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Existing studies have shown that the lighting environment is essential in influencing 
a driver’s visual behavior. Due to the pivotal role of high-speed railway (HSR) in 
worldwide transit, it is necessary to examine how HSR drivers’ visual behavior 
adjust under different lighting environments. However, the methods for evaluating 
and categorizing lighting conditions have not been fully explored. In this study, 
we  established a general framework for examining the impact of lighting on 
driver’s visual behavior. The application of this framework to explore the effects 
of natural light on HSR drivers’ visual characteristics was elaborated. Particularly, 
we used unsupervised machine learning methods to classify natural light conditions 
automatically. Specifically, Fuxing HSR simulation, illuminance meter, and Tobii 
Nano eye-tracker were employed to collect data. K-means clustering analysis of 
daily illuminance data identified 3 natural light conditions, namely low illuminance 
(1 pm–6 pm), medium illuminance (6 am–9 am), by and high illuminance (9 am–1 pm). 
Further, ANOVA with 3 natural light environments * 2 tunnel conditions * 4 areas 
of interest (AOIs) were conducted. Results manifested drivers’ visual characteristics 
under different natural light conditions. Specifically, lower illuminance can lead 
to a wider average pupil diameter, while higher illuminance results in a greater 
number of fixations and saccades, and a shorter time to first fixation. Moreover, 
all the eye movement indicators are highest for the speed dial AOI. This study 
contributes to the field by developing a framework to examine the effects of 
lighting on drivers’ visual behavior. The findings provide new insights into analyzing 
lighting environments by using machine learning methods, which servers to HSR 
driving safety and operational management.
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1 Introduction

High-speed railway (HSR) is a wide and popular public transportation around the world 
due to its rapidity, reliability, and eco-friendliness (1). All new lines of the HSR network in 
China have a designed speed of 250 km/h and some lines are over 200 km/h (2, 3), which raises 
a higher need for drivers’ vigilance and vision. HSR driving shares similarities with normal 
trains and light rail, but imposes distinct operational demands due to its elevated velocities. 
The increased speed not only amplifies required attention level and cognitive workload, but 
also intensifies environmental challenges including rapid variation of natural lighting (1). 
Although the HSR cabins incorporate double-curved windshield designs aimed at mitigating 
driver’s visual burden caused by light refraction and deformation, drivers still encounter 
substantial operational challenges. These include maintaining operational safety in high-
pressure driving environments, remaining vigilance against dynamic hazards (avian 
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incursions, sandstorm conditions, etc.), and ensuring high-quality 
services through exact station alignment and schedule adherence. 
These heavily rely on drivers’ visual performance.

The Federal Railway Administration (FRA) has indicated that 
human error accounts for approximately 38% of railway accidents, 
with a significant 40% of these incidents resulting from insufficient 
alertness (3). Visual characteristics are one of the most important 
indicators to reflect the changes of driver’s vigilance. Current research 
has demonstrated that vision is the predominant means through 
which drivers interpret external conditions (like natural lighting 
changes), and it’s playing a crucial role in ensuring driving safety (4, 
5). For example, Du et al. (6) found that accidents happen frequently 
during the day between 8 am and noon. Increased luminance levels 
significantly enhanced drivers’ reaction speed, and both reaction 
speed and its rate of improvement show exponential growth 
corresponding to the elevation of luminance intensity (7). However, 
most of the research is about the road driver.

Extant research about the effect of lighting on drivers’ visual 
behavior can be grouped into two main categories. One tendency 
focuses on the effects of the general lighting environment on drivers’ 
visual behavior, which covers daytime, nighttime, and different 
weather (e.g., sunny, cloudy days). For example, Li et al. (8) developed 
a dynamic illumination method by considering traffic flow changes 
for rural highway intersections to reduce nighttime accidents. Law and 
Petric (9) adopted Bayesian spatial analysis to discuss the trends in 
space and time for Day-Dark KSI risk change by analyzing publicly 
available data on traffic collisions. The results of Bassani et al. (10) 
research indicated that drivers’ average speeds and deviations were 
significantly affected by changes in lighting parameters for the 
different conditions (sunny, cloudy, and dark). The other concerns on 
special lighting conditions, particularly tunnel lighting, including 
inside the tunnel, long vs. short tunnels, etc. Peng et al. (11) found that 
lighting in tunnels not only impacts the driver’s visual performance 
but also causes physiological fatigue and mental stress. Deng et al. (12) 
proposed a numerical-based approach to test the influence of lighting 
distribution inside the tunnel on the driver’s driving task. Jiao et al. 
(13, 14) explored the different influence between the lighting 
environments of extra-long undersea tunnels and ordinary highway 
tunnels on driver.

Existing studies about evaluating and categorizing lighting 
conditions usually use simple taxonomy, such as day vs. night (8, 13), 
sunny vs. cloudy days (12), and long vs. short tunnels (9). Upon 
examining the relationship between the lighting environment and 
driver behavior, it is crucial to employ a reliable method for evaluating 
and categorizing the lighting conditions. This research focuses on 
classifying lighting environments, utilizing an enhanced and 
automated technique for identifying everyday natural light conditions: 
the K-means clustering method. The K-means algorithm, a classic 
example of unsupervised machine learning, operates on the principle 
that similar items tend to group. It segments a collection of physical 
or conceptual items into distinct clusters, each containing objects with 
shared characteristics. This algorithm stands out as a quintessential 
clustering technique. Utilizing K-means clustering, this research 
endeavors to automatically discern the daily variations in natural 
lighting conditions. This analysis is pivotal in exploring the effects of 
natural light on the visual behavior of HSR drivers. In this context, a 
natural light environment refers to the light emanating from sunrise 
to sunset, disregarding any artificial lighting systems.

Moreover, this research underscores the visual behavior of HSR 
drivers due to consideration of driving safety. Speed is the most 
distinctive feature of HSR, significantly distinguishing them from 
other general trains (15). First, under such high speeds, safe driving is 
closely related to the HSR drivers’ dynamic visual behavior. Current 
research has demonstrated that safe driving hinges on the driver’s 
visual attention (16). Second, the high speed coupled with substantial 
mental and cognitive demands causes great stress on HSR drivers’ 
visual behavior, which is directly related to the reaction speed of 
hazard perception (17). Specifically, HSR drivers must pay robust 
attention to the track conditions and driving speed, interact with the 
onboard human-machine interface, and maintain communication 
with dispatchers. These lead to their high mental and cognitive load, 
which can impact their reaction to danger very much. Third, paying 
attention to drivers’ visual behavior is conducive to the prevention and 
early warning of the occurrence of major accidents.

