately, and 
extremely high levels.

Results: The THIa8 demonstrated a monotonic upward exposure–response curve 
with narrower confidence intervals, more consistent relationships across cities, 
and the best model fit (Quasi-Akaike information criterion (QAIC) = 283564.2, 
Akaike information criterion (AIC) = 45.46, and Bayesian information criterion 
(BIC) = 62.30). HFMD risk decreased at extremely low (RR = 0.677, 95% CI: 0.632, 
0.724) and moderately low THIa8 levels (RR = 0.766, 95% CI: 0.713, 0.823) but 
increased at moderately high (RR = 1.121, 95% CI: 1.084, 1.159) and extremely 
high THIa8 levels (RR = 1.478, 95% CI: 1.300, 1.680). Temporal analysis revealed 
a decreased HFMD risk at extremely low THIa8 values from 2010 to 2019, 
weakened protective effects at moderately low THIa8 values and an increased 
risk at extremely high THIa8 values. Subgroup analyses revealed that kindergarten 
children (3 ≤ age < 6 years) and females were particularly vulnerable.

Conclusion: The THIa8 effectively captures the combined effect of temperature 
and relative humidity on HFMD risk revealing temporal variations. Adaptive public 
health strategies are needed to mitigate HFMD transmission under changing 
environmental conditions.
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1 Introduction

Hand, foot, and mouth disease (HFMD) is an infectious disease 
primarily caused by enteroviruses and is widely distributed across the 
Asia-Pacific region (1–3). Most cases are slight and self-remitting, but 
severe cases can lead to complications such as aseptic meningitis, 
pulmonary edema, and myocarditis (4). Since the early 21st century, 
the Asia–Pacific region has experienced several large-scale HFMD 
outbreaks, with a noticeable increase in the proportion of severe 
cases, raising concerns among public health authorities (5, 6). In 
2008, China designated HFMD a category C notifiable disease (7). 
Approximately 2 million cases are reported annually due to limited 
vaccination coverage (self-paid vaccination) and the lack of cross-
protection against other serotypes causing HFMD (8, 9). HFMD has 
become the primary focus in the field of infectious diseases among 
children in China (10). The absence of specific antiviral treatments 
and high incidence rate make HFMD a substantial challenge to 
public health.

Previous studies have indicated that environmental factors, 
especially temperature and humidity, significantly increase the 
spread of HFMD (9–15). Several studies have analyzed the 
independent effects of temperature and humidity. However, the 
effects of these two factors on HFMD risk are not independent but 
rather have a mutual influence (14–19). This complex relationship 
cannot be  fully captured by considering temperature or relative 
humidity alone.

Currently, two common approaches are applied to examine the 
combined effect of temperature and relative humidity, involving 
stratified or varying coefficient models (14–16). These methods 
allow researchers to examine how temperature affects HFMD risk at 
various humidity levels and vice versa, thereby clarifying their 
interaction. However, these methods are often relatively complex 
and may not effectively quantify how their combined effect 
influences disease outcomes. Another common approach involves 
constructing composite indices. Several indices have been explored 
for HFMD, including the heat index, temperature–humidity index 
(THI), and humidex (17–19). These indices provide a more 
comprehensive framework for assessing the combined effect of the 
two factors on HFMD risk, allowing for the use of exposure–
response curves to quantitatively describe their relationship. This 
approach offers a more intuitive and simplified analysis of complex 
weather conditions and their impact on health outcomes. However, 
while these indices may offer a more robust framework for evaluating 
the effects of weather factors on disease risk, few studies have 
evaluated their suitability in characterizing the combined effect of 
these factors on HFMD risk.

Furthermore, several studies suggest that the effect of 
environmental variables on health risks evolves over time and are 
influenced by dynamic conditions such as climate change (20–26). For 
HFMD, the combined effect of temperature and relative humidity on 
disease outcomes may also change over time. Understanding how the 
combined effect of these two factors on HFMD risk evolves over time 
is crucial for accurately assessing current health risks and informing 
public health strategies. Such insights can help guide preventive 

measures, particularly in regions with unique climatic patterns like 
Yunnan Province.

