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Background: Non-pharmaceutical interventions (NPIs) during the COVID-19

pandemic altered influenza transmission patterns, yet the age-specific e�ects

of air pollutants on influenza dynamics remain unclear.

Methods: Utilizing influenza surveillance data of Jiangsu Province from 2020

to 2024, we integrated generalized additive quasi-Poisson regression model

and distributed lag non-linear models (DLNM) to quantify lagged e�ects and

exposure-response relationships between air pollutants (NO2, SO2, PM2.5) and

influenza risk across young,middle-aged, and older adult groups. Meteorological

factors, including temperature and humidity, as well as the implementation

stages of NPIs, were controlled in the model to isolate the impact of pollutants

on influenza transmission.

Results: The NO2 and SO2 both showed significant positive e�ects in all age

groups. The e�ect of NO2 is most significant in the young group (RR = 5.02,

95% CI: 4.69–5.37), while SO2 exhibited the most pronounced e�ects in middle-

aged and older adult groups (RR = 4.22, 95% CI: 3.36–5.30; RR = 8.31, 95%

CI: 5.77–11.96, respectively). PM2.5 elevated risks in young (RR = 1.99, 95% CI:

1.87–2.12) and older adult (RR = 1.45, 95% CI: 1.07–1.94) groups. Interactions

between meteorological factors (temperature, humidity) and pollutants were

statistically insignificant.

Conclusions: Air pollutant impacts on influenza transmission are

age-dependent: NO2 dominates in younger populations, whereas SO2

disproportionately a�ects older adults. These findings highlight age-related

vulnerability to air pollution and the need for targeted public health strategies

for di�erent population subgroups.
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1 Introduction

Influenza, an acute respiratory illness caused by the

influenza virus, poses a significant threat to public health

worldwide. Despite the availability of vaccines and antiviral

medications, the transmission rate of influenza remains

high in the winter due to temperature fluctuations (1).

Environmental factors, particularly air pollutants and

meteorology, have been increasingly highlighted in the

transmission of influenza. Through a synergistic effect,

environmental factors pose spatio-temporal effects on influenza

dynamics (2).

Meteorological factors, such as temperature and humidity,

are crucial determinants of influenza transmission (3).

Survival and transmission characteristics of influenza viruses

distinctly differ with climatic conditions (4). Low temperature

and humidity, more encountered in winter, create an

environment that is conducive to viral transmission, while

warm temperature and high humidity usually keep respiratory

viruses stable (5).

Air pollutants, especially fine particulate matter and nitrogen

oxides (NO2), have been established to exert adverse effects

(6, 7). In addition to direct health impacts on respiratory,

cardiovascular and immune systems, air pollutants indirectly

elevate the susceptibility to infectious diseases through providing

a favorable environment for the survival and spread of viruses,

indicating its critical role in the transmission chain (8–10).

For example, air pollutants maintain the stability of influenza

viruses in the atmosphere, thereby increasing the likelihood

of transmission over greater distances (11). In an age of

industrialization, air pollution has become a severe issue in

China (12). Excessive PM2.5 in the respiratory system damages

the immune function, thus increase the risk of contracting

influenza (13). In heavily polluted regions, air pollutants enhance

the viability of airborne viruses and thus prolong the survival

and facilitate the transmission of viruses (9, 10). In addition,

air pollution may indirectly enhance the spread of the virus

by compromising respiratory functions and disrupting immune

responses (14). The impact of air pollution on influenza varies

among different age groups, with weaker immune systems such

as children and the older adult being more susceptible to the

effects of air pollution, thereby increasing the risk of contracting

influenza (15, 16).

The COVID-19 pandemic has introduced new complexities

into the dynamics of influenza transmission. Non-pharmaceutical

interventions (NPIs) implemented during the pandemic, such as

mask-wearing and social distancing, initially led to a significant

reduction in influenza activity globally (17). However, as

these measures were relaxed, influenza activity rebounded,

highlighting the delicate balance between viral suppression and

resurgence (18).