We specifically focus on drivers’ visual characteristics. These 
characteristics denote the fluctuations in drivers’ visual responses to 
environmental changes during the driving process, which are 
instrumental in assessing their driving conditions (18). There are 
typically four key indicator categories: those pertaining to the pupil 
(such as pupil diameter), those related to fixations (e.g., fixation 
numbers), those concerning saccades (such as saccade numbers), and 
those associated with blinking (e.g., blink numbers). Pupil-related 
metrics are indicative of variations in luminance. Fixation-related 
measures are linked to cognitive engagement and concentration. 
Saccade-related metrics provide insights into an individual’s visual 
processing tactics. Blink-related measures are useful for assessing 
levels of attention and fatigue. For this study, considering research 
purpose and driving tasks, our primary focus is on the first three types 
of visual indicators. In conclusion, this study aims to establish a 
methodological framework for exploring the impact of lighting on 
drivers’ visual behavior. Particularly, we  introduce a practical and 
accessible approach for automatically categorizing natural light 
environments. Building on this foundation, the research elucidates 
HSR drivers’ visual characteristics under varying natural lighting 
scenarios, enhancing the body of knowledge on HSR drivers’ 
visual behaviors.

The remainder of this paper is structured as follows. Section 2 
reviews the related works and presents the hypotheses of this research. 
Section 3 details the methodology, including the establishment of a 
general framework to examine the impact of lighting on drivers’ visual 
behavior and details of specific applications to explore the influence 
of natural light on HSR drivers’ visual characteristics. Section 4 
discusses the data analysis and results, encompassing both natural 
light environment analysis and eye-tracking metrics analysis. Finally, 
Section 5 provides the discussion and conclusions, highlighting the 
practical implications, research limitations, and recommendations for 
future research.

2 Related works and hypotheses

2.1 Influence of lighting environment

Due to the critical role of visual information, abundant research 
has been conducted on the visual behavior of drivers (19, 20). 
Influence factors include personal ones such as driver’s experience 
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(21), age (22), gender (23), emotional state (24), fatigue levels (25, 26), 
and sleep duration (27). Environmental factors like lighting conditions 
(28) also play a role.

The influence of the lighting environment on the driver’s visual 
behavior has received wide concern and has been extensively 
investigated (29, 30). Regarding general lighting conditions, some 
studies have shown that constant shifts in lighting conditions can lead 
to a driver’s blurred vision or dizziness (31). When driving day to 
night, the driver’s visual system must adjust its sensitivity to match the 
light level. Such changes may elevate their cognitive workload and 
compromise safe driving abilities, observed by Yan et al. (32). Others 
discussed the influence of lighting on drivers’ visual characteristics 
under various tunnel environments. For example, Liu (33) proved that 
the tunnel lighting quality impacts the driver’s comfort which can 
be reflected via subconscious pupil and eye movement behaviors. Shen 
et al. (34) discussed that the design of the lighting environment inside 
the tunnel profoundly impacts on the drivers’ visual system and has a 
close correlation with driving safety. These investigations primarily 
focus on road drivers, with a notable scarcity of research on 
HSR contexts.

Review of limited HSR-related research indicates that drivers’ 
eye-movement features can provide important information for HSR 
driving and they are critical for keeping vigilance (35, 36). Dong et al. 
(17) indicate that visual indicators are vital for drivers’ hazard 
perception in a high-speed driving task. Scholars also demonstrated 
that light stimuli will exert intervention on HSR drivers’ visual (15, 
37). Visual characteristics are vital for predicting HSR driver’s fatigue 
(38). Existing research has highlighted that the lighting environment 
can have an impact on the visual behavior of HSR drivers, particularly 
under specific conditions such as driver fatigue and hazard perception. 
This study pertains to more general driving conditions and aims to 
investigate how variance in natural light influence HSR drivers’ 
visual behavior.

Besides, as shown in Table 1, lighting indicators namely luminance 
and illuminance are the most concern by researchers. Some studies 
also use correlated color temperature to indicate the lighting 
environment (39–41). Campbell et  al. (42) found that higher 
illuminance levels triggered increased activity in the posterior 
hypothalamic region, elevating emotional perception and task 
completion. Bhagavathula et al. (43) show that the visual performance 
is acceptable between 7 and 10 lx of illuminance, which is an effective 
strategy to increase visual performance for a wider range of drivers 
and also be an energy-efficient method. In a study by Hu et al. (39), 12 
car drivers participated in an outdoor visual recognition test. The 
results indicated that illuminance and correlated color temperature 
significantly influenced drivers’ visual recognition capabilities during 
nighttime in areas of low meteorological visibility. A higher correlated 
color temperature light source could enhance the drivers’ visual 
distance perception.

This research employs illuminance, which is the measure of light 
flux received per unit area, to represent the natural lighting conditions. 
In essence, illuminance serves as a reliable indicator of the natural 
light environment. It reflects the lighting levels within the 
environment, a critical factor for drivers’ visual perception, which 
directly impacts the clarity of vision and road safety. Low illuminance 
levels can lead to increased eye strain, whereas high levels may result 
in glare. Keeping illuminance within an optimal range helps minimize 
eye fatigue and stress, thereby improving comfort and safety during 

extended driving sessions. Existing studies on drivers’ visual behavior 
typically focus on road driving under various lighting conditions. Our 
study, however, examines the impact of natural lighting conditions on 
HSR drivers.

2.2 Analysis of light environment

Existing studies abound in examining the impact of the lighting 
environment on drivers’ emotions, comfort levels, and productivity. It 
is crucial to quantify and classify the lighting conditions to assess the 
influence of such environmental factors. As detailed in Table  1, 
researchers commonly utilize optical devices to gauge lighting 
parameters, including lux meters (18), spectroradiometers (41), and 
illuminance meters (18). Additionally, software programs like DIAlux 
(44) and Autodesk Revit (43) facilitate the simulation and analysis of 
natural lighting scenarios.

In Table 1, the classification of lighting conditions is explored 
through three distinct research streams. The first stream draws upon 
established standards and specifications from various infrastructure 
sectors, including railways, tunnels, and bridges. Notable references 
include guidelines from the International Commission on 
Illumination (CIE) (44), Visual Characteristic Indicators (18), the 
‘Railway Lighting Design Code’ (TB10089-2015), China’s highway 
tunnel lighting standards (15), and Chinese tunnel lighting 
specifications (7). The second stream utilizes objective natural factors 
to categorize lighting, such as differentiating between sunny, cloudy, 
and nighttime conditions (17), day versus night scenarios, and 
distinctions between tunnel interior and exterior environments. The 
third stream develops a lighting taxonomy based on previous studies, 
including parameters like CCT (correlated color temperature) values 
(2,000 K, 4,000 K, 6,500 K) and illuminance levels (200, 500, 750 lux) 
(43), as well as categorizing illuminance into low (200–300 lx) and 
high (450–500 lx) levels (41).

