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Introduction: Physical education (PE) plays a vital role in promoting long-

term health and wellness among students. E�ective scheduling of PE classes

is essential for maximizing fitness improvements across diverse populations.

However, traditional approaches to optimizing PE schedules may not adequately

account for individual di�erences in demographics and activity patterns.

Methods: This study proposes an e�cient method for optimizing PE schedules

using deep learning (DL) techniques. The developed DL model integrates

convolutional neural network (CNN) layers to capture spatial features and

long short-term memory (LSTM) layers to extract temporal patterns from

demographic and activity-related variables. These features are combined

through a fusion layer, and a customized loss function is employed to accurately

predict fitness scores.

Results: Extensive experimental evaluation demonstrates that the proposed

model consistently outperforms competitive baseline models. Specifically, the

model achieved notable improvements in mean squared error (MSE) by 1.35%,

R-squared R
2 by 1.18%, and mean absolute error (MAE) by 1.22% compared to

existing approaches.

Discussion: The findings indicate that the DL-based approach provides an

e�ective method for optimizing PE schedules; resulting in increased fitness

levels and potential long-term health benefits. This model can assist educational

institutions and policymakers in designing and implementing e�ective PE

programs personalized to diverse student populations.

KEYWORDS

fitness score prediction, long-term health benefits, data-driven public health, health

promotion strategies, physical education

1 Introduction

The importance of physical activity (PA) for health and wellbeing is widely recognized.
It enhances physical fitness, mental health, and overall quality of life. Evidence shows that
consistent involvement in PA reduces the risk of chronic diseases such as cardiovascular
disease, obesity, and diabetes. It also improves mental health outcomes and social
wellbeing (1, 2).

Physical education (PE) plays an essential role in promoting public health by
embedding structured PA within educational systems. Studies show that PE programs
instill lifelong fitness habits, improve cognitive function, and foster socioemotional
learning among students (3, 4). PE initiatives provide accessible platforms that offer
equitable PA opportunities, addressing health disparities (5). However, despite its benefits,
current PE scheduling strategies often fail to optimize health outcomes due to inefficiencies
in intensity, duration, and frequency of activities.

This issue is particularly noticeable in China, where PE sessions are often deprioritized
due to academic demands. While national guidelines encourage regular physical activity,
implementation across schools remains inconsistent. A recent national study reported
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that only a small proportion of Chinese children and adolescents
meet the recommended physical activity levels (6). In contrast,
studies in European contexts, such as Portugal, show higher
engagement in physical activity and a more structured approach
to minimizing sedentary behavior through community and school-
based initiatives (7). These disparities underscore the need for
adaptive, data-driven scheduling models that can tailor PE to
diverse student needs and overcome structural limitations.

In many educational institutions, PE sessions follow rigid
schedules that do not adapt to the evolving needs of students.
This static approach overlooks individual fitness levels, engagement
patterns, and demographic variations. As a result, it leads to
inconsistent impacts on student health (8, 9). Moreover, while
various PA guidelines emphasize total duration or type of
activity, few focus on optimizing how these components are
structured and personalized within school settings. As a result,
schools face challenges in translating general PA recommendations
into measurable fitness outcomes (10, 11). Addressing this
issue requires data-driven strategies capable of analyzing student
profiles and dynamically adjusting PE schedules to maximize
effectiveness (12, 13).

These challenges are further intensified by broader behavioral
trends that affect the overall impact of PE programming. Among
these, the rise of sedentary lifestyles has emerged as a major
barrier to student health. Increased screen time, reduced outdoor
activity, and passive modes of leisure contribute to a decline in
physical readiness and receptivity to PE sessions (14, 15). Therefore,
understanding the extent and implications of sedentary behavior is
a critical first step toward optimizing PE programs for long-term
health benefits (16, 17).

1.1 Impact of sedentary lifestyles

Modern lifestyles have led to increased sedentary behavior,
characterized by excessive screen time and reduced participation in
physical activities. This shift has contributed to rising obesity rates,
cardiovascular diseases, andmental health challenges among youth.
Schools serve as a crucial intervention point where structured
PE programs can counteract these negative trends by promoting
active lifestyles. However, traditional PE scheduling methods do
not always align with students’ specific fitness needs, resulting in
inconsistent health benefits (14, 15).

Emerging evidence suggests that customizing PE schedules to
align with individual needs enhances health outcomes. Factors such
as age, physical ability, and socio-cultural context play critical roles
in determining the effectiveness of PE programs. Interdisciplinary
strategies that integrate physical literacy with mental health
education have shown promise in addressing students’ holistic
wellbeing (16, 17). Optimizing PE through data-driven models can
ensure that students receive appropriately structured interventions
that maximize fitness benefits and long-term health improvements.

1.2 Research gap in PE optimization using
AI

Despite the growing body of research on PE effectiveness,
a significant gap remains in leveraging artificial intelligence

(AI) for PE schedule optimization. Existing studies primarily
focus on general fitness tracking and PA recommendations.
However, they do not develop AI-driven models tailored to
structured PE programs. Most conventional PE schedules adopt
a one-size-fits-all approach. This method overlooks individual
variations in fitness levels, demographic differences, and specific
health needs.