In the present study, we analyzed the potential impacts of

air pollutants on influenza in different age groups. Through

quantifying their influences, our findings are expected to provide

evidence-based insights into the age-specific effects of air

pollutants on influenza transmission, enabling the development of

targeted prevention and treatment strategies tailored to vulnerable

populations, particularly in the context of COVID-19.

2 Materials and methods

2.1 Design overview

This study analyzed influenza surveillance data, air pollution

and meteorological data during the implementation of non-

pharmaceutical interventions (NPIs) during the COVID-19

pandemic in China. The onset of the pandemic was used as the

starting point, and key time points when significant changes in

China’s policies were identified. Study period started from the 1st

week of 2020 and ended at the 17th week of 2024, and divided

into two stages: from January 1st, 2020 to December 26, 2022; from

December 27, 2022 to April 22, 2024. The prevalence of influenza at

different time points of NPIs implementation, and the relationship

of air pollutants and influenza was examined. The cohort was

divided into three groups of young, middle-aged, and older adults.

2.2 Influenza data and two NPIs stages

ILI was defined as fever (temperature ≥38◦C) accompanied

by cough or sore throat symptoms. According to the National

Influenza Monitoring Program requirements, influenza data are

monitored by medical staff at sentinel hospitals (in internal

medicine outpatient departments, internal medicine emergency

departments, fever clinics, pediatric outpatient departments, and

pediatric emergency departments). The number of ILI cases and the

total number of outpatient visits were reported daily in the three age

groups, and put into the China Influenza Monitoring Information

System at specified times. The ILI percentage was defined as the

ratio of ILI cases reported weekly to the total number of outpatient

visits for that week.

With support from theMajor National Science and Technology

Projects for the Prevention and Control of Infectious Diseases,

China has established a national influenza monitoring network.

Currently, the network comprises 411 laboratories and 556 sentinel

hospitals. We collected influenza data weekly reported by sentinel

hospitals in Jiangsu Province from the 1st week of 2020 to the

17th week of 2024, including the number of ILI cases and the total

number of outpatient visits in the three age groups. The data were

classified and summarized based on city codes and station codes.

Regarding quality control, the data collected from sentinel hospitals

underwent strict standardization and validation procedures. All

data were cross-checked and cleaned multiple times to ensure

accuracy and consistency.

This study period was divided into two stages. The first stage

was fromDecember 30th, 2019 toDecember 26, 2022, during which

COVID-19 gradually became pandemic in China and NPIs were

implemented, such as home isolation, city lockdowns, and mask-

wearing. The second stage was from December 26, 2022 to April

22, 2024, during which NPIs were gradually loosened and lifted

in China.

2.3 Patient and public involvement

Patients or the public were not involved in the design, or

conduct, or reporting, or dissemination of our research.
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2.4 Meteorological and air pollution data

Data of major air pollutants were obtained from the China

National EnvironmentalMonitoring Center (http://106.37.208.233:

20035/), including NO2 (µg/m3), sulfur dioxide (SO2) (µg/m
3),

and particulate matter <2.5µm (PM2.5) (µg/m
3). Meteorological

data in Jiangsu were obtained from National Meteorological

Information Center, including average temperature (◦C) and

relative humidity (%) with a resolution of 0.25◦ × 0.25◦ (http://

data.cma.cn/).

2.5 Statistical analysis

The cohort was divided into five age groups (0–5 years, 5–

15 years, 15–25 years, 25–60 years, and over 60 years). We

further combined the five age groups into three groups, 0–25

(young group), 25–60 (middle-aged group), and over 60 (older

adult group).