This study focused on two key issues: determining which 
composite index best captures the combined effect of the two factors 
on HFMD risk and exploring how the combined effect changes over 
time. Our study area covered 16 cities in Yunnan Province, China. A 
two-stage time series analysis was applied to compare the performance 
of three composite indices, the heat index, THI, and Humidex, which 
were used to capture the combined effect of the two factors on HFMD 
risk. Using the optimal composite index, we conducted a time-varying 
DLNM to study the temporal trends of the combined effect of the two 
factors on HFMD risk in Yunnan, China, from 2010 to 2019. We also 
examined the differences in the time-varying combined effect across 
age and sex.

2 Methods

2.1 Study site

Located in China’s southwestern border area, Yunnan Province 
covers a total area of approximately 394,100 square kilometers (27). 
The province has complex climatic conditions characterized by diverse 
climate types and small annual temperature variations (28). The 
climate in Yunnan Province has periodic patterns, with meteorological 
factors showing complex and variable fluctuations over time. 
We selected all cities in Yunnan across cold, temperate, and tropical 
climates (including subtropical zones) as the study area 
(Supplementary Figures S1–S3).

2.2 Data sources

Data on the daily counts of HFMD cases were collected from the 
Yunnan Center for Disease Control and Prevention, covering the 
period from January 2010 to December 2019. This research examined 
HFMD cases in children under 6 years of age. To conduct the age 
subgroup analysis, we  categorized the patients into two groups: 
Group 1 (0 ≤ age < 3 years) and Group 2 (3 ≤ age <6 years). The two 
groups specifically represent preschool children and 
kindergarten children.

Daily meteorological data were sourced from the National 
Meteorological Science Data Center,1 including daily average 
temperature (°C), average humidity (%), average wind velocity (m/s), 
sunshine duration (hours), daily rainfall (mm), and average air 
pressure (HPa). A comprehensive description of Yunnan’s 
meteorological monitoring stations can be  found in 
Supplementary Table S1. To determine city-specific meteorological 
conditions, we averaged the daily variables for each city throughout 
the study period (Supplementary Table S2).

1 http://data.cma.cn/
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2.3 Description of composite indices

We included three widely discussed and applied composite 
temperature–humidity indices, namely, the Humidex, heat index, and 
THI, to assess their effectiveness in capturing the combined effect of 
these factors on HFMD risk. These composite indices have been 
previously explored in studies of HFMD and have demonstrated 
success in evaluating the combined effects of temperature and 
humidity on disease transmission (17–19). Their definitions and 
formulas are as follows.

2.3.1 Humidex
The Humidex has been widely used as a composite index reflecting 

both temperature and relative humidity (29). The formula can 
be written as Equation 1:

 

×
+
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T is the city-specific daily mean air temperature (°C), and R is 
the city-specific daily relative humidity (%). This index assumes a 
linear relationship where relatively high humidity amplifies the 
effect of temperature on human physiology, particularly under 
warm conditions. This index highlights how vapor pressure from 
relative humidity interacts with air temperature to increase 
perceived heat, making it a useful tool for understanding 
temperature–humidity interactions in moderate- to high-
temperature environments.

2.3.2 Heat index
The heat index uses a complex polynomial function to incorporate 

various factors (such as body height, weight, and sunlight exposure) 
that affect the heat dissipation of the body (30). The formula can 
be written as Equation 2:
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This index incorporates nonlinear interactions, showing that the 
impact of humidity becomes more pronounced with increasing 
temperature. This index emphasizes how temperature and humidity 
jointly contribute to heat stress, with relative humidity playing a 
greater role under extreme heat conditions. The heat index is 
particularly suitable for capturing the dynamic interplay of these 
factors in hot and humid climates.