Existing research predominantly concentrates on enhancing 
driving comfort and safety by optimizing the lighting environment, 
typically using simplified classifications of lighting conditions. 
However, there is a growing need for more sophisticated, automated, 
and intelligent approaches to deepen our understanding of the lighting 
environment’s impact. Few studies incorporating lighting analysis 
have employed machine learning techniques. The classification of 
lighting environments is a clustering problem. Among the prevalent 
clustering algorithms, K-means, hierarchical clustering, and DBSCAN 
are extensively utilized. K-means clustering, as a fundamental and 
widely-used approach, demonstrates adaptive capabilities by 
dynamically optimizing clustering outcomes based on intrinsic data 
patterns. In the context of lighting environment analysis and driver 
behavior, K-means has been utilized for light pollution risk assessment 
(33), and for categorizing drivers according to their driving styles (7) 
and habits (5). Therefore, this study employs the K-means clustering 
algorithm to categorize natural light environments and examines the 
influence of varying lighting conditions on drivers’ visual behavior.

2.3 Drivers’ visual behavior

The visual behavior of drivers is crucial for the safety and efficacy 
of driving performance, as it is through vision that road conditions are 
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TABLE 1  Related research.

Reference Lighting index Lighting 
classification

Lighting 
measurement

Visual index Visual 
measurement

Bassani and Mutani 

(18)

(1) Luminance

Sunny, cloudy, nighttime

(1) Delta ohm hd2302.0 lux 

meter (1) Visibility level 

(vl)

Luminance contrast ratio of a 

small target
(2) Illuminance

(2) Derived from illuminance 

data

Yoomak and 

Ngaoptakkul (44)

(1) Average 

illuminance

Dry road surfaces (r1, r2, 

r3, r4), wet road surfaces 

(w1, w2, w3, w4) based on 

the international 

commission on 

illumination

DIALux

(1) Visual 

performance

Indicated by average 

luminance

(2) Average luminance

(2) Visual comfort

(3) Overall uniformity

(4) Longitudinal 

uniformity

(5) Surround ratio

(6) Threshold 

increment

He et al. (46)

(1) Luminance Standard white visual 

environments and six visual 

environments with three 

different luminance levels.

Spectroradiometers

(1) Reaction time (1) Reaction time

(2) Correlated color 

temperature (CCT)
(2) Missed target rate (2) Missed target rate

Ma et al. (40)

(1) Correlated color 

temperature
Nine lighting scenarios 

based on different 

configurations of CCT 

(2,000, 4,000, 6,500 k) and 

illuminance (200, 500, 750 

lux)

Autodesk Revit software

Visual perception 

including

Visual perception 

questionnaire and the 

Landolt c test(2) Illuminance

(1) comfort

(2) naturalness

(3) dimness

(4) warmness

Hu et al. (39)

(1) Meteorological 

visibility

Divided based on 

meteorological visibility 

and illuminance level

(1) Forward scattering 

meteorological visibility 

meter

(1) Traffic visual 

distance (TVD)

Outdoor visual recognition 

tests(2) Illuminance

Low illuminance (200–

300 lx) and high 

illuminance (450–500 lx)

(2)(3) Konica Minolta CL-

500A spectroradiometer

(3) Correlated color 

temperature

Kang et al. (7)

(1) Average luminance 

(Lav) On basis of the current 

Chinese tunnel lighting 

specifications, 1.0, 

0.5/0.6/0.7/0.8, etc.

luminance and CCT of 

adjustable LED lights

(1) Reaction time (1) Timer

(2) Luminance 

longitudinal 

uniformity (U1)

(2) Pupil area change 

rate

(2) ASL Model H6 eye-

tracking device and EYEPOS, 

EYENAL software

(3) Blink frequency

Liang et al. (5)

(1) Luminance 

reduction coefficient Very comfortable, 

comfortable, 

uncomfortable, and 

extremely uncomfortable 

based on the comfort range 

of Visual Characteristic 

Indicators

(1) Digital camera and 

Spectrascan PR-655 spectral 

radiance meter

(1) Pupil area change 

rate

Dikablis Glasses 3 eye tracker
(2) Road surface 

illuminance

(2) TES 1339R Data Logger 

Light Meter Pro illuminance 

meter

(2) Average saccade 

speed

(3) Visibility

(3) BN-SDTRA10H portable 

tunnel light transmittance 

detector
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primarily perceived. Researchers have identified various visual metrics 
to understand drivers’ visual behavior, which are broadly classified 
into subjective and objective measures. As depicted in Table  1, 
subjective measures encompass visual comfort, performance, and 
visibility, typically assessed through questionnaires. For instance, Ma 
et  al. (40) developed nine illuminated vehicle environment (IVE) 
lighting scenarios along with a questionnaire to gauge drivers’ 
responses to visual perception aspects such as comfort, naturalness, 
brightness, and warmth. Liang et  al. (5) employed the K-means 
clustering technique to define the comfort zones for Visual 
Characteristic Indicators (VCIs), ranging from very comfortable to 
extremely uncomfortable, and examined the quantitative connections 
between drivers’ visual traits and tunnel lighting conditions. Leccese 
et al. (45) conducted experiments that revealed a strong association 
between an individual’s perception ability and lighting quality.

Objective indicators include the pupil area change rate, saccade 
speed, and blink frequency, all of which are assessed using an eye 
tracker. Consequently, eye movements serve as critical metrics for 
understanding a driver’s visual behavior within a lighting setting (41). 
Visual attributes can be quantified through eye movement metrics, 
such as pupil size, fixations, saccades, and blinks (18). The variation in 
pupil diameter reflects the visual adaptation and the visual demand 
during driving. Typically, the average rate of change in pupil diameter 
is employed as a measure to evaluate the quality of the visual lighting 
environment (46). Fixations and saccades provide essential visual 
information about the train and driving conditions to the driver (47), 
and they also indicate the driver’s cognitive workload (48). Number 
of fixations and saccades are commonly used indicators. Time to first 
fixation (TFF) denotes the point at which areas of interest (AOIs) 
come into the driver’s field of view as their gaze first fixates on them 
(49). This metric can indicate how swiftly a driver can detect an 
AOI. Hence, in this study, we utilize average pupil diameter (APD), 
number of fixations (NF), time to first fixation (TFF), and number of 
saccades (NS) to delineate the visual characteristics of HSR drivers.

It has been observed that lighting levels significantly impact an 
individual’s visual behavior (41). Elevated lighting conditions have 
been shown to boost emotional excitement, visual acuity, and the 
efficiency of task execution (39, 40). Accordingly, we posit that lighting 
levels have the potential to alter the visual behavior of HSR drivers. 
Specifically, the diameter of the pupil, which is the central opening in 
the iris, plays a crucial role in regulating the amount of light that 
enters the eye. There is a notable correlation between pupil diameter 
and the level of illuminance, primarily due to the pupil’s automatic 
adjustment to light intensity. As light intensity rises, the pupil 
constricts to decrease the influx of light, thereby avoiding discomfort 
caused by excessive brightness. Conversely, in dim lighting conditions, 
the pupil dilates to permit more light to enter, thereby enhancing the 
driver’s ability to detect light and improving visual sensitivity and 
recognition in dark environments. This leads to the formulation of 
Hypothesis 1.