The generalized additive quasi-Poisson regression model was

combined with the distribution lag non-linear model (DLNM)

to explore the relationships between the air pollutants and the

number of ILI cases in the three age groups. A “cross-basis”

matrix was constructed for each air pollutant, accounting for both

the exposure-response relationship and lag effects. The exposure-

response relationship was described using a linear function, while

the lag effects were modeled using basic spline function. The

formula of the combined model is:

log [E (Yt)] = a+ cb
(

xi, lag, df
)

+
∑

ns
(

xj, df
)

+ns
(

time, df × 6
)

+ δ
(

week
)

+ δ
(

stage
)

(1)

where Yt represents the weekly number of influenza cases on

week t in an age group; a is the intercept; cb represents the

cross-basis matrix of air pollutants; ns() denotes a natural cubic

spline function; xi represents one air pollutant, such as NO2

(µg/m3), SO2 (µg/m3) and PM2.5 (µg/m3); xj represents the air

pollutants other than xi, as well as average temperature and relative

humidity; time signifies long-term trends and seasonality; week

indicates the number of the week; stage refers to the onset of

the COVID-19 pandemic and the timeline of NPIs in China; and

df represents the degrees of freedom. Based on the minimum

Akaike information criterion (AIC), we chose the combination

of the optimal parameters, including df = 3 for xj; df = 7 for

time; and df = 4 is used to fit the nonlinear effect of the lags. A

lag time of 4 weeks was chosen for meteorological factors based

on the AIC (details are shown in the Supplementary material,

Supplementary Tables S1, S2). In the formula, when studying the

association between pollutants and influenza, we are comparing

based on the pollutant concentration where the relative risk of

influenza is at its minimum.

Finally, we explored the interaction between temperature and

relative humidity on the risk of influenza based on a generalized

additive model (GAM). The model is expressed as:

log[E(Yt)] = β1 + s1(k, x)+ strata (2)

β1 denotes intercept; represents a meteorological factor

(average temperature or the relative humidity); x represents

the concentration of an air pollutant; and s1(k, x) denotes the

interaction between variables k and x.

The effect of the interaction between average temperature,

relative humidity and air pollutant concentrations on influenza

was quantitatively explored. With the median as the standard,

the meteorological factors were divided into “low” and “high”.

All combinations are calculated and compared to obtain RR

values, relative excess risk due to interaction (RERI), attributable

proportion due to interaction (AP) and synergy index (SI).

Given the significant effects of extreme pollutants change on

influenza, we further quantified the impact of pollutants at the 99th

percentile on influenza compared with the that at the 1st percentile.

The RR values of influenza were calculated to quantify the impact

of each air pollutant. All statistical analyses were performed using

statistical software R (version 4.3.0).

3 Results

From December 30th, 2019 to April 22, 2024, the total number

of outpatient and emergency visits reached 72,064,406, and the

number of ILI cases reached 3,941,923, accounting for 5.47% of all

visits. Since 2020, the proportion of ILI cases had decreased to∼5%.

Upon the lifting of NPIs in the beginning of 2023, the proportion

of ILI cases in the total number of outpatient and emergency

department visits increased to 8.14%.

Supplementary Figure S1 illustrates the ILI cases across the

three age groups, with the largest number in the young adult group.

The changing trends in case numbers were generally similar across

the three groups, with a peak commonly observed at the end of

2022. From 2020 to the end of 2022, the influenza epidemic was

stable. In the beginning of 2023, the number of ILI cases, including

some COVID-19 patients, surged.

Over the study period, the levels of air pollutants exhibited

different trends. The air concentrations of PM2.5 and NO2

fluctuated. Meanwhile, the SO2 level is relatively low and stable.

The average temperature exhibits seasonal fluctuations, while

the relative humidity remains relatively stable (Table 1 and

Supplementary Figure S2).

We compared the relationships between air pollutants and the

number of influenza cases among different age groups from 2020

to April 2024. Figures 1–3 illustrate the association between air

pollutants levels and the number of ILI cases across the three age

groups. The upper panel presents the overall effect estimates, while

the lower panel compares the effects at different lag periods (7 vs. 28

days). The exposure-response relationship between NO2 and SO2

and influenza shows a monotonous increasing trend across all age

groups, while the relationship between PM2.5 and influenza shows a

monotonous increasing trend in the young and older adult groups.