2.3.3 THI
The THI is an alternative index developed by researchers (18). The 

THI accounts for the complex relationship between temperature and 
relative humidity, where the impact of humidity on the index value 
increases as the relative humidity deviates from 50%. The formula is 
as follows Equation 3:

 

−

= ×ω
50

50
R
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where T is the daily temperature (°C) and R is the daily relative 
humidity. ù  represents the degree to which the impact temperature is 
greater at 100% relative humidity than at 50% relative humidity. On 
the basis of prior knowledge and sensitivity analysis results 
(Supplementary Table S9), we ultimately selected ω  = 1.8 for the 
study. These findings indicate that 100% relative humidity increases 
the effect of temperature on HFMD risk 1.8 times more than 50% 
relative humidity does. Henceforth, we refer to this index as the THIa8.

2.4 Statistical analyses

A three-stage analysis was used to compare our candidate indices. 
The temperature was included as a reference for comparison. In the 
first stage, a DLNM with consistent model selection criteria was used 
to estimate the exposure–response relationships for each index across 
the 16 cities in Yunnan Province. In the second step, a multivariate 
meta-regression model was used to synthesize the first-stage results to 
evaluate the association patterns and model fit of each index, 
identifying the composite index that best captured the combined effect 
on HFMD risk. In the third stage, a time-varying DLNM meta strategy 
was used to analyze temporal variations in the combined effect on 
HFMD risk as the optimal composite index.

2.4.1 Estimating the exposure–response 
relationship

The DLNM, developed by Gasparrini et al. (31), has been widely 
used in climatic and health-related time series. Owing to the sparse 
nature of HFMD case data in individual cities (Supplementary Table S3), 
we  implemented a generalized DLNM using the quasi-Poisson 
distribution. Informed by prior knowledge (32) and sensitivity analysis 
results (Supplementary Text S1; Supplementary Figures S4–S10; 
Supplementary Tables S4–S9), the model was defined as follows 
Equation 4:

 ( )µ−~t tY Quasi poisson

 

( ) ( )
( )

µ α= + + +
+ + +

log ,
,

t t t t

t t t

cb M lag Confounders Auto
ns time df Dow Holiday  (4)

where tY  represents the daily HFMD incidence on dayt, tM  
represents different indices (Humidex, heat index, THIa8, and 
temperature as a reference), and ( )cb · represents the cross-basis 
function. The model captures both the exposure-response and 
lag-response dimensions using a natural cubic spline (ns) with three 
equidistant knots for the exposure dimension and a natural cubic 
spline (df = 4) for the lag dimension. The lag period was defined as 
0–14 days on the basis of the incubation and infectious periods of 
HFMD. Confounders represents the potential confounding variables, 
including sunshine duration, air pressure, wind velocity and relative 
humidity. Seasonal and long-term trends were adjusted via a natural 
cubic spline with 8 degrees of freedom per year. Auto represents 
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autoregressive terms with data on a logarithmic scale, incorporating 
1st- and 2nd-order lags. Dow  represents the days of the week, and 
Holiday represents China’s public holidays. Dow was used to control 
for weekday effects and holiday effects.

2.4.2 Evaluating the association patterns and 
model fit of the composite index

We aimed to identify a composite index that effectively 
characterizes the combined effect of temperature and humidity on 
HFMD risk, with certain desirable properties. First, the exposure–
response curves derived from the index should exhibit monotonicity, 
consistency across different cities, and alignment with established 
epidemiological patterns. These properties will ensure the 
interpretability and practical utility of the index in public health 
interventions. Second, while association patterns provide critical 
epidemiological insights, better model fit enhances the reliability and 
robustness of the findings, offering a comprehensive basis for selecting 
the most suitable index.

To achieve this, we assessed both the association patterns and 
model fit of the three candidate indices. The performance of each 
index was assessed using the Quasi-Akaike information criterion 
(QAIC) (33), Bayesian information criterion (BIC) and Akaike 
information criterion (AIC). First, we aggregated the QAIC values 
from the DLNMs fitted to all 16 cities to assess the overall goodness-
of-fit for each index across Yunnan Province. Second, a multivariate 
meta-regression model was applied to synthesize the city-level 
exposure–response relationships and examine the association patterns 
of each index at the provincial level. Finally, we compared the AIC and 
BIC values of the meta-regression models to identify the index with 
the best overall model fit, providing a comprehensive evaluation of its 
ability to represent the combined effect on HFMD risk.