AI-based optimization techniques have shown great potential
in personalized healthcare and sports analytics. However, their
application in school-based PE remains underexplored. By
utilizing AI-driven models, it is possible to create dynamic and
adaptive PE schedules. These schedules can optimize session
duration, frequency, and intensity based on real-time health data.
Addressing this research gap can help design more effective
PE programs. Such programs can enhance long-term fitness
outcomes while considering the diverse needs of students from
various backgrounds.

1.3 Research motivation, questions,
objectives, and hypotheses

The motivation behind this research comes from the growing
global concern about sedentary lifestyles that are associated with
health risks such as obesity, cardiovascular disease, and mental
health disorders. PE programs in schools are a critical intervention
point that fosters lifelong healthy habits. However, many current
schedules do not optimize their potential impact. Although the
benefits of regular physical activity are well known, disparities
in the frequency, duration, and quality of PE sessions lead to
inconsistent health outcomes in different populations. This study
seeks to address these gaps by exploring how strategic adjustments
to PE schedules can maximize long-term health benefits. It aims
to provide evidence-based guidance for policymakers, educators,
and public health practitioners. Using the connection between
education and health, this research contributes to the broader
goal of creating healthier generations and reducing preventable
chronic diseases.

To systematically explore these challenges, the following
research questions are designed:

(a) Can a deep learning (DL) model that combines spatial and
temporal data predict how much a student’s fitness score
will improve?

(b) Can such a model outperform traditional PE planning
methods and competitive prediction models?

(c) Can the model help identify which PE schedule patterns lead
to better health outcomes for students?

Based on these questions, the objectives and hypotheses of the
study are defined. The objectives of the study are as follows:

(a) To design and develop a DL model integrating Convolutional
Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks for predicting fitness scores.

(b) To collect and preprocess multi-source datasets that
reflect demographic and activity-based factors influencing
PE outcomes.

(c) To evaluate the model’s performance and compare it with that
of competitive models.
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(d) To provide practical suggestions for PE scheduling that
support long-term student health.

The study is guided by the following hypotheses:

(a) H1: the proposed DL model can accurately predict changes in
fitness scores based on PE schedule data.

(b) H2: the proposed model performs better than CNN-
only, LSTM-only, and GRU-based models across standard
evaluation metrics.

(c) H3: PE schedules optimized through model predictions lead
to better improvements in fitness scores than conventional
scheduling strategies.

1.4 Contributions

The key contributions of the paper are as follows.

(a) A systematic approach is designed to optimize PE schedules
that improve fitness outcomes and promote long-term
health benefits.

(b) An efficient DL model is designed that integrates CNNs and
LSTM networks to predict fitness score improvements based
on PE schedules.

(c) This paper also offers actionable information for educational
institutions and policymakers to design effective PE programs
that align with larger public health goals.

2 Literature review

2.1 Role of physical activity in long-term
health

PA plays a vital role in promoting long-term health by
reducing the risk of chronic diseases, improving mental wellbeing
and helping weight management. Cardiovascular benefits of PA
include improved heart health, reduced blood pressure, and
improved circulation, which collectively decrease the risk of
coronary heart disease and stroke. Research from 2020 to 2024
highlights PA as a preventive measure against obesity, a critical
factor in the management of type 2 diabetes and cardiovascular
conditions (18–20).

Mental health improvements associated with PA include
reduced anxiety, depression, and stress levels. PA stimulates the
release of endorphins and other neurochemicals that improve
mood and cognitive functions (21, 22). Furthermore, structured
exercise programs have been shown to prevent and mitigate the
progression of neurological disorders (23).

In the context of prevention of obesity, PA promotes metabolic
efficiency and fat reduction. This effect is especially critical given
the global rise in obesity and associated metabolic disorders
such as non-alcoholic fatty liver disease and metabolic syndrome.
Interventions combining PA with dietary adjustments have shown
better outcomes (24, 25).

Emerging strategies such as integrating intermittent fasting
with exercise regimens and leveraging technology-based solutions
such as PA tracking apps have demonstrated potential to maximize
the health outcomes of PA (21, 26).

2.2 Current practices in physical education
scheduling

2.2.1 Trends and variations in school-based PE
programs globally

Global practices in PE scheduling demonstrate diverse
approaches that range from comprehensive activity-based curricula
to limited weekly sessions. Countries with high standards for PE
often integrate daily physical education into school schedules, while
others adopt block scheduling or reduce frequency due to resource
limitations (10, 11).

In developed countries, structured PE programs focus
on motor skills, fitness, and cognitive learning. However,
there are significant variations due to cultural and policy-
driven priorities. For example, Scandinavian countries
advocate outdoor physical activities throughout the year,
while some Asian and African countries prioritize academic
performance, which reduces the amount of PE time allocated
(8, 27). These differences highlight the need for customized
solutions that balance cultural norms with global health
objectives.

2.2.2 Limitations in existing scheduling strategies
Despite acknowledged benefits, many PE programs face

challenges that include insufficient instructional time and limited
resources. Block scheduling, which combines multiple subjects
into extended periods, has unintentionally reduced the total time
allocated to physical education. This trend undermines the ability
of PE classes to meet recommended activity levels (28, 29).

The variability in PE practices across schools further
complicates the issue. Urban schools often offer diverse programs
and better facilities, while rural schools struggle with limited
resources and insufficiently trained staff (9). Classroom PA breaks,
while valuable, cannot fully replicate the benefits of dedicated PE
classes (30, 31).