Table 2 shows the RR of influenza caused by extreme changes

in pollutant concentrations, with the 1st percentile as the reference

point. Compared to the reference concentration, when the

pollutant concentration rises to the 99th percentile, the RR values

quantifies the change in influenza risk associated with the sudden

increase in pollutant concentration. In all age groups, increased

concentrations of NO2 (RR = 5.02, 95% CI: 4.69–5.37; RR = 2.40,

95%CI: 1.97–2.94; RR= 3.17, 95%CI: 2.29–4.39 in the young adult,

middle-aged adult, and older adult groups, respectively) and SO2
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TABLE 1 Descriptive analysis of the data about influenza epidemics, air pollutants, and meteorological factors.

Variables Mean ± SD Min Max P50(P25, P75)

Influenza epidemics

ILI cases 17,520.00± 17,798.40 2,610 102,905 10,941 (6,826, 21,878)

Air pollutants

PM2.5 (µg/m
3) 35.34± 16.78 11.92 94.54 31.31 (23.54,42.00)

SO2 (µg/m
3) 7.40± 1.40 4.92 13.39 7.15 (6.39,8.08)

NO2 (µg/m
3) 27.83± 11.10 10.38 70 25.46 (19.08,34.54)

Meteorological factors

Average temperature (◦C) 16.18± 9.05 −2.35 33.12 16.25 (8.14, 24.49)

Relative humidity (%) 73.50± 9.15 49.69 90.85 74.23 (67.38, 80.85)

FIGURE 1

The estimated overall e�ects of NO2 (µg/m3) on influenza across 3 age groups using DLNM. Top row (A–C): Cumulative e�ects of NO2 over the

entire lag period, representing the overall impact on influenza risk. Bottom row (D–F): Specific risk of influenza at lag periods of 7 days (blue line) and

28 days (red line). (A, D) Young group, (B, E) middle-aged group, (C, F) older adult group.

(RR = 1.47, 95% CI: 1.37–1.57; RR = 4.22, 95% CI: 3.36–5.30; RR

= 8.31, 95% CI: 5.77–11.96, respectively) have both promoted the

prevalence of influenza. The effect of NO2 on influenza is relatively

greater in the young adult group, while the effect of SO2 is more

pronounced in the middle-aged and older adult groups. Similarly,

increased concentration of PM2.5 promoted the prevalence of

influenza in the young group and older adult group (RR = 1.99,

95% CI: 1.87–2.12; RR = 1.45, 95% CI: 1.07–1.94, respectively).

However, the effect of PM2.5 in the middle-aged group is not

significant (RR= 1.16, 95% CI: 0.97–1.40).

Tables 3, 4 present the interaction effects between average

temperature, relative humidity, and air pollutant concentrations,

with all variables categorized based on their median values.

Table 3 shows that, compared to high temperature and low

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1555430
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zheng et al. 10.3389/fpubh.2025.1555430

FIGURE 2

The estimated overall e�ects of SO2 (µg/m3) on influenza across 3 age groups using DLNM. Top row (A–C): Cumulative e�ects of SO2 over the

entire lag period, representing the overall impact on influenza risk. Bottom row (D–F): Specific risk of influenza at lag periods of 7 days (blue line) and

28 days (red line). (A, D) Young group, (B, E) middle-aged group, (C, F) older adult group.

pollutant concentrations, the relative risk (RR) increased under

low temperature and high pollutant concentrations for NO2,

SO2, and PM2.5, with RR = 1.59 (95% CI: 1.21–2.11), RR =

1.82 (95% CI: 1.36–2.44), and RR = 1.45 (95% CI: 1.10–1.89),

respectively. Additionally, for SO2, the RR also increased under

high temperature and high pollutant concentrations (RR = 1.60,

95% CI: 1.06–2.42). Table 4 indicates that, compared to high

humidity and low pollutant concentrations, the RR increased

under high humidity and high pollutant concentrations for NO2,

SO2, and PM2.5 (RR = 1.59, 95% CI: 1.09–2.31; RR = 1.88,

95% CI: 1.30–2.71; RR = 1.60, 95% CI: 1.05–2.45, respectively).