H1. Low illuminance environment increased HSR drivers’ average 
pupil diameter.

The fixation and saccade reflect the level of drivers’ visual attention 
dedicated to various areas within a given environment. These metrics 
serve as crucial indicators for assessing how visual attention is 
distributed. They reveal the degree to which drivers concentrate on 

processing visual data and the amount of visual demand placed upon 
them. In the presence of complex or unfamiliar visual stimuli, or when 
encountering abrupt changes in lighting conditions, drivers require 
increased fixation and saccades to secure essential road information. 
This allows them to gather more comprehensive data about the road 
environment, aiding in the identification and assessment of potential 
risks to inform suitable driving choices. Moreover, under conditions 
of high illuminance, drivers tend to make their first fixation sooner as 
they can more readily access external information. Drawing from 
these analyses, Hypotheses 2, 3, and 4 are proposed.

H2. High illuminance environment increased HSR drivers’ 
number of fixations.

H3. Drivers’ time to first fixation occurs earlier in the high 
illuminance condition.

H4. High illuminance environment increased HSR drivers’ 
number of saccades.

3 Methodology

3.1 Framework design

Through a comprehensive analysis of existing studies on light 
environment and drivers’ visual behavior, we systematically reviewed 
relevant methodologies, techniques, and measurement approaches. 
This allows us to establish a methodological framework for examining 
the influence of lighting environment on drivers’ visual behavior, as 
illustrated in Figure  1. Furthermore, we  apply this framework to 
explore natural light environment on HSR drivers’ visual behavior.

The general framework involves four main steps. The initial step 
includes setting driving scenario, which encompasses the selection of 
driving vehicles and scenes. Taking train driving for example, potential 
driving vehicles include real train, train simulator, and virtual driving 
vehicles (e.g., driving simulation game). Driving scenarios involve real 
or virtual scenes. While real-world train operations in actual 
environments provide the most authentic data, their implementation 
is often constrained by safety considerations and stringent operational 
protocols. Consequently, simulator-based or virtual driving 
environments are more frequently employed in research settings. The 
second step focuses on the implementation, measurement and 
classification of lighting environment. Lighting environment 
implementation involves deploy specific light conditions, such as 
tunnel lighting or nighttime conditions. Measurement of lighting 
environment requires to identify indexes to quantify lighting 
parameters. Subsequently, the classification of lighting environments 
facilitates more detailed analysis of the influence on drivers’ behavior.

The third step aims to measure drivers’ visual behavior through 
the selection of relevant indicators and appropriate measurement 
method. Visual indicators typically include eye-tracking indicators, 
visual perception metrics (e.g., visual comfort), and response time. 
Eye-tracking devices, video recording systems, and questionnaire are 
common measure approach. The fourth step is statistical analysis of 
lighting environment effects on visual behavior by aid of statistic 
methods such as regression, ANOVA, and other relevant 
statistical techniques.
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3.2 Driving scene

The Fuxing HSR simulator system is used in this study, as shown 
in Figure 2. It contains Fuxing simulator and several authentic HSR 
lines in China. The simulator is one-to-one simulation driving 
equipment and its internal is completely consistent with the real 
Fuxing HSR, which is equipped with a dashboard, foot pedal, brake 
button, etc. The system has a 55-inch 1080p LCD monitor that is used 
to display the virtual scene with a display size of 122 cm wide and 
70 cm high. The simulator comes with a real driver seat, the seat is 
adjustable to make sure the participants can find the most comfortable 
sitting position and ensure the distance between the monitor and the 
eyes of the participants is about 1 m.

Authentic HSR lines include long and short tunnels, viaducts, 
and other designs. Weather designs are also available, such as 
sandstorms, cloudy and rainy days, tornadoes, and nights. In this 
study, we choose the lines from Zhengzhou, Henan Province to 
Beijing as our main experimental route (including tunnels on the 
way). In the experiment, drivers were able to experience a 
completed driving process, including leaving the station, driving 

along the route, and stopping at the next station. During the 
driving, the train’s speed could vary according to the external 
environment. The drivers need to control the speed to avoid 
exceeding the limit. Upon reaching the next station, drivers were 
required to position the train correctly. The experiment concluded 
after this.

3.3 Natural light environment

This study focuses on natural light environment, defined as the 
light conditions occurring from sunrise to sunset, exclusively 
considering sunlight-derived illuminance, while excluding artificial 
lighting systems. The driving simulator was positioned in front of the 
window to ensure direct exposure to natural light conditions. 
Referring to previous research, illuminance was employed as the 
metric to quantify light environment. The PR-300YM-4G illuminance 
meter, paired with the Prsen RS485 photosensitive fatigue sensor, was 
employed to gauge the level of illuminance. It updates illuminance 
data per minutes.

FIGURE 1

General framework for examining the influence of light environment on drivers’ visual behavior.
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In this study, we utilize unsupervised machine learning methods 
for the automated classification of light environment. As an attempt 
to apply machine learning in this domain, we use K-means algorithm, 
a fundamental and widely-used clustering approach. K-means enables 
the intelligent partitioning of complex data into distinct clusters, 
thereby facilitating the identification and interpretation of 
characteristic patterns within each group. When implementing 
K-means algorithm, the Elbow Method (48) was used to determine 
the optimal number of clusters (k) by calculating the sum of squared 
errors (SSE) within clusters for different k values. The k value 
corresponding to the elbow point, where the SSE significantly 
decreases, was chosen. Once the optimal k was determined, the 
K-means algorithm was applied to group the illuminance data. The 
algorithm followed these iterative steps:

Step 1: Randomly initialize k cluster centroids ( )1 2, , , .kµ µ µ

Step 2: Assign each data point to the nearest cluster centroid. The 
distance between a data point x and a centroid iµ  was calculated using 
the Euclidean distance formula:

	
( )2

1

n
i j ij

j
x xµ µ

=
− = −∑

	
(1)

Step  3: Recalculate the centroid of each cluster based on the 
current members of the cluster. The new centroid iµ  is the mean of all 
points (x) in cluster i:
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∈
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The assignment and updating steps were repeated until the cluster 
centers no longer showed significant changes or until a preset number 
of iterations was reached.