2.4.3 Exploring the temporal trends in the 
exposure–response association by using a 
time-varying DLNM

The Wald test can determine whether there is temporal 
heterogeneity in the associations for each city and overall (34). To 
assess the temporal trends in the combined effect on HFMD risk, 
we employed a time-varying DLNM (35). We added cross-basis 
time interactions to capture the time-varying relationships. The 
time-varying DLNM is as follows Equation 5:

 ( )µ−~t tY Quasi poisson

 

( ) ( )
( )

( ) ( )

log ,
,

: ,

t t t t

t t t
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The terms and parameter settings are the same as those in the 
time-constant DLNM (2.4.1). ttime  represents the study time points. 
reftime represents the reference time point, which is the associated 
time we wanted to obtain. By changing the reference time, we could 
observe the associations at different time points. In this study, 2010, 
2011, 2012, 2013, and 2019 were used as reference times to obtain the 
exposure–response curves for each corresponding year. To illustrate 
this temporal variation, we compared the exposure-response curves 

for 2010 and 2019, highlighting the changes in risk patterns across 
these years (34).

For each index, we selected the average value over the entire study 
period as a point of reference. To thoroughly examine the time-
varying exposure–response relationships between each index and 
HFMD risk, we extracted RR values at the 1%, 25%, 75%, and 99% 
quantiles of the index values, which represented effects at extremely, 
moderately low, moderately, and extremely high levels, respectively.

Additionally, analyses stratified by sex and age were conducted to 
identify vulnerable groups, allowing us to assess variations in 
susceptibility across demographic groups and achieve a more detailed 
risk profile.

R (V.3.6.1), including the “dlnm,” “mvmeta,” “splines,” “tsModel,” 
“ThermIndex,” and “Weathermetrics” packages, was used for all the 
statistical analyses. Statistical significance was defined as a two-sided 
p value <0.05 for all tests.

3 Results

3.1 Epidemiological patterns of HFMD 
cases in Yunnan, China

Between 2010 and 2019, 684,846 HFMD cases were reported 
across 16 cities in Yunnan, revealing a bimodal seasonal distribution 
with prominent peaks in both summer (April–July) and winter 
(October–December). Annually, case counts showed a significant 
upward trend, with the winter peak becoming increasingly 
pronounced (Figure  1). Detailed summary statistics of the 
characteristics are included in Supplementary Table S10.

3.2 Evaluating the association patterns and 
model fit of the composite indices

Figure 2 shows the cumulative exposure-response relationships 
across cities for each index, with the solid red line representing the 
pooled association and dashed gray lines illustrating city-specific 
variations. We found that the exposure–response curve for the THIa8 
exhibited a consistent monotonically increasing trend, especially in 
the high-value range. This was accompanied by a narrower confidence 
interval than that of the other indices, indicating a more consistent 
exposure–response relationship across different cities. In contrast, the 
risk increasing trends for the heat index and Humidex begin to level 
off or even decrease in the high-value region, forming an “S”-shaped 
curve. These indices displayed wider confidence intervals, suggesting 
greater variability and less stable estimates across different cities.

The pooled analysis revealed a significant decrease in HFMD risk 
at extremely low and moderately low THIa8 levels but an increase at 
moderately high and extremely high levels. At extremely low THIa8 
values, the RR was 0.677 (95% CI, 0.632, 0.724), which increased to 
0.766 (95% CI, 0.713, 0.823) at moderately low THIa8 values. 
Conversely, the RR increased to 1.121 (95% CI, 1.084, 1.159) at 
moderately high THIa8 values and reached 1.478 (95% CI, 1.300, 
1.680) at extremely high THIa8 values.