Moreover, NO2 and SO2 also exhibited increased RR under low

humidity and high pollutant concentrations (RR = 1.44, 95% CI:

1.05–1.97; RR = 1.50, 95% CI: 1.12–2.01, respectively). To assess

interaction effects, relative excess risk due to interaction (RERI),

attributable proportion due to interaction (AP), and synergy

index (SI) were employed. These metrics quantify the degree of

interaction, estimate the proportion of excess risk attributable

to interaction, and evaluate the synergistic effect between the

two factors, respectively. However, since the 95% confidence

intervals of RERI and AP included 0, and the 95% confidence

interval of SI included 1, the interaction between temperature,

relative humidity, and air pollutant concentrations did not reach

statistical significance.

4 Discussion

In this study, we collected the weekly reported influenza data

in Jiangsu, China, during 2020 to April 2024. A total of 3,941,923

ILI cases were included and analyzed based on two stages of

NPIs. Previous studies have shown that NPIs can partially alleviate

seasonal influenza and potential pandemics in China (19, 20), and

after the relaxation of certain NPIs, influenza activity increases

significantly (21). Similar findings were obtained in the present

study. As the COVID-19 spread, the public proactively chose

to stay at home, resulting in a decrease in contact rate and a

subsequent reduction in influenza cases. After the NPIs were

relaxed, population mobility increased, leading to a rise in contact

rate and influenza cases (22).

Considering the two stages of NPIs, we analyzed the exposure-

response relationships for NO2, SO2, PM2.5 across the three

age groups. The results revealed varying degrees of association
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FIGURE 3

The estimated overall e�ects of PM2.5 (µg/m3) on influenza across 3 age groups using DLNM. Top row (A–C): Cumulative e�ects of PM2.5 over the

entire lag period, representing the overall impact on influenza risk. Bottom row (D–F): Specific risk of influenza at lag periods of 7 days (blue line) and

28 days (red line). (A, D) Young group, (B, E) middle-aged group, (C, F) older adult group.

between air pollutants and influenza prevalence in different age

groups, suggesting age-specific effects of air pollutants on influenza

transmission. NO2 shows a significant positive effect in all age

groups, especially in the young group with the highest RR value,

which is consistent with the conclusion drawn by Chen et al. (6).

For the youth group, exposure to NO2 may lead to rapid release

of immune cells, disrupting the balance of the immune system

and making this age group more sensitive to influenza viruses

(6, 23). The RR value of SO2 is significantly higher in the middle-

aged and older adult groups compared to the young group, with

a peak observed especially in the older adult group. This may be

related to the chronic respiratory diseases commonly present in the

older adult population, such as COPD (24). SO2 could potentially

damage the immune response of the human respiratory system

by triggering non-specific reactions in the airways. This may lead

to impaired function of lung macrophages and a reduced rate of

particulate matter clearance from the alveoli, making the body

more susceptible to viral infections (25). The RR value of SO2 in the

middle-aged group is also high. This might be because the middle-

aged group is the main work group, who spendmore time outdoors

than the young and the older adult, thus increasing the incidence

of exposure to air pollutants (26). For PM2.5, exposure to it affects

TABLE 2 RR values for 99th vs. 1st percentile of pollutant concentrations.

Age
group

NO2 SO2 PM2.5

Young 5.02 (4.69, 5.37) 1.47 (1.37, 1.57) 1.99 (1.87, 2.12)

Middle-aged 2.40 (1.97, 2.94) 4.22 (3.36, 5.30) 1.16 (0.97, 1.40)

Older adult 3.17 (2.29, 4.39) 8.31 (5.77, 11.96) 1.45 (1.07, 1.94)

the synthesis of pro-inflammatory cytokines in bronchial epithelial

cell lines, disrupts antiviral signaling pathways, and reduces the

production of antiviral cytokines (27–29). PM2.5 exhibits a positive

effect in the young and older adult groups, while its effect in the

middle-aged group is not significant. The impact of PM2.5 on

different age groups may vary due to differences in immune system

maturity, tolerance, and exposure duration (30, 31).