3.4 HSR drivers’ visual behavior

Eye-tracking technology was used to indicate and measure drivers’ 
visual behavior. As mentioned before, average pupil diameter (APD), 
number of fixations (NF), time to first fixation (TFF), and number of 
saccades (NS) were selected to reflect drivers’ visual characteristics in 
term of pupil, fixation and saccade. The Tobii Nano eye-tracker, 
boasting a sampling rate of 1,200 Hz, was used to record the visual 
attention patterns of HSR drivers. This eye-tracking system is 

AOI1 front window

AOI4 speed dial

AOI3 dashboard

AOI2 prompt area

FIGURE 2

The apparatus and the experimental situation.
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non-invasive and operates on a video-based platform. It leverages 
corneal reflection and the pupil’s center as key features to monitor 
eye movements.

3.5 Data collection

The research focuses on the impact of natural light environment 
on drivers’ visual behavior. It was approved by the Ethics Committee 
of Economics and Management at Beijing Jiaotong University, which 
was conducted in accordance with the local legislation and 
institutional requirements. The illuminance data were recorded by an 
optical device with a sampling interval of 1 min from 6 am to 6 pm 
daily between November 30 and December 6, 2023 (7 days), yielding 
5,040 illuminance samples. Regarding collecting visual data, the 
experimental sessions were scheduled from 8 am to 6 pm with a 
30-min period for each participant, resulting in 20 distinct sampling 
periods per day.

Due to challenges in recruiting HSR drivers, the study employed 
student participants from a Chinese public university with strong 
railway affiliations. To enhance the validity of the study, students 
majoring in railway transportation were subjected to targeted 
recruitment, ensuring that participants have fundamental theoretical 
knowledge of railway operations. Additionally, a comprehensive 
simulator training with three-day practice was conducted, followed by 
an examination to verify participants’ competence in operating the 
Fuxing HSR simulator. From an initial pool of 50 registered trainees, 
35 participants successfully completed the training and passed the 
examination. The final participants, aged between 18 and 23 years, 
have normal or corrected-to-normal vision. The training program 
ensured participants’ familiarity with HSR simulator operations and 
their understanding of HSR driving regulations and procedures.

Participants can select any 30-min period between 8 am and 6 pm 
for their experiment session. Before the experiment began, 
participants were informed of the experiment procedure and provided 
written informed consent. Upon completion, participants were 
compensated with 30 RMB for their time. Following data quality 
assessment, three participants were excluded due to incomplete 
driving tasks, and four were removed due to eye-tracking data validity 
rates below 70%. Consequently, the final dataset included valid 
eye-tracking data from 28 participants, yielding an overall validity 
rate of 80%.

4 Data analysis and results

4.1 Natural light environment analysis

2,817 lighting data relevant to the train driving experiment was 
selected for further analysis. In this study, light data preprocessing was 
first conducted by removing outliers and eliminating missing values 
and extreme values to avoid any potential impact on the experimental 

results. The descriptive statistical result of the illuminance data is 
presented in Table 2.

4.1.1 Trend and time series analysis
We visualize the data to further explore the patterns of change in 

illuminance. A line chart was first created, as shown in Figure 3A. It 
indicates that illuminance exhibits a regular variation over a day, 
changing systematically with time. Subsequently, the data variation 
was plotted on a graph with hours as the horizontal axis to further 
observe the trend in illuminance changes, as shown in Figure 3B. The 
graph illustrates that starting from 8 am each day, the illuminance 
begins to rise, reaching its peak around 11 am to 12 pm, after which it 
starts to decline.

To gain a clearer understanding of the trend, we computed the 
hourly mean for each day and subsequently compiled these daily 
averages to obtain data for corresponding periods across multiple 
days. This method yielded more consistent and indicative illuminance 
measurements. Figure  3C further validates the inferences drawn 
previously. Moreover, in alignment with Bassani and Mutani (18), 
we took into account the possible variations in illuminance caused by 
different weather conditions. Consequently, the data gathered from 
November 30 to December 18 was sorted into four categories based 
on weather patterns: sunny, cloudy, rainy, and snowy, as depicted in 
Figure 3D.

According to Figure 3D, we observe that on sunny days, the 
illuminance is higher, especially around midday. This higher level 
of illuminance can lead to notable glare issues, posing a major 
challenge for drivers operating precision control systems. On 
cloudy days, while the illuminance is lower than on sunny days, it 
still exhibits considerable fluctuations, particularly during the 
transition from morning to afternoon. These fluctuations can cause 
the lighting conditions within the cabin to vary constantly, 
potentially affecting the driver’s visual adaptation. On overcast or 
rainy days, the illuminance is generally lower, necessitating 
sufficient artificial lighting within the cabin to compensate for the 
lack of natural light. In low-illuminance environments, the difficulty 
of visual recognition increases, which could impact the driver’s 
ability to quickly identify and respond to information. The 
illuminance on snowy days is slightly lower than on cloudy days, 
with a similar overall trend.

4.1.2 K-means clustering analysis

4.1.2.1 General analysis
Given that illuminance data may vary with time or 

environmental conditions (weather, road conditions, and time 
periods), K-means clustering analysis was employed to analyze 
further driving behavior. First, the data was cleaned by removing any 
outliers (e.g., erroneous extreme illuminance readings) and missing 
values. The data was then standardized or normalized to reduce the 
impact of different units of measurement. Next, k = 3 was 
determined by using the Elbow method, illustrated in Figure 4. After 

TABLE 2  Descriptive statistics results.

Count Mean Std Min 25% 50% 75% Max

Illuminance 2,817 5,258.314 8,192.988 3 625 2,515 5,479 48,162
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iterations, the calculation of clustering by using Equations 1, 2, and 
the clustering results for illuminance data are shown in Figure 5.

	•	 Cluster 0: This cluster primarily includes the afternoon period 
(approximately 2 pm to 5 pm), with an average illuminance of 
1,043 lux, and a fluctuation range from 0 to approximately 
5,962 lux. This cluster represents the lower and more stable 

illuminance levels in the afternoon, likely due to the sun’s lower 
position, resulting in reduced light intensity.

	•	 Cluster 1: This cluster encompasses the morning period 
(approximately 9 am to 12 pm), with an average illuminance of 
12,612 lux, making it the cluster with the highest light intensity. 
The fluctuation range is from 6,820 to 22,918 lux. This indicates 
the most intense lighting conditions in the morning, with a sharp 
increase in illuminance reaching its peak. Special attention is 
needed to avoid visual discomfort or driving interference due to 
strong light.

	•	 Cluster 2: This cluster covers the early morning to late morning 
period (from around 6 am to 11 am), with an average illuminance 
of 1,247 lux and a fluctuation range from 0 to approximately 
6,295 lux. This cluster reflects the gradually increasing light 
intensity from early morning to late morning, which could affect 
driving conditions during the morning rush hour.

4.1.2.2 Further analysis
As mentioned above, weather is an important factor that 

influences illuminance. Figure 3D indicates that illuminance on rainy 
days is lower than that on other days. Therefore, further K-means 
analysis was conducted based on different weather conditions, namely 
rainy days and other days (i.e., sunny days, cloudy days, and 
snowy days).

