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Background: A nosocomial outbreak of carbapenem-resistant Klebsiella 
pneumoniae (CRKP) occurred in the 20-bed Respiratory Intensive Care Unit 
(RICU) of a tertiary teaching hospital during the COVID-19 pandemic (December 
2022–February 2023). The outbreak was ultimately mitigated through 
multimodal infection control interventions aligned with WHO multidrug-
resistant organism (MDRO) management guidelines.

Methods: Following index case identification on 10 December 2022, a 
multidisciplinary outbreak response team implemented comprehensive control 
measures: Immediate geographic cohorting of CRKP-positive patients with 
dedicated staff; Enhanced contact precautions including daily chlorhexidine 
bathing; Tri-daily environmental decontamination using sporicidal agents; 
Mandatory hand hygiene audits with real-time feedback; Active surveillance 
through weekly rectal swabs for all RICU admissions. Environmental monitoring 
encompassed 120 high-touch surfaces sampled weekly.

Results: Among 42 laboratory-confirmed CRKP cases, 85.7% (n = 36) were 
identified through clinical specimens and 14.3% (n = 6) via active surveillance. 
Post-outbreak surveillance revealed two imported CRKP cases detected through 
admission screening during the three-month follow-up period, both contained 
without secondary transmission. The increasing patient volume, prolonged use 
of personal protective equipment (PPE), and influx of new healthcare workers 
heightened the risk of CRKP transmission. Effective administrative guidance 
on nosocomial infections, behavioral control, active surveillance culture, 
environmental cleanliness and antimicrobial management are essential to 
prevent outbreak.

Conclusion: This outbreak demonstrates the viability of containing CRKP 
transmission in resource-constrained pandemic settings through: rigorous 
adherence to contact precautions; prospective CRE active surveillance cultures. 
It is also need to implement antimicrobial stewardship programs in order to 
reduce the occurrence of microbial resistance.
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Introduction

The escalating global prevalence of antimicrobial resistance 
(AMR) has been classified by the World Health Organization as a 
critical public health emergency requiring coordinated international 
action (1). Klebsiella pneumoniae  – a Gram-negative 
Enterobacteriaceae species  – demonstrates particular clinical 
significance due to its propensity to cause nosocomial pneumonia, 
bloodstream infections, and complicated intra-abdominal syndromes. 
Carbapenems, historically considered the final therapeutic option for 
Gram-negative infections, have seen their efficacy undermined by the 
rapid global dissemination of carbapenem-resistant K. pneumoniae 
(CRKP) clones (2, 3). According to the data from the Institute for 
Clinical and Laboratory Standards, CRKP are all isolates of Klebsiella 
pneumoniae and are resistant to any carbapenem drugs: Imipenem, or 
ertapenem. CRKP was resistant to most of the currently available 
antibiotics, posing a huge threat to human health (4). Surveillance 
data from the China Antimicrobial Surveillance Network (CHINET) 
reveal alarming resistance trends: imipenem resistance rates in 
K. pneumoniae isolates surged from 4.9% (2009) to 20.4% (2022), with 
meropenem resistance paralleling this trajectory (4.8 to 21.9%)1. In 
2020, the rate of carbapenem resistance for K. pneumoniae isolates was 
exceeding 50% in parts of the Europe and Eastern Mediterranean (5). 
A recent meta-analysis shows that the incidence rate of CRKP 
colonization worldwide ranges from 2 to 73%, and the total incidence 
rate is 22.3% (6). CRKP infections are characterized by limited 
therapeutic options and substantial mortality burdens, demonstrating 
28-day attributable mortality rates of 30–70% across multiple 
epidemiological studies (7).

The CRKP’s capacity for prolonged environmental persistence 
(≥12 months on dry surfaces) facilitates nosocomial transmission, 
particularly in critical care settings (8). Molecular epidemiological 
investigations identify two primary transmission pathway: direct 
patient-to-patient spread via healthcare worker hand carriage 
[accounting for 68% of transmissions in ICU settings and 
environmental reservoir-mediated infections (9, 10)]. Independent 
risk factors for CRKP acquisition include prolonged ICU stays, 
invasive device utilization, and cumulative antibiotic exposure 
exceeding 14 days (11).

The COVID-19 pandemic has exacerbated AMR progression 
through multifactorial mechanisms: inappropriate antimicrobial 
prescribing rates exceeding 70% in COVID-19 management; PPE 
shortages compromising standard infection control practices; immune 
dysregulation in critically ill patients increasing vulnerability to 
MDRO colonization (12–16).

This outbreak investigation details the epidemiological and 
molecular characteristics of a CRKP cluster (n = 42 cases) within the 
RICU of a Chongqing tertiary teaching hospital during the Omicron 
variant surge (December 2022–February 2023). We  analyze the 
operational challenges of maintaining infection prevention protocols 
under pandemic resource constraints, evaluate the effectiveness of 
implemented containment strategies (including spatial cohorting and 
hydrogen peroxide vapor decontamination), and propose 

1 http://chinets.com/Data/GermYear

evidence-based recommendations for mitigating future MDRO 
outbreaks in post-pandemic critical care environments.

Methods

Study setting

The study was conducted at a 3,200-bed tertiary teaching hospital 
in Southwest China. The outbreak epicenter was the Respiratory 
Intensive Care Unit (RICU), comprising 2 double-occupancy 
isolation rooms and a 16-bed open ward. During the COVID-19 
pandemic period, this unit functioned as a designated critical care 
area for managing COVID-19 patients requiring mechanical 
ventilation. All healthcare workers adhered to enhanced PPE 
protocols including N95 respirators, gloves, and disposable gowns, 
with mandatory competency assessments conducted through 
simulated donning/doffing procedures.