We subsequently compared the QAICs, AICs and BICs (Table 1). 
With respect to model fit, the THIa8 consistently had the best 
performance, regardless of whether the QAIC, BIC or AIC was 
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considered. Considering both the association patterns and model fit, 
the THIa8 was more suitable for capturing the combined effect of the 
two factors on HFMD risk.

3.3 Temporal trends in the cumulative 
exposure–response relationships between 
the THIa8 and HFMD risk

The Wald test results revealed significant temporal trends 
across Yunnan Province and its individual cities 

(Supplementary Table S11). Figure 3A shows the effect of the THIa8 
on HFMD risk in 2010 (blue) and 2019 (red). There was a 
significant difference in the effect of the THIa8 on HFMD risk 
between the beginning and end years of the study. These findings 
suggest that extremely low THIa8 values are linked to a lower risk 
of HFMD, whereas moderately low and extremely high THIa8 
values correspond to an increased risk. The association between 
the THIa8 and changes in HFMD risk over time are shown in 
Supplementary Tables S12, S13. The annual variation in the effect 
of the THIa8 on HFMD risk during the study period is shown in 
Supplementary Figure S11.

FIGURE 1

HFMD incidence trend in Yunnan Province, China: 2010–2019.

FIGURE 2

Association patterns for the THIa8 (A), heat index (B), Humidex (C), and temperature (D).
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Figure 3B and Table 2 illustrate the temporal trends in HFMD risk 
associated with varying levels of the THIa8 throughout the study 
period. At specific percentiles, the THIa8 values are as follows: 1.04 at 
P1, 9.10 at P25, 25.90 at P75, and 33.96 at P99. At extremely low THIa8 
values (P1), the association with HFMD risk showed a consistent 
downward trend. By 2019, the estimated relative risk (RR) for the 
effect of the THIa8 had decreased to 0.617 (95% CI, 0.552, 0.691).

In contrast, moderately low THIa8 (P25) values and extremely high 
THIa8 (P99) values were negatively associated. For moderately low 
THIa8 (P25) values, the protective effect steadily decreased, with the RR 
gradually approaching 1. Moreover, at extremely high THIa8 values 
(P99), the association with HFMD risk demonstrated a consistent 
upward trend. By 2019, the RR estimate for the effect of extremely 
high THIa8 values reached 1.846 (95% CI, 1.490, 2.288).

The subgroup analysis results revealed consistent findings 
(Figure 4; Table 2; Supplementary Tables S14–S21). Compared with 
that in 2010, the protective effect of extremely low THIa8 values in 
2019 significantly increased across all subgroups, except the 3 ≤ age<6 
subgroup. The risk reduction effect was evident among both sexes and 

other age groups. For the 3 ≤ age<6 group, we observed a marked 
weakening of the protective effect against HFMD at extremely low 
THIa8 values, which was more pronounced than that in the other 
subgroups. For extremely high THIa8 values, all subgroups experienced 
a substantial increase in HFMD incidence. Additionally, the female 
subgroup and the 3 ≤ age<6 subgroup presented a more pronounced 
increase in risk, whereas the male subgroup and the other age groups 
were comparatively less affected. Supplementary Figures S12–S15 
provide detailed annual variations in THIa8 effects across subgroups, 
further illustrating these trends.

4 Discussion

To our knowledge, this is the first study to systematically analyze 
the temporal trends in the combined effect of temperature and relative 
humidity on HFMD risk using a comprehensive indice (THIa8). By 
evaluating the association patterns and model fit of three composite 
indices—the Humidex, the heat index, and THIa8—we found that the 
THIa8 effectively captured the combined effect of these two factors on 
HFMD risk. Our results also revealed temporal changes in the 
relationship between the THIa8 and HFMD risk, with a decreased risk 
at extremely low THIa8 values from 2010 to 2019, weakened protective 
effects at moderately low THIa8 values, and an increased risk at 
extremely high THIa8 values over time. Subgroup analyses further 
revealed that kindergarten-aged children (3 ≤ age < 6 years) and 
females were particularly vulnerable, stressing the need for targeted 
public health strategies.