In this study, we analyzed the interaction between

meteorological factors and air pollutant concentrations. However,

based on the quantitative interaction indicators of RERI, AP, and

SI, it was found that the interaction between meteorological factors

and air pollutants was not significant.
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TABLE 3 Merged e�ects of average temperature (temp) and air pollutants on ILI cases count.

NO2 SO2 PM2.5

RR (95%CI) RR (95%CI) RR (95%CI)

High temp and low pollutant Ref Ref Ref

Low temp and low pollutant 1.03 (0.59, 1.79) 1.12 (0.71, 1.78) 1.59 (0.74, 3.41)

High temp and high pollutant 1.25 (0.74, 2.12) 1.60 (1.06, 2.42)∗ 0.93 (0.31, 2.79)

Low temp and high pollutant 1.59 (1.21, 2.11)∗ 1.82 (1.36, 2.44)∗ 1.45 (1.10, 1.89)∗

RERI (95%CI) 0.31 (−0.55, 1.17) 0.10 (−0.70, 0.90) −0.07 (−1.65, 1.51)

AP (95%CI) 0.20 (−0.34, 0.73) 0.05 (−0.39, 0.50) −0.05 (−1.14, 1.04)

SI (95%CI) 2.10 (0.10, 46.20) 1.14 (0.37, 3.48) 0.86 (0.04, 18.28)

The ∗ indicates that the result is statistically significant.

TABLE 4 Merged e�ects of relative humidity (RH) and air pollutants on ILI cases.

NO2 SO2 PM2.5

RR (95%CI) RR (95%CI) RR (95%CI)

High RH and low pollutant Ref Ref Ref

Low RH and low pollutant 0.89 (0.57, 1.39) 0.71 (0.42, 1.19) 0.82 (0.48, 1.41)

High RH and high pollutant 1.59 (1.09, 2.31)∗ 1.88 (1.30, 2.71)∗ 1.60 (1.05, 2.45)∗

Low RH and high pollutant 1.44 (1.05, 1.97)∗ 1.50 (1.12, 2.01)∗ 1.28 (0.95, 1.72)

RERI (95%CI) −0.04 (−0.72, 0.64) −0.09 (−0.82, 0.65) −0.15 (−0.94, 0.64)

AP (95%CI) −0.03 (−0.50, 0.45) −0.06 (−0.55, 0.43) −0.12 (−0.73, 0.50)

SI (95%CI) 0.92 (0.22, 3.81) 0.85 (0.24, 2.99) 0.65 (0.10, 4.35)

The ∗ indicates that the result is statistically significant.

Our study has several strengths. First, the study divides the

entire period into two phases, corresponding to the implementation

and relaxation of NPIs, which helps assess the impact of NPIs on

the spread of influenza. Second, the population is categorized into

three age groups, allowing for an in-depth investigation of how

air pollutants affect the risk of influenza infection across different

age groups. Third, the study examines the interactions between

temperature, relative humidity, and air pollutant concentrations,

providing a comprehensive understanding of how these factors

collectively influence the spread of influenza.

However, several limitations in this study should be noted.

First, our findings were not compared to those in parallel studies

conducted in other provinces in China. In the future, more cross-

dimensional and multiregional studies are required to consolidate

the findings of this study. Second, laboratory testing data of

influenza were not used; thus, our findings should be advanced

to deeper analysis on influenza subtypes. Third, each subtype

of influenza has unique transmission characteristics (32), and

the predominant strains vary across regions during influenza

epidemics (33). A key limitation of our study is the potential

selection bias, as the data were collected from sentinel hospitals.

Although these hospitals were chosen based on their ability to

provide broad coverage of the local population, they may not fully

represent the wider population due to their specific geographic and

demographic focus.

To mitigate this, we made efforts to ensure that our data sample

was diverse and the results could be generalized by including

hospitals from different regions with varying demographic

characteristics. However, this does not eliminate the potential for

bias, and future research should include data from a wider range of

healthcare settings to ensure that findings can be generalized to the

broader population.
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