FIGURE 3

Results of trend and time series analysis. (A) Illuminance trend by date and hour; (B) illuminance trend throughout the day; (C) hourly average 
illuminance; (D) hourly average illuminance by weather category.

FIGURE 4

Elbow method for K-means.
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For rainy day (Figure 6), Cluster 0 is typified by low levels of 
illuminance, with values predominantly on the lower end and sunlight 
insufficiently strong. Cluster 1 shows a steady rise in sunlight in the 
morning, concurrent with rainy weather. For Cluster 2, the 
illuminance data reach their highest points, indicating that even when 
clouds are present, the lighting conditions remain fairly favorable.

The K-means clustering algorithm was similarly employed to 
analyze other weather conditions (Figure 7), resulting in three primary 
categories as depicted in Table 3. Cluster 0 denotes the times with 
consistently lower levels of illuminance, during which the ambient 
light is predominantly composed of scattered and reflected light. 

Cluster 1 corresponds to moderate illuminance levels, reflecting the 
morning’s gradual sunlight increase. Cluster 2 signifies the times with 
the highest illuminance of the day, coinciding with the peak 
midday sunlight.

4.1.2.3 Results
Initially, qualitative analyses of the illuminance were conducted 

through descriptive statistics, revealing that the illuminance 
fluctuates most noticeably between 9 am and 1 pm, with peaks occurring 
during this period. Subsequently, the data was further segmented 
based on the weather conditions of the day, including four categories 

FIGURE 5

Illuminance clustering results based on K-means.

FIGURE 6

Rainy day illuminance clustering results based on K-means.
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(sunny days, rainy days, cloudy days, and snowy days). Visualization 
of the data revealed obvious differences in the fluctuation patterns 
between the rainy days group and the other three groups. Therefore, 
the data was segmented further for subsequent clustering analysis to 
explore the fluctuation patterns of illuminance throughout the day.

The analysis indicated that although there were distinctions 
between the rainy-day group and the other groups, the clustering 
outcomes continued to segment the data into three distinct clusters—
low illuminance, medium illuminance, and high illuminance—
mirroring the clustering pattern observed in the other groups, albeit 
within varied data ranges. Therefore, based on the validation of 
descriptive statistics and clustering analysis, appropriate clustering of 
illuminance covers three clusters.

	(1)	 Medium illuminance (6 am–9 am)

This phase occurs from 6 am to 9 am in the morning. During this 
period, the illuminance gradually increases from the extremely low 
levels of the night, influenced by the angle of the rising sun. The 
illuminance shows a stable upward trend.

	(2)	 High illuminance (9 am–1 pm)

This phase occurs from 9 am to 1 pm and represents the period with 
the strongest illuminance throughout the day. During this time, the 
illuminance rises sharply and reaches its peak, which can easily 
cause glare.

	(3)	 Low illuminance (1 pm–6 pm)

This phase occurs from 1 pm to 6 pm. During this period, the 
illuminance gradually decreases, entering a slow decay phase in the 
afternoon. As the sun’s angle lowers, direct sunlight diminishes, and 
the illuminance is primarily composed of scattered light.

4.2 Eye-tracking metrics analysis

Based on the K-means clustering results, the lighting environment 
was divided into three categories: the low illuminance group [3], the 
medium illuminance group [1], and the high illuminance group [2], 
corresponding to the periods of 1 pm–6 pm, 6 am–9 am and 9 am–1 pm, 
respectively. Besides, considering two tunnels in our experiment lines, 
we also consider the tunnel scenario. Further, referring to the driving 
simulation scenario and driving task, four areas of interest (AOIs) are 
divided, AOI1 front window, AOI2 prompt area, AOI3 dashboard, and 
AOI4 speed dial, as shown in Figure 1. Based on data from 28 valid 
participants, ANOVA with 3 lighting environments * 2 tunnels * 4 
AOIs was conducted to analyze the drivers’ visual characteristics 
under natural light conditions.

4.2.1 Average pupil diameter (APD)
The variation in pupil diameter was statistically significant across 

the three illuminance conditions (F (2, 25) = 9.909, p < 0.001). Further 
analysis revealed that the APD in the low illuminance group [3] was 
significantly higher than those in the medium [1] and high [2] groups 
(M [1] = 2.191, M [2] = 2.135, M [3] = 3.177, p [1][3] = 0.002, p [2][3] = 0.001). 

FIGURE 7

Other day illuminance clustering results based on K-means.

TABLE 3  Further K-means analysis based on rainy days and other days.

Cluster Time Data range

Cluster 0 Rainy 1 PM–6 PM 0–6,826 lux

 � (Low) Other Around 1 PM 0–9,028 lux

Cluster 1 Rainy Around 9 AM 0–7,307 lux

 � (Medium) Other Around 9 AM 0–10,060 lux

Cluster 2 Rainy 10 AM–1 PM 7,225–30,776 lux

 � (High) Other 9 AM–1 PM 9,406–48,162 lux
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In contrast, the difference between the medium and high illuminance 
groups was insignificant, as shown in Figure  8. Hence, H1 
was supported.

4.2.2 Number of fixations (NF)
The analysis of the number of fixations (NF) revealed that the 

main effect of illuminance was marginally significant (M [1] = 0.172, 
M [2] = 0.247, M [3] = 0.189, F (2, 25) = 3.127, p = 0.061). As shown in 
Figure 9A, further analysis showed that the NF in the high illuminance 
group was significantly higher than that in the medium (p [2][1] = 0.028) 
and low (p [2][3] = 0.048) group, with no significant differences observed 
in other scenarios. Hence, H2 was supported.

For tunnel scenes, its main effect was not significant (F (1, 25) 
=1.914, p = 0.179), while the main effect of AOI was significant (F (3, 
23) = 78.096, p < 0.001). Further analysis (as shown in Figure 9B) 
revealed that the speed dial AOI (MAOI4 = 0.521) attracted the most 
fixations, significantly more than the other three AOIs 
(pAOI4-AOI1 < 0.001, pAOI4-AOI2 < 0.001, pAOI4-AOI3 < 0.001). The prompt 
area AOI (MAOI2 = 0.167) was the second most fixated, significantly 
more than the other two AOIs (pAOI2-AOI3 < 0.001, pAOI2-AOI1 < 0.001). 
Following were the front window (MAOI1 = 0.089) and the dashboard 
(MAOI3 = 0.031), with a significant difference between the two 
(pAOI1-AOI3 < 0.001).

4.2.3 Time to first fixation (TFF)
The analysis of the time to first fixation revealed a significant main 

effect of illuminance (F (2, 25) = 3.79, p = 0.037). As illustrated in 
Figure 10A, further analysis indicated that participants in the high 
illuminance group had a significantly shorter TFF compared to the 
medium group (M [2] = 356,597.268, M [1] = 457,123.321, p [2]

[1] = 0.012) and showed a marginally significant difference compared 
to the low light intensity group (M [3] = 418,256.25, p [2][3] = 0.066), 
while the difference between the low and medium light intensity 
groups was not significant. This suggests that participants in the high 
illuminance condition formed fixations earlier, hence H3 
was supported.