FIGURE 3

(A) Temporal trends in the associations between the THIa8 and HFMD risk in Yunnan Province from 2010 to 2019. (B) Temporal trends of the 
associations at P1, the 1st percentile of the THIa8; P25, the 25th percentile of the THIa8; P75, the 75th percentile of the THIa8; and P99, the 99th percentile of 
the THIa8.

TABLE 1 The fit of the model for the different indices.

Indices QAIC AIC BIC

THIa8 283564.2 45.46 62.30

Humidex 283687.8 48.39 65.23

Heat index 283757.1 46.29 63.13

Temperature 284925.4 57.50 74.34
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TABLE 2 Temporal trends in HFMD risk associated with low and high THIa8 levels in the first and last years of the study.

Subgroups 2010–2019 2010 2019 2010–2019 2010 2019

P1 P25

Low THIa8 Total 0.677 (0.632,0.724) 0.842 (0.622,1.140) 0.617 (0.552,0.691) 0.766 (0.713,0.823) 0.691 (0.574,0.833) 0.850 (0.770,0.937)

Male 0.659 (0.607,0.716) 0.867 (0.662,1.134) 0.603 (0.538,0.675) 0.757 (0.701,0.817) 0.706 (0.607,0.820) 0.844 (0.758,0.939)

Female 0.667 (0.605,0.735) 0.831 (0.555,1.243) 0.593 (0.496,0.709) 0.748 (0.681,0.823) 0.655 (0.494,0.867) 0.842 (0.737,0.961)

0 ≤ Age<3 years 0.667 (0.612,0.727) 0.965 (0.690,1.349) 0.568 (0.506,0.638) 0.738 (0.686,0.794) 0.720 (0.589,0.879) 0.798 (0.725,0.878)

3 ≤ age<6 years 0.677 (0.613,0.748) 0.709 (0.510,0.986) 0.680 (0.570,0.813) 0.798 (0.740,0.859) 0.631 (0.501,0.793) 0.958 (0.851,1.079)

P75 P99

High THIa8 Total 1.121 (1.084,1.159) 1.118 (1.047,1.194) 1.119 (1.074,1.165) 1.478 (1.300,1.680) 1.068 (0.755,1.511) 1.846 (1.490,2.288)

Male 1.132 (1.096,1.169) 1.121 (1.048,1.199) 1.125 (1.074,1.180) 1.548 (1.372,1.746) 1.098 (0.757,1.593) 1.914 (1.558,2.350)

Female 1.136 (1.085,1.188) 1.130 (1.045,1.222) 1.133 (1.076,1.194) 1.534 (1.261,1.867) 1.038 (0.682,1.582) 1.996 (1.469,2.713)

0 ≤ Age<3 years 1.131 (1.095,1.168) 1.182 (1.094,1.276) 1.108 (1.059,1.160) 1.465 (1.311,1.637) 1.394 (0.964,2.014) 1.668 (1.393,1.997)

3 ≤ Age<6 years 1.130 (1.082,1.179) 1.041 (0.977,1.109) 1.148 (1.080,1.219) 1.647 (1.326,2.045) 0.704 (0.463,1.069) 2.426 (1.689,3.484)

P1, 1st percentile of the THIa8; P25; 25th percentile of the THIa8; P75, 75th percentile of the THIa8; P99, 99th percentile of the THIa8.

FIGURE 4

Temporal trends in the relationships between the THIa8 and HFMD risk among subgroups in Yunnan Province at the individual levels annually.
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The THIa8 quantifies the combined effects through a monotonic 
upward exposure–response curve. Specifically, HFMD risk decreased 
at low THIa8 levels but increases significantly at high THIa8 levels. The 
formula for the THIa8 quantifies how relative humidity affects the 
effect of temperature on HFMD risk. The results indicate that 100% 
relative humidity can increase the effect of temperature on HFMD risk 
by 1.8 times relative to 50% relative humidity. This pattern aligns with 
the results of previous studies, which indicate that warm and humid 
conditions contribute to enterovirus survival and replication, 
increasing HFMD risk (18, 32, 36–38). Specifically, both high-
temperature and high-humidity conditions may increase HFMD risk 
by an additional 47.3% compared with nonhot or nonhumid 
conditions (38).