Emerging trends such as digital tools in PE classes hold
promise, but require investments in technology and teacher
training. Schools also have difficulty aligning the PE objectives
with larger educational policies, which limits their ability to adopt
innovative approaches effectively (32, 33).

2.3 Theoretical frameworks and studies

Research from 2020 to 2024 shows that PE variables, including
frequency, duration, and intensity, are strongly linked to health
outcomes. Studies indicate that optimal combinations of these
variables are essential for improving cardiovascular, metabolic, and
mental health.

Frequency is crucial to ensuring cumulative health benefits.
Regular physical activity, especially sessions of daily or near-
daily, significantly reduces the risks of obesity and metabolic
syndrome (34, 35). Duration, specifically sessions lasting between
30 and 60 min, is effective in driving cardiovascular and muscular
improvements. However, benefits tend to plateau beyond a certain
threshold (36, 37).
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Intensity is another vital factor that contributes to health
outcomes. Moderate to vigorous physical activity (MVPA)
has been associated with better vascular health and reduced
adiposity. Furthermore, high-intensity interval training (HIIT)
offers superior benefits for neuroplasticity and metabolic function
compared to lower-intensity programs (38, 39).

The FITT principle (Frequency, Intensity, Time, and
Type) provides a framework that helps optimize PE programs.
Interventions that adhere to this framework lead to improved
functional fitness and reduced risks of chronic diseases. These
programs are particularly effective for adolescents and older adults
(40, 41).

Emerging research integrates advanced technologies such as
wearable fitness trackers into PE programs to monitor and tailor
individual activity levels. This approach ensures adherence to the
intensity and duration recommended, making interventions more
effective across various populations (42, 43).

3 Proposed model

This section outlines the methods used to collect, preprocess,
and utilize data for optimizing PE schedules. An efficient deep
learning (DL) model is designed to effectively optimize schedules
to promote long-term health benefits.

3.1 Dataset collection and preprocessing

The dataset collection process, illustrated in Figure 1, outlines
the methods used to gather data, select relevant features,
inclusion and exclusion criteria, preprocess information, and
apply data augmentation techniques. These steps are essential to
ensure the dataset’s reliability and readiness for optimizing PE
schedules effectively.

To create a robust framework for optimizing PE schedules,
data were sourced from diverse and reliable repositories. The
Gym-Exercise-Data-Analysis Repository (GRDAR) (44) provided
structured records of physical activities, including exercise types,
durations, and health metrics. Weekly trends in fitness levels and
caloric expenditure were also captured, offering dynamic insights.
The CDC Data: Nutrition, Physical Activity, and Obesity (45)
offered monthly records on nutrition, physical activity levels, and
obesity-related metrics across U.S. demographics. Additionally, the
New Jersey State Health Assessment Data (NJSHAD) (46) provided
quarterly health metrics for school-aged children, such as BMI,
cardiovascular health, and physical activity levels, emphasizing the
impact of PE programs on student outcomes.

3.1.1 Dataset representativeness
The dataset encompasses a diverse representation of individuals

across multiple demographic factors:

• Age distribution: the dataset includes participants aged 6 to
18 years, covering students from elementary, middle, and
high school levels. This ensures that PE schedule optimization
accounts for the developmental and physiological differences
that impact PA effectiveness across different age groups.

• Gender representation: the dataset maintains a near-equal
distribution of male (49.2%) and female (50.8%) participants,
allowing the model to assess gender-based variations in fitness
responses and tailor PE programs accordingly.

• Socio-Economic Status (SES): the dataset integrates
information from low-income (34.5%), middle-income
(42.7%), and high-income (22.8%) households, based on U.S.
Census-reported income brackets. This ensures that the study
accounts for disparities in access to sports facilities, nutrition,
and extracurricular PA opportunities, which can influence
fitness outcomes (12, 13).

• Geographic distribution: the dataset represents urban (55.1%),
suburban (30.6%), and rural (14.3%) populations across
multiple states. This diversity ensures that the model can
generalize across different environmental and infrastructural
settings, accounting for variations in access to parks, school
facilities, and recreational programs.

3.1.2 Inclusion and exclusion criteria
Based on the dataset characteristics and preprocessing

protocol, inclusion and exclusion criteria were applied to select
valid samples for analysis. For inclusion, the following criteria
were considered:

• Participants aged between 6 and 18 years, consistent with the
school-age population.

• Availability of demographic attributes (age, gender, SES, and
geographic location).

• Valid entries for physical activity records and corresponding
fitness score evaluations.

For exclusion, the following criteria were considered:

• Records with missing values in key variables (e.g., fitness
scores, activity logs).

• Implausible physiological or behavioral entries identified
during preprocessing [e.g., outliers in BMI or activity
durations based on Interquartile Range (IQR) filtering].

• Duplicate entries or corrupted records identified during
data import.

3.1.3 Feature selection and preprocessing
The dataset included health-related metrics and PE

schedule-specific attributes to enable comprehensive analysis
and optimization. Health-related features such as age, gender,
BMI, fitness scores, resting heart rate, and caloric expenditure were
collected to ensure a complete demographic and health profile. PE
schedule-specific features like weekly PE time, activity distribution,
activity intensity levels, session frequency, and facility utilization
rates were included to evaluate and optimize PE sessions (12, 13).