Regarding tunnel scenes, there was a significant main effect (M 
[1] = 253,491.815, M [2] = 567,826.077, F (1, 25) = 582.016, 
p < 0.001), with participants forming fixations earlier outside the 
tunnel. This is because the scene outside the tunnel appears earlier. 
Additionally, the main effect of AOI was significant (F (3, 
23) = 6.689, p = 0.002). Further analysis (as shown in Figure 10B) 

revealed that the speed dial AOI (MAOI4 = 397,681.345) received 
the earliest first fixation, significantly earlier than the other three 
AOIs (pAOI4-AOI1 = 0.024, pAOI4-AOI2 = 0.003, pAOI4-AOI3 = 0.02). The 
front window (MAOI1 = 403,859.643), prompt area 
(MAOI2 = 418,583.488), and dashboard (MAOI3 = 422,511.310) 
followed. Specifically, the TFF for the front window AOI was 
significantly earlier than the prompt area AOI (pAOI1-AOI2 = 0.035), 
but not significantly different from the dashboard AOI 
(pAOI1-AOI3 = 0.09), and the prompt area AOI was not significantly 
different from the dashboard AOI. This is consistent with the 
simulated driving task, as participants needed to observe the speed 
dial after starting the simulation to ensure proper vehicle 
operation. The TFF for the front window was earlier than the 
prompt area because participants needed to observe the driving 
environment through the front window.

4.2.4 Number of saccades (NS)
The analysis of the number of saccades revealed a significant main 

effect of illuminance (F (2, 25) = 3.38, p < 0.05). As illustrated in 
Figure 11A, further analysis indicated that participants in the high 
illuminance group had significantly more saccades compared to those 
in the medium and low groups (M [2] = 0.123, M [1] = 0.076, M 
[3] = 0.078, p [2][1] = 0.039, p [2][3] = 0.023), while the difference between 
the low and medium light intensity groups was not significant. This 
suggests that participants in the high illuminance condition had more 
frequent saccades, so H4 was supported.

For tunnel scenes, its main effect was not significant (F (1, 
25) = 3.419, p = 0.076), while the main effect of AOI was significant (F 
(3, 23) = 46.228, p < 0.001). Further analysis (as shown in Figure 11B) 
revealed that the speed dial AOI (MAOI4 = 0.244) had the most frequent 
saccade, significantly more than the other three AOIs (pAOI4-AOI1 < 0.001, 
pAOI4-AOI2 < 0.001, pAOI4-AOI3 < 0.001). The prompt area (MAOI2 = 0.077), 
front window (MAOI1 = 0.040), and dashboard (MAOI3 = 0.008) 
followed. Among these, the prompt area AOI had significantly more 
saccades than the front window AOI and dashboard AOI 
(pAOI2-AOI3 < 0.001, pAOI2-AOI1 < 0.001), and the front window AOI had 
significantly more saccades than the dashboard AOI (pAOI1-AOI3 < 0.001).

5 Discussion and conclusion

This study examines HSR drivers’ visual characteristics in a 
natural light environment. A general framework to examine lighting 
on drivers’ visual behavior was established. This framework 
encompasses four key components: (1) driving scenario configuration, 
(2) lighting environment implementation, measurement, and 
classification, (3) drivers’ visual behavior measurement, and (4) 
influence analysis. The practical application of this framework to 
investigate the effects of natural light on HSR drivers’ visual 
characteristics was detailed. Particularly, an unsupervised machine 
learning method was used to evaluate and categorize lighting 
conditions. Specifically, based on illuminance, K-means clustering was 
adopted to classify the daily light environment. Further, the average 
pupil diameter (APD), number of fixations (NF), time to first fixation 
(TFF), and number of saccades (NS) were selected to analyze the 
driver’s visual behavior under three illuminance groups. Moreover, the 
visual characteristics of the area of interest (AOIs) were analyzed. The 
main conclusions are as follows:

2.191 2.135

3.177

2

2.2

2.4

2.6

2.8

3

3.2

3.4

[1]Medium [2] High [3]Low

FIGURE 8

Average pupil diameter under light conditions.
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First, the unsupervised machine learning method is feasible to 
analyze and categorize lighting environments. K-means clustering was 
utilized in this study, and three clusters, low illuminance (1 pm–6 pm), 
medium illuminance (6 am–9 am), and high illuminance (9 am–1 pm), 
were identified. The clustering results are acceptable and accountable.

Second, the driver’s average pupil diameter changes with varying 
illuminance. Literature has manifested that pupil-related indexes can 

indicate luminance differences in lighting environment (9). 
Specifically, the diameter of the pupil adjusts spontaneously in 
response to variations in light intensity, narrowing in well-lit settings 
and widening in darker ones. Our results are in agreement with earlier 
studies. When comparing low illuminance levels to those of medium 
and high intensity, we  observe that the decreased luminance in 
low-light conditions results in a noticeable expansion of the pupil 

FIGURE 9

(A) Number of fixations under light conditions. (B) Number of fixations under AOIs.

FIGURE 10

(A) Time to first fixation under light conditions. (B) Time to first fixation under AOIs.

FIGURE 11

(A) Number of saccades under light conditions. (B) Number of saccades under AOIs.
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diameter. This indicates that changes in luminance within the low 
illuminance group are substantial enough to elicit the pupil’s 
adaptive reaction.

Third, high illuminance enhances HSR drivers’ visual behavior. 
Specifically, HSR drivers exhibit an increased number of fixations 
and saccades under high illuminance conditions. This could 
be  attributed to the stimulating effect of bright lighting, which 
enhances alertness and engagement. This aligns with earlier 
research indicating that heightened illumination can lead to 
improved task performance and visual behavior among drivers 
(39–41). Drivers who are stimulated demonstrate an increase in 
fixations and more frequent eye movements, enabling them to 
be  more vigilant and attentive to their environment, thereby 
lowering the likelihood of accidents. Furthermore, the quicker 
initial fixation in brighter conditions reinforces this observation. 
Due to enhanced processing and elevated alertness, drivers under 
high-stimulus conditions can zero in on targets swiftly 
and effortlessly.