Furthermore, we  identified significant temporal trends in the 
associations. Between 2010 and 2019, there was an increased 
protective effect at extremely low THIa8 values, a decreased protective 
effect at moderately low THIa8 values, and an increased risk at 
extremely high THIa8 values. Many studies support the notion that the 
associations between environmental factors and infectious diseases 
change over time (3, 20–24, 35, 39). A meta-analysis examining the 
drivers of global evolution and infectious disease risk highlighted the 
ongoing impact of environmental transformations—such as habitat 
degradation and biodiversity loss—on infectious disease dynamics 
(40). The study revealed that these changes alter the ecological 
landscapes of pathogens and vectors, resulting in changing 
associations between environmental factors and disease risk over time. 
Our research aligns with these findings.

The protective effect observed at extremely low THIa8 values may 
be  partly due to climate-related factors. According to the THI 
calculation, extremely low THIa8 values are observed in cool and dry. 
The survival time of enteric viruses, such as EV-71 and CVA-16, is 
likely reduced, limiting viral transmission to susceptible hosts. This 
reduction in viral survival aligns with the lower RR values associated 
with extremely low THIa8 values. However, the observed strengthening 
of this protective effect over time could indicate that additional factors, 
such as public health interventions, are contributing to this trend. 
Specifically, strengthened HFMD epidemic warnings and prevention 
campaigns during autumn and winter may have further reduced the 
incidence of HFMD under these cooler and drier conditions. At 
moderately low THIa8 values, we observed a decreasing protective 
effect, with RR values approaching 1. A moderately low THIa8 value 
was associated with mild, stable conditions. These conditions neither 
inhibit nor significantly promote viral survival, creating an 
environment where HFMD-related pathogens such as EV-71 and 
CVA-16 can persist on surfaces and in water sources (37). Such 
conditions, often observed during transitional seasons such as spring 
and autumn, may increase the likelihood of transmission, particularly 
in densely populated settings with frequent close contact among 
children. During these mild weather periods, people may spend more 
time in semi-enclosed spaces—for example, schools might reduce 
outdoor activities to avoid sudden temperature changes, while 
households could keep windows closed for thermal comfort. This 
behavioral pattern might unintentionally increase indoor crowding, 
creating opportunities for person-to-person transmission even under 
seemingly low-risk meteorological conditions. Over time, the 
diminishing protective effect at this THIa8 highlights the need for 
proactive monitoring during these moderate conditions. At extremely 
high THIa8 values, we observed a steady increase in HFMD risk, with 

RR values increasing to 1.846 by 2019. This trend aligns with research 
suggesting that hot and humid conditions promote viral replication 
and spread (41). Extremely high THIa8 values correspond to hot, 
humid weather, which creates conditions favorable for viral 
transmission. Owing to intense daytime heat, children tend to 
participate in outdoor activities during cooler periods, such as early 
morning or late afternoon, increasing their exposure to contaminated 
environments and infected individuals in public spaces (42). 
Moreover, heat stress may weaken immune responses, heightening 
individuals’ susceptibility to infections and facilitating disease 
transmission (43). The increasing RR trend at extremely high THIa8 
values over time may also be  influenced by climate change. The 
increasing frequency of hot and humid conditions worldwide 
enhances viral stability and transmission, aligning with the observed 
increased HFMD risk (44, 45). In Yunnan Province, these shifts 
occurred against a backdrop of progressive climate changes, where 
meteorological observations indicate a gradual rise in annual mean 
temperature and increased frequency of extreme heat-humidity events 
during the study period (46).