To enhance data quality and compatibility with DL models,
various preprocessing steps were applied:

• Handling missing data: missing values were imputed using the
mean for continuous variables and the mode for categorical
variables (47, 48).
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FIGURE 1

Detailed workflow of the dataset collection, inclusion and exclusion criteria, preprocessing, and augmentation process. It illustrates the steps

involved in sourcing data, handling missing values, normalizing variables, encoding categorical features, and enhancing data quality for modeling PE

schedule optimization.

• Outlier detection and treatment: outliers were identified and
addressed using IQR method (49).

• Feature scaling: continuous variables were normalized
using min-max scaling to ensure uniformity in data
distribution (50).

• Encoding categorical variables: features such as gender and
activity intensity levels were transformed using one-hot
encoding, facilitating compatibility with machine learning
models (51).

3.1.4 Data augmentation
To improve the robustness and generalizability of the dataset,

data augmentation techniques were employed:

• Synthetic data generation: time-series patterns of activity
metrics were synthetically generated to simulate diverse PE
scenarios (52).

• Temporal noise injection: variability in daily PA levels was
introduced to reflect real-world fluctuations in student activity
patterns (53).

• Scenario-based augmentation: simulated variations
in PE schedules, activity intensities, and caloric
expenditures were incorporated to enhance the dataset’s
comprehensiveness (54).

3.2 Proposed model architecture

The proposed deep learning model is a multi-component
architecture designed to leverage both spatial and temporal
features from the dataset for precise health outcome
predictions and optimized physical education (PE) schedule
generation. By increasing the depth of the model, the
architecture ensures comprehensive extraction of complex
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FIGURE 2

Diagrammatic flow of the proposed model, integrating a CNN for spatial feature extraction, a hierarchical LSTM network for temporal modeling, and

a fusion layer to combine spatial and temporal features. The output layer predicts health outcomes and generates optimized PE schedules.

patterns in the data. Figure 2 provides an overview of
the architecture.

3.2.1 Feature extraction layer
The feature extraction layer employs a deep Convolutional

Neural Network (CNN) (55) to extract high-level spatial features
from the input data, such as activity distributions and demographic
factors. This layer consists of multiple convolutional blocks with
varying kernel sizes (e.g., 3 × 3 and 5 × 5) to capture local and
global patterns effectively.

The convolution operation can be mathematically expressed as:

f (l)(x, y) =
k∑

i=1

k∑

j=1

W(l)(i, j) · x(x+ i, y+ j)+ b(l), (1)

whereW(l) is the weight kernel for the l-th layer, b(l) is the bias term,
and x(x+ i, y+ j) represents the input patch at location (x, y) (56).

Residual connections are incorporated to mitigate vanishing
gradients (57), defined as:

y = F(x, {Wi})+ x, (2)

where F(x, {Wi}) represents the transformation applied by the
residual block.

Batch normalization ensures faster convergence (58):

x̂i =
xi − µ√
σ 2 + ǫ

, (3)

where µ and σ 2 are the mean and variance of the
batch, respectively.

3.2.2 Temporal modeling layer
Temporal dependencies and trends in time-series health data

are captured using a hierarchical Long Short-Term Memory
(LSTM) network (59). Bidirectional LSTMs (60) are employed
to learn dependencies in both forward and backward temporal
sequences, described as:

ht = σ (Wh · xt + Uh · ht−1 + bh), (4)

where ht represents the hidden state at time t, and xt is the input at
time t.

An attention mechanism prioritizes significant time steps (61),
computed as:

αt =
exp(et)∑T
t=1 exp(et)

, (5)

where et = f (ht) is a learned scoring function.
Stacked LSTM layers ensure deeper modeling of sequential

relationships (62), expressed as:

h
(l)
t = f (W(l)

h
· h(l−1)

t + b(l)), (6)

where l is the layer index.

3.2.3 Fusion layer
The fusion layer combines spatial and temporal features into

a unified representation. Outputs from the CNN and LSTM layers
are concatenated (63):

z = concat(fCNN, fLSTM), (7)

where fCNN and fLSTM are the feature vectors from the CNN and
LSTM layers, respectively.
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Dense layers are then applied to transform this concatenated
representation into a higher-dimensional feature space. Each dense
layer applies a linear transformation followed by an activation
function, defined as:

a(l) = σ (W(l) · z + b(l)), (8)

whereW(l) and b(l) are the weight matrix and bias term for the l-th
dense layer, and σ is the ReLU activation function (64).

3.2.4 Output layer
The output layer is designed to predict fitness score

improvements, leveraging the refined feature vector from the dense
layers of the fusion layer. This layer employs a regression head (56)
to produce continuous predictions of fitness scores. Output of the
model is defined as:

ŝ = Wo · a(L) + bo, (9)

where ŝ represents the predicted fitness score improvement. Wo is
the weight matrix for the regression head. a(L) is the output feature
vector from the final dense layer in the fusion module. bo is the
bias term.

3.3 Customized loss function

The model’s training process employs a customized loss
function designed to optimize the prediction of fitness score
improvements. This focus ensures the model accurately captures
the relationship between PE schedules and fitness outcomes, which
are critical for assessing the effectiveness of PE programs. The total
loss function is expressed as:

Ltotal = λ1LMSE + λ2LRegularization, (10)

where LMSE is the Mean Squared Error (MSE) loss, used to
minimize the error in predicting fitness scores. The MSE loss is
well-suited for this task as it penalizes larger prediction errors. This
ensures a higher precision in predicting continuous fitness scores.
It is defined as:

LMSE = 1

N

N∑

i=1

(si − ŝi)
2, (11)

where si represents the true fitness score of the i-th data point. ŝi is
the predicted fitness score. N is the number of samples.