Fourth, besides being affected by the lighting environment, the 
driving task is identified as one of the most important factors 
affecting HSR drivers’ visual characteristics. Participants in the 
driving task are required to maintain appropriate speed levels, 
avoiding any instances of over-speeding. Consequently, the speed dial 
AOI (Area of Interest) attracts the highest number of fixations and 
saccades and the earliest initial fixation compared to the AOIs of the 
prompt area, front window, and dashboard. This indicates that HSR 
(High-Speed Rail) drivers allocate greater attention, engage in more 
frequent scanning, and focus on the speed dial sooner to optimize 
their task performance. Furthermore, in the context of tunnel 
environments, there were no significant variations observed in the 
number of fixations and saccades. This could be attributed to the fact 
that the tunnel scenario was not manipulated to reflect real-world 
conditions, hence the tunnel did not significantly impact the drivers’ 
visual behavior.

5.1 Practical implications

First, the outcomes of this research establish a methodological 
framework for examining HSR drivers’ visual characteristics under 
varying light conditions. The classification of daily light 
environments facilitates a detailed investigation into HSR drivers’ 
visual behavior. To maintain drivers’ better visual acuity and ensure 
driving safety, HSR operating entities can utilize method delineated 
in this study to access the impact of varying lighting conditions on 
drivers’ fixation patterns and visual attention. The application of 
unsupervised machine learning for light environment analysis 
enables these organizations to automatically quantify and categorize 
lighting at any given time, across various climates and regions. The 
approach to analyzing HSR drivers’ visual behavior, supported by 
eye-tracking technology, offers insights into focal points of drivers’ 
attention under different lighting scenarios and their adaptation of 
visual search strategies in response to changing light conditions. 
For example, by scrutinizing drivers’ fixation points and pupil 
dilation, etc., managers can formulate more accurate 
recommendations for improving lighting design, particularly in 
challenging driving environments such as tunnels, bends, 
and viaducts.

Second, the findings of this study offer valuable insights for the 
development of tailored training programs for HSR drivers, aimed 
to enhance their visual search capabilities and driving safety. Our 
research indicates that high illuminance levels (9 am to 1 pm) can 
trigger more activated visual behavior in HSR drivers. This 
heightened state of attention and vigilance toward the surroundings 
can improve task performance and reduce accident risk. However, 
prolonged visual activity may hasten the onset of driving fatigue. 
Conversely, during periods of low illuminance (1 pm to 6 pm), 
HSR drivers may experience a decline in attention and alertness, 
which could adversely affect their task performance. Low 
illuminance can also induce pupil dilation, potentially resulting in 
increased visual strain. Consequently, the design of the training 
programs should consider the distinct visual demands placed on 
drivers in various driving environments, with particular attention 
to those who are more prone to accidents (47). For example, novice 
drivers, aimed to effectively cultivate their attention allocation 
skills and develop the necessary attention capacity for driving, are 
better to undergo training during high illuminance (9 am to 1 pm) 
condition when people are triggered more activated visual behavior. 
Regarding to training drivers to be  more experienced and 
sophisticated, it is crucial to include attention training under 
adverse conditions. Training under low illuminance conditions 
(1 pm to 6 pm) is essential, as in this scenario drivers are more 
susceptible to reduced attention and alertness, as well as visual 
fatigue and strain. These insights lay a robust groundwork for 
further exploration into human-machine-environment 
interactions, particularly in assessing the engagement of HSR 
drivers under varying lighting conditions to keep drivers 
safe driving.

Thirdly, the findings of this study provide significant insights for 
the development of a HSR driver fatigue monitoring system, based on 
the evaluation of physiological indicators. According to Healey and 
Picard (50), fixation acts as an indirect indicator of a driver’s mental 
state and fatigue level, with a tendency for fixation duration decrease 
as fatigue levels rise during prolonged driving sessions. Furthermore, 
Schmidt et  al. (51) have identified pupil response as a crucial 
physiological indicator of increased sympathetic nervous system 
activity. A study conducted using a driving simulator revealed that 
drivers exhibit significant variations in heart rate and pupil diameter 
when experiencing discomfort during driving (52). Consequently, the 
eye movement characteristics of HSR drivers, as delineated in this 
study, can be instrumental in setting the appropriate physiological 
indicators for a fatigue monitoring system.

5.2 Limitation and future research

Driving scenario configuration is important in investigation 
drivers’ behavior. Driving simulation experiments are commonly 
used in driving-behavior research, primarily owing to their 
advantages in variable control and scenario customization (53). 
However, limitations still exist. First, the challenge of replicating 
the true speed of HSR and the authentic experience of piloting an 
HSR accurately in a simulator is significant. The findings have not 
been validated in real-world driving scenarios. Hence, effectiveness 
of the lighting group and visual characteristics should be further 
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evaluated in the real HSR driving environment to enhance the 
applicability of the results. Second, the sample population was 
restricted to students, primarily composed of younger individuals 
proficient in basic driving abilities and satisfying the basic 
qualifications for HSR drivers. It is evident that there are differences 
between experienced drivers and students. Additionally, the 
sample size is limited. To bolster the credibility of the research 
findings, subsequent studies should consider to expand the sample 
size and age range, if possible, to incorporate actual HSR drivers 
into the participant group. Adopting these methodological 
enhancements will help ensure a more accurate affirmation of the 
study’s results.

The field of lighting analysis presents numerous opportunities for 
future research. First, the exploration of alternative machine learning 
methods warrants further investigation. This study regards the 
classification of lighting environment as a clustering problem and 
demonstrates the effectiveness of K-means algorithm. Depending on 
specific data characteristics and analytical requirements, future 
research could expand the methodological scope. For example, 
consider other unsupervised methods, including other clustering 
algorithms, association rule learning, and neural network approaches, 
or supervised approaches such as support vector machines, random 
forests, and gradient boosting trees, for lighting analysis. Second, 
future studies could focus on more sophisticated, quantitative, and 
comprehensive analysis of lighting. This study primarily aims to 
elucidate the trend in visual behavior changes under varying light 
environment, and as such, the quantitative findings are somewhat 
constrained. Building upon the insights gained, future research could 
delve into more quantitative explorations. This may include 
determining the threshold for comfortable natural light conditions 
conductive to HSR driving, identifying the range of lighting conditions 
that significantly alter drivers’ visual behavior, and quantifying the 
extent of changes in drivers’ visual responses corresponding to each 
unit variation in lighting conditions, among other potential avenues 
of investigation. Third, future research should incorporate additional 
factors that may impact lighting environments. For example, 
geographical locations, climatic conditions and weather patterns can 
affect lighting intensity and variability. More accurate and 
comprehensive analysis of lighting should take these aspects 
into consideration.

Measures of HSR drivers’ behavior can be  more diverse and 
comprehensive in the future. First, future studies could incorporate 
both subjective (e.g., questionnaires) and objective (e.g., eye tracking) 
methods to delve deeper into how HSR drivers’ visual behavior. 
Insights into road drivers’ behavior have been gathered through both 
questionnaire surveys and behavioral data, providing a broader and 
more compelling understanding. Second, future studies could explore 
the long-term effects of different lighting conditions on HSR drivers’ 
visual behavior and driving performance, which is critical for HSR 
operation safety.
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