Stratified analyses by age and sex highlighted population-specific 
susceptibilities. The 3 ≤ age<6 group had a lower sensitivity to the 
protective effects of extremely low THIa8 values and a greater risk to 
the effects of extremely high THIa8 values than did the 0 ≤ age<3 
group. Preschool children’s (0 ≤ age<3) greater sensitivity to low THIa8 
likely stems from their limited mobility and reliance on indoor 
environments where reduced viral persistence enhances protection. 
For older children, broader environmental exposure across homes, 
schools, and playgrounds dilutes these localized benefits. Under high 
THIa8, older children’s heightened risk aligns with emerging evidence 
that climate extremes amplify transmission through multiple 
pathways: warmer temperatures prolong viral survival in outdoor 
environments, heat stress weakens children’s mucosal defenses, and 
increased outdoor play elevates exposure risks (47). Females also 
presented a heightened risk at extremely high THIa8 values. This 
difference could be attributed to physiological differences between the 
sexes, particularly estrogen-mediated immune modulation that may 
delay viral clearance under heat stress and anatomical variations in 
sweat gland distribution that could impair evaporative cooling (48). 
Behavioral patterns may further amplify these physiological risks. For 
example, the frequent use of sun-protective attire (e.g., long sleeves, 
hats) among females likely increases hand-to-face contact frequency 
through repeated garment adjustments, which could elevate pathogen 
exposure risks.

Our results have practical implications in two key areas. First, the 
THIa8 effectively captures the combined effect of these two factors on 
HFMD risk. The dynamic impact on HFMD risk, as reflected by the 
THIa8, underscores the necessity of adaptive public health policies. 
Continuous monitoring of environmental conditions is essential to 
enable timely adjustments in prevention and public education efforts. 
For example, during periods of high temperature and humidity, 
heightened vigilance and targeted interventions while leveraging the 
protective effects of cool and dry conditions are crucial to mitigate 
HFMD risk. Second, focused interventions should be designed to 
address the specific vulnerabilities of different population subgroups. 
For example, public health campaigns aimed at reducing outdoor 
exposure during periods of extremely high THIa8 values could focus 
on children aged 3 to 5 years, as their increased outdoor activities 
make them more susceptible to HFMD. While our findings are 
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grounded in Yunnan’s subtropical climate, the thermodynamic 
principles underlying THIa8’s humidity-modulated temperature 
effects suggest broader applicability. However, region-specific 
adaptations are needed—snow-cover periods in temperate zones may 
alter transmission dynamics through modified human-environment 
interactions. Our study has specific limitations. First, the ecological 
design inherently restricts causal inference due to unmeasured 
confounders like socioeconomic factors. As a result, the THIa8 is more 
suitable for characterizing HFMD risk patterns under varying 
temperature and humidity conditions rather than serving as a direct 
measure of the causal effect of these environmental factors on disease 
transmission. Second, the exclusion of viral serotype data (e.g., 
EV-A71 vs. CV-A16) requires caution, as pathogen-specific 
environmental responses may vary. However, laboratory-confirmed 
serotypes primarily came from severe/hospitalized cases, which may 
not fully represent environmental associations in the broader HFMD 
population. Third, although the THIa8 weight parameter (ω = 1.8) 
demonstrated statistical robustness, its biological interpretation 
requires validation through controlled viral persistence experiments.

5 Conclusion

Our study indicates that the impact of the combined effect, as 
reflected by the THIa8, on HFMD risk over time. Specifically, 
we observed that the protective effect at extremely low THIa8 values 
was increased, whereas the protective effect at moderately low THIa8 
values was decreased. Concurrently, the risk associated with extremely 
high THIa8 values increased. These findings suggest that the effect of 
various environmental factors on disease risk is not static but rather 
dynamically changing. Therefore, to effectively meet future challenges 
and optimize public health strategies, continuous monitoring of 
environmental changes and their health impacts is essential. This 
ensures that prevention and response measures can be adapted in a 
timely manner.
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