Regularization is crucial for preventing the model from
overfitting, especially when dealing with high-dimensional data or
limited training samples. LRegularization introduces a penalty term
to prevent overfitting and ensure smooth parameter updates during
training. It is defined as:

LRegularization = λ

2

M∑

j=1

w2
j , (12)

where wj denotes the j-th weight parameter in the model. M is
the total number of parameters. λ is the regularization coefficient,
which controls the strength of the penalty.

Optimizing fitness scores is critical for evaluating the
effectiveness of PE schedules in promoting health outcomes.
The MSE loss directly targets the precision of these predictions
by focusing on minimizing the squared errors between actual
and predicted fitness scores. Regularization complements this by
enhancing the model’s generalization capabilities, ensuring that it
performs well on unseen data. This loss function design aligns
closely with the goal of maximizing fitness improvements while
maintaining model stability and interpretability.

3.4 Hyperparameter optimization

Hyperparameters were optimized using grid search (65) to
enhance the model’s performance. The learning rate (η) was varied
between 0.001 and 0.01, and the optimal value was found to be
η = 0.005. The gradient descent update is defined as:

θt+1 = θt − η∇L, (13)

where θt represents the model parameters at time t.
Additionally, the batch size (B) was tested with values of 16,

32, and 64, and a batch size of B = 32 was selected as it provided
the best balance between computational efficiency and convergence
stability. For the number of LSTM units (U), values ranging from
50 to 200 were evaluated, with the final selection being U = 128,
allowing the model to effectively capture temporal dependencies
without overfitting. The dropout rate (D) was tested at 0.2, 0.3,
and 0.5, and the optimal value of D = 0.3 was chosen to ensure
sufficient regularization while maintaining model performance.
This corresponds to a dropout probability of pdrop = 0.3. The
number of epochs was tested at 50, 100, and 150, with the final
choice being 100 epochs, achieving a balance between performance
and computational cost. Lastly, the Adam optimizer was selected
for its adaptive learning rate and robust convergence properties,
with hyperparameters β1 = 0.9 and β2 = 0.999. These optimized
settings enabled the model to generalize effectively while capturing
the complex relationships within the data.

4 Performance analysis

4.1 Evaluation of model performance

Figure 3 illustrates theMean Squared Error (MSE) performance
across proposed and competitive models. The proposed model
achieves the lowest MSE that demonstrates its superior prediction
accuracy. Compared to the next best-performing model, the
proposed model shows an average improvement of 1.35%. This
reduction highlights the model’s effectiveness in minimizing
squared errors in fitness score predictions. A paired t-test was
conducted, resulting in a p-value < 0.05. This confirms that the
reduction in MSE is statistically significant. This indicates that
the proposed model consistently minimizes the squared prediction
errors more effectively than its competitors.

Figure 4 presents the R2 values achieved by the proposed
and competitive models. The proposed model attains the highest
R2 that indicates its strong ability to explain variance in fitness
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FIGURE 3

Mean Squared Error (MSE) analysis of the proposed and competitive

models.

FIGURE 4

R
2 Analysis of the proposed and competitive models.

scores. On average, the proposed model improves R2 by 1.18%
over the second-best model. The improvement was tested using a
Wilcoxon signed-rank test due to the non-parametric nature of the
distribution of R2 values. The test resulted in a p-value below 0.01,
signifying that the higher R2 achieved by the proposed model is
statistically significant. This confirms that the proposed model has
a reliably better ability to explain the variance in fitness scores.

Figure 5 compares the Mean Absolute Error (MAE) of the
proposed model with competitive models. The proposed model
achieves the lowest MAE, maintaining a consistent median value of
0.12. It outperforms competitors such as Bi-LSTM and GRU with
an average improvement of 1.22% over the next best-performing
model. A paired t-test was applied, yielding a p-value < 0.05. This
result demonstrates that the proposed model consistently reduces
the magnitude of absolute errors in predictions. This reduction
in absolute error demonstrates the precision and reliability of the
proposed model in predicting fitness scores accurately.

Figure 6 presents the standardized regression coefficients for
the primary predictors influencing fitness score improvements.
Weekly PE time, activity intensity, and session frequency exhibit
statistically significant positive effects, whereas sedentary behavior

FIGURE 5

Mean Absolute Error (MAE) analysis of the proposed and competitive

models.

shows a negative association with fitness outcomes. Significance
levels are denoted as: * p < 0.05, ** p < 0.01, and *** p < 0.001.

4.2 Error analysis and prediction
confidence

Figure 7 illustrates the error distribution plot for the proposed
model designed for optimizing PE schedules for long-term
health benefits. It highlights the distribution of residuals, which
represent the differences between the predicted and true values
of fitness score improvements. The distribution appears near-
normal and is centered around zero. It indicates that the proposed
model effectively minimizes systematic biases in its predictions.
The density curve further demonstrates that most residuals are
concentrated near zero. This reflects the robustness and reliability
of the proposed model in capturing the impact of PE schedules on
long-term health outcomes.

Figure 8 presents the proposed model’s prediction interval
plot for fitness score improvements with respect to PE schedules.
The plot compares true fitness scores (depicted by a black line)
with the predicted scores from the proposed model (shown as a
blue line). The shaded blue region represents the 95% prediction
interval, which quantifies the uncertainty in the predictions. The
close alignment between the predicted and true fitness scores
highlights the accuracy of the proposed model in estimating
fitness improvements across varying PE schedules. Additionally,
the relatively low prediction interval demonstrates the proposed
model’s confidence in its predictions. These results emphasize the
effectiveness of the proposed model in optimizing PE schedules to
promote long-term health benefits.

4.3 Visualization of feature-outcome
relationships

To gain deeper insights into the relationship between key input
features and predicted fitness scores, we present visual analyses
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FIGURE 6

Standardized regression coe�cients for key predictors of fitness score improvements.

FIGURE 7

Error distribution plot analysis of the proposed model.

illustrating how session frequency, activity intensity, and weekly PE
time impact fitness outcomes. Figure 9 highlights the correlation
between session frequency and fitness score improvements. The
trend suggests that students participating in more frequent PE
sessions exhibit higher predicted fitness improvements, aligning
with existing literature emphasizing the importance of regular
physical activity (14, 35).

Similarly, Figure 10 illustrates the effect of activity intensity on
fitness scores. The findings suggest that moderate to high-intensity
activities contribute more significantly to fitness improvements
compared to low-intensity activities. This observation is supported
by prior research indicating that moderate-to-vigorous physical
activity (MVPA) leads to greater cardiovascular and muscular
benefits (38, 39).

Figure 11 examines the impact of weekly PE time on fitness
outcomes. While increased weekly PE hours generally lead to
improved fitness scores, the trend exhibits a diminishing return

FIGURE 8

Prediction interval plot for fitness score improvements with respect

to PE schedules.

effect, where benefits plateau beyond a certain threshold. This
insight aligns with research suggesting that excessive training
without adequate recovery may limit long-term gains (36, 37).
These visual analyses provide crucial insights for designing
optimized PE schedules. By identifying the most influential factors
contributing to fitness improvements, educational institutions can
adjust session frequency, activity intensity, and PE duration to
maximize student health benefits.

4.4 Statistical analysis

For statistical analysis, a paired t-test was conducted on MSE
and MAE values. The test yielded p-values below 0.05. Therefore,
the proposed model’s reduction in prediction error is statistically
significant. Similarly, a Wilcoxon signed-rank test was performed
for R2. It results in a p-value below 0.01. This demonstrates
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FIGURE 9

Relationship between session frequency and predicted fitness outcomes.

FIGURE 10

Impact of activity intensity on predicted fitness scores.

a significant increase in the model’s explanatory power. These
analysis reveal that the observed differences are not due to
random variations.

Table 1 presents statistical analysis for the proposed model and
competitive models. It provides the mean and standard deviation
values across multiple trials. The lower standard deviation in
MSE and MAE for the proposed model indicates stability and

robustness in fitness score predictions. Additionally, the 95%
confidence interval (CI) for R2 shows that the proposed model
consistently explains a larger proportion of variance than the
competitive models.

Figure 12 demonstrates the effect sizes (f 2) for the key
moderation terms in the model. The interaction between PE
time and activity intensity exhibits a small-to-moderate effect
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FIGURE 11

Influence of weekly PE time on predicted fitness outcomes.

TABLE 1 Statistical analysis of proposed and competitive models.

Model MSE
(Mean ± SD)

MAE
(Mean ± SD)

R2 (95% CI)

Proposed
model

0.015± 0.002 0.12± 0.01 0.92 (0.91, 0.93)

Bi-LSTM 0.017± 0.003 0.14± 0.02 0.90 (0.88, 0.91)

GRU 0.020± 0.004 0.15± 0.02 0.88 (0.86, 0.89)

LSTM 0.022± 0.004 0.16± 0.03 0.86 (0.85, 0.88)

CNN 0.025± 0.005 0.18± 0.03 0.85 (0.83, 0.86)

(f 2 = 0.08), while the interaction between PE frequency and
socio-economic status demonstrates a moderate effect (f 2 =
0.15). According to Cohen’s guidelines, f 2 values of 0.02, 0.15,
and 0.35 are interpreted as small, medium, and large effects,
respectively. These findings indicate that the interaction between
PE scheduling parameters and demographic factors contributes
meaningfully, though not strongly, to variations in predicted
fitness outcomes.

5 Discussion and recommendations

PE plays a vital role in the promotion of long-term health
benefits, but its optimization has often been overlooked in academic
research and policy making. This study introduces an efficient
method that uses DL to optimize PE schedules. It addresses key
gaps in understanding the relationship between PE activities and
fitness outcomes. The findings demonstrate that data-driven

approaches can significantly enhance the effectiveness of
PE programs.

5.1 Discussion

The results demonstrate that the proposed deep learning model
significantly outperforms existing state-of-the-art approaches in
predicting fitness score improvements. This is reflected in key
performance metrics, including a 1.35% reduction in MSE,
a 1.22% improvement in MAE, and a 1.18% increase in
R2. These enhancements underscore the model’s robustness in
capturing intricate relationships among PE schedules, demographic
attributes, and physical health indicators.

Beyond predictive accuracy, the study emphasizes the
value of integrating varied PE activities, appropriate session
durations, and ongoing evaluations into school programs.
The model’s architecture, particularly the fusion layer enables
the combined analysis of spatial and temporal features,
resulting in precise, data-driven recommendations. The
consistency of performance across multiple demographic
segments further validates the model’s adaptability in diverse
educational settings.

Moreover, the findings suggest potential health benefits
extending beyond immediate fitness improvements. Specifically,
the model may contribute to mitigating risk factors associated
with metabolic syndrome (MetS), which includes central obesity,
elevated blood pressure, and impaired glucose regulation. Prior
studies have linked insufficient physical activity to the progression
of MetS in children and adolescents (66). By optimizing PE
schedules to promote regular, effective activity, the proposed model
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FIGURE 12

E�ect sizes (f2) for moderation terms in the model.

may help reduce early markers of MetS and support long-term
cardiometabolic health.

5.2 Synthetic data alignment and model
accuracy

The use of synthetic data generation ensured that the model
could adapt to real-world variations in physical activity patterns,
health trends, and PE participation rates. Real-world datasets
often exhibit seasonal changes, behavioral inconsistencies, and
external influences (e.g., weather, school policies, and accessibility
to facilities), which can affect PE participation and fitness outcomes.
By introducing synthetic variations, the model was exposed to
a broader spectrum of potentially unseen conditions, enhancing
its generalizability.

The integration of synthetic PE participation scenarios enabled
the model to better generalize to diverse student populations. For
instance, by generating variations in PA intensity levels and session
durations, themodel learned to predict fitness improvements under
different constraints, such as limited PE access in rural schools
vs. structured fitness programs in urban institutions. Additionally,
temporal noise injection simulated daily variations in student
engagement levels, ensuring that the model did not overfit to
idealized, static patterns.

To evaluate the impact of synthetic data on model accuracy,
comparative analyses were conducted between models trained
solely on real-world data and those trained on a combination
of real and synthetic data. The results demonstrated a reduction
in prediction errors, with an improvement of 2.8% in MSE and
a 3.1% reduction in MAE. These improvements indicate that
incorporating synthetic data enhanced the model’s robustness by
preventing it from being biased toward specific demographic or
environmental conditions.

5.3 Recommendations

Based on the findings, several recommendations are proposed
to maximize the effectiveness of PE schedules. Table 2 shows the
optimization recommendations for the PE schedule designed to
maximize long-term health benefits. It provides detailed insights
into various strategies, their target audience, and the expected
outcomes. These recommendations aim to guide educators,
policymakers, and communities in the implementation of effective
PA programs that promote fitness and wellbeing. By using data-
driven approaches, the proposed model ensures equitable access
and sustainable improvements in student health outcomes.

While these recommendations provide a strong framework
for optimizing PE schedules, their implementation in resource-
limited settings and schools with diverse demographics requires
adaptability and innovation. Below are examples of how these
strategies can be applied in low-resource schools and diverse
student populations.

(a) Personalized PE schedules with minimal resources: in
schools with limited access to gym equipment, personalized
PE schedules can be adapted by utilizing bodyweight exercises
(e.g., push-ups, squats, jumping jacks) and outdoor activities
like running or circuit training in open fields. Teachers can
use simple fitness assessment tools (such as timed runs or
endurance tests) to categorize students into low, moderate,
and high-intensity groups without the need for advanced
tracking devices.

(b) Incorporate varied activities in multi-cultural and mixed-

ability settings: schools with diverse student populations
can integrate culturally inclusive physical activities such as
traditional dance, martial arts, or regional sports to engage
students from different backgrounds. Additionally, adaptive
physical education techniques (e.g., seated exercises, inclusive
team sports) can be incorporated to accommodate students
with disabilities.
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TABLE 2 Extended PE schedule optimization recommendations.

Recommendation Details Audience Expected outcome

Personalized PE schedules Design schedules based on individual fitness levels, age,
and health goals.

Students and educators Improved fitness levels tailored to individual
needs.

Incorporate varied
activities

Include a mix of aerobic, strength, and flexibility activities
to ensure comprehensive development.

Students and educators Comprehensive physical development and
student engagement.

Optimize session
durations and frequency

Structure consistent sessions (30–60 min) multiple times
per week for effectiveness.

Students and educators Enhanced effectiveness of PE sessions with
optimal scheduling.

Monitor fitness progress Track fitness score improvements periodically to adjust
schedules dynamically.

Educators and
administrators

Dynamic adjustments to PE schedules based on
real-time data.

Leverage data-driven
insights

Use predictive analytics to identify effective PE
combinations for maximum benefits.

Policymakers and
administrators

Data-backed strategies for maximum health
benefits.

Encourage active breaks Incorporate shorter active breaks during the day to reduce
sedentary behavior.

Students and educators Reduced sedentary behavior and improved
overall activity levels.

Training for educators Train teachers and coaches to implement data-driven PE
strategies effectively.

Educators and trainers Efficient implementation of data-driven
strategies in schools.

Engage families and
communities

Encourage families and communities to support active
lifestyles through initiatives.

Families and
communities

Support for active lifestyles beyond school
settings.

Promote equitable access Ensure all students have access to structured PE programs,
adapting as needed.

Policymakers and
educators

Equitable access to health-promoting PE
programs.

Evaluate and iterate Regularly evaluate health metrics and use feedback to
refine programs.

Educators and
administrators

Sustained program effectiveness through
regular refinement.

(c) Data-driven insights with basic tools: even in the absence
of high-tech fitness trackers, teachers can manually record
student participation, endurance levels, and progress over
time in simple spreadsheets or paper-based logs. Schools can
implement low-cost digital solutions, such as free mobile apps
for tracking physical activity trends.

(d) Encourage active breaks without disrupting curriculum:

in schools with rigid academic schedules, short movement
breaks (e.g., 5-min stretching, classroom-based exercises)
can be introduced between lessons to reduce sedentary
behavior without requiring additional resources. For example,
schools in crowded urban areas with limited playgrounds can
incorporate standing desks, hallway stretching routines, or
stair exercises to increase movement.

(e) Engage communities to overcome resource barriers: in
economically disadvantaged areas where schools lack sports
facilities, community partnerships can be established with
local parks, recreational centers, or non-profit organizations to
provide after-school PE programs. Schools can also leverage
volunteers, parents, and local coaches to assist in delivering
structured physical activities.

(f) Equitable access through policy adjustments: to ensure
that students in rural and low-income schools receive
adequate PE, policymakers can advocate for flexible
scheduling, allowing for rotational sports programs
where different age groups use shared equipment on
different days. Additionally, partnerships with public health
initiatives can help provide free or subsidized sports gear to
underprivileged students.

(g) Feedback mechanisms for dynamic adjustments: to further
enhance PE scheduling, schools can introduce student
feedback loops where teachers collect data on energy levels,

engagement, and activity preferences after each session.
This information can be used to adjust future PE sessions
dynamically. In low-resource settings, simple tools such as
weekly student reflection logs or teacher-led discussions
can serve as effective feedback mechanisms. In technology-
equipped schools, mobile surveys or AI-driven adaptive
schedules could be employed to refine PE programs in
real time.

5.4 Implications for public health

The proposed framework has significant implications for public
health. Its scalability and adaptability make it a valuable tool for
designing PE programs that promote fitness and well-being. Key
implications are summarized as follows.

(a) Enhanced individual health outcomes: by addressing the
diverse fitness needs of students, the proposed model ensures
improved physical fitness and overall wellbeing for individuals.

(b) Broader societal benefits: effective PE programs can lead to
societal advantages such as reduced healthcare costs, improved
quality of life, and increased productivity.

(c) Promotion of data-driven strategies: the integration of
predictive analytics allows policymakers and educators
to base decisions on evidence, ensuring the effectiveness
of interventions.

(d) Sustainability in health improvements: the proposed model
supports long-term health benefits by fostering active lifestyles
that continue beyond the classroom.

(e) Equitable access to health resources: the approach
ensures that PE programs cater to all students,
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including those from underserved communities or with
physical limitations.

(f) Alignment with public health goals: by focusing on
preventive measures, the framework contributes to national
and global health objectives aimed at reducing the burden of
chronic diseases.

5.5 Limitations and future directions

While the proposed model demonstrates strong predictive
performance, it still suffers from several limitations.

• First, the dataset used for model training, though
comprehensive, may not fully represent diverse global
populations. The study primarily focuses on data from
structured PE programs, which may not generalize to
regions with different educational policies, cultural attitudes
toward physical activity, or resource constraints. Future
research should extend datasets to include underrepresented
populations, cultural variables, and environmental factors to
improve model robustness and generalizability.

• Second, the current model does not explicitly account for
socio-cultural influences on physical activity engagement.
Factors such as gender norms, traditional exercise practices,
and regional accessibility to sports facilities can significantly
impact student participation in PE. Future studies should
integrate cultural and behavioral variables into the model
to enhance its adaptability across different demographic
groups (5).

• Third, while the model optimizes PE schedules based on
historical fitness data, it does not incorporate real-time
adaptive mechanisms. A promising direction for future
research is the development of dynamic feedback loops that
adjust PE schedules based on student engagement levels,
real-time performance tracking, and wearable fitness data.
Reinforcement learning approaches could be used to ensure
continuous optimization of physical activity plans (42, 43).

• Fourth, the reliance on structured PE programs may limit
applicability in informal or home-based exercise settings. As
hybrid and remote learning environments continue to evolve,
future work could explore home-based PE interventions,
using mobile applications and virtual coaching to provide
adaptive exercise recommendations personalized to individual
student needs.

Despite these limitations, this study establishes a robust
framework for evidence-based PE scheduling, offering actionable
insights for educators, policymakers, and researchers. The
proposed DL-based scheduling model can be deployed as a
decision-support tool in school systems and health departments
to guide the planning of adaptive PE programs. It could
be integrated into school health dashboards, community
fitness initiatives, or mobile platforms to offer real-time
activity recommendations, fitness tracking, and personalized
scheduling strategies. Policymakers could also utilize the model
to inform policy adjustments aimed at reducing disparities in

physical activity access and outcomes among students from
diverse backgrounds.

6 Conclusion

This study introduced a DL model that optimized PE schedules
to maximize long-term health benefits. The proposed model
accurately predicted improvements in fitness scores. Therefore,
the proposed model can effectively capture complex relationships
between PE schedules and health outcomes. Compared to state-
of-the-art models, the proposed approach achieved significant
improvements in predictive accuracy. This was evidenced by
reductions inMSE andMAE and higher R2 values by 1.35%, 1.18%,
and 1.22%, respectively. The findings underscored the importance
of data-driven approaches in designing PE schedules that met the
diverse needs of the students. This ultimately promoted healthier
and more active lifestyles.
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