Surveillance and microbiological methods

For patients presenting clinically suspected infections, 
microbiological analysis was performed on blood, sputum, and 
bronchoalveolar lavage fluid (BALF) specimens following 
standardized collection protocols. Asymptomatic admissions 
underwent active surveillance through rectal swab screening for 
CRKP within 24 h of admission. Thereafter, reexaminations were 
conducted once a week during hospitalization until the patients were 
discharged or CRKP infection occurred. Bacterial identification and 
antimicrobial susceptibility testing were performed using the VITEK 
2 Compact system (bioMérieux, France) with GN-ID cards. 
Carbapenemase production was phenotypically confirmed through 
the modified carbapenem inactivation method (mCIM), with 
ertapenem (ETP), imipenem (IPM), and meropenem (MEM) 
minimum inhibitory concentrations (MICs) determined via CLSI-
approved broth microdilution (CLSI M100-Ed32, 2022) using 
Escherichia coli ATCC 25922 as the quality control strain.

Due to pandemic-related supply chain disruptions, molecular 
characterization (including PFGE, whole-genome sequencing, and 
resistance gene PCR amplification) could not be performed on CRKP 
isolates, limiting phylogenetic analysis (17).

Environmental surveillance encompassed weekly sampling of: (1) 
healthcare worker hand surfaces (n = 20 random samples/month) 
using neutralizer-containing transport media; (2) high-touch surfaces 
in patient zones (bed rails, monitors, ventilator interfaces, oxygen 
regulators) using pre-moistened sterile swabs (n = 100 random 
samples/month). According to “Regulation of disinfection technique 
in healthcare settings” (18), common nutrient AGAR plates were used 
for culture. After the suspicious colonies were isolated, the VITEK2 
Compact system (bioMérieux, France) was used for 
strain determination.

Ethics statement

The Institutional Review Board at The Frist Affiliated Hospital of 
Chongqing Medical University approved the present study. The ethics 
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committee granted an exemption for informed consent given the 
retrospective nature of infection control quality improvement data.

Statistical analysis

Data were analyzed using SPSS software (version 22.0; IBM Corp., 
Armonk, NY, United States). Categorical variables are presented as 
number (n) with percentage (%). Chi-square test were used to evaluate 
the data. p < 0.05 was considered statistically significant.

Results

Outbreak description

The index case of the outbreak involved an 88-year-old male 
transferred to the Respiratory Intensive Care Unit (RICU) on 10 
December 2022 with hospital-acquired pneumonia from an external 
facility. Initial sputum culture obtained at admission revealed CRKP 
through automated broth microdilution testing 5 days post-collection. 
Immediate implementation of contact precautions (single-room 
isolation with dedicated care team) occurred upon microbiological 
confirmation. Subsequent bronchoalveolar lavage fluid (BALF) 
analysis from a patient hospitalized since 25 October 2022 
demonstrated identical antimicrobial resistance patterns, confirming 
nosocomial transmission within 48 h of the index case identification.

Following these two initial CRKP identifications, enhanced 
infection control measures were instituted including: (1) twice-daily 
chlorhexidine environmental decontamination protocols; (2) 
cohorting of colonized patients; (3) implementation of dedicated 
medical equipment for CRKP-positive cases. Despite these 
interventions, surveillance cultures from two additional patients’ 
respiratory specimens (sputum/BALF) yielded CRKP with matching 
resistance profiles 8 days post-intervention initiation. This prompted 
escalation of control measures: (1) mandatory competency-based 
hand hygiene training for all RICU staff; (2) spatial segregation of 
CRKP-positive patients into separate zones; (3) twice-weekly high-
touch surface surveillance cultures.

Continuous oversight by hospital infection prevention specialists 
included real-time observation of 1,284 hand hygiene opportunities 
by manual log (improvement from 58 to 92% compliance, p < 0.001). 
However, epidemiological surveillance from December 2022 to 
January 2023 identified 32 laboratory-confirmed CRKP cases through 
systematic screening of respiratory specimens, blood cultures, and 
rectal swabs. Concurrent environmental sampling detected CRKP 
contamination at multiple critical sites: handwashing sink surfaces 
(45% positivity, 9/20 samples), staff uniforms (30%, 6/20), mobile 
devices (15%, 3/20), and treatment trays (5%, 1/20). Persistent CRKP 
detection despite multimodal interventions revealed substantial gaps 
in environmental disinfection efficacy and equipment sterilization 
protocols, particularly highlighting contamination persistence in high 
moisture areas like handwashing sink surfaces.

In February 2023, following persistent detection of CRKP, the 
Hospital Infection Control Department and RICU conducted a joint 
evaluation of infection prevention protocols. This collaborative 
analysis identified critical gaps in existing control measures, prompting 
implementation of enhanced multimodal interventions. Geographic 

cohorting was strictly enforced, with all CRKP-positive patients 
isolated in designated zones staffed by dedicated healthcare teams. 
Medical equipment including glucometers, portable radiography 
systems, mechanical ventilators, and continuous renal replacement 
therapy (CRRT) devices were designated for exclusive use within the 
CRKP cohort, with rigorous traffic control protocols restricting 
equipment movement and mandating terminal disinfection between 
patients. Environmental decontamination was intensified through 
24/7 deployment of specialized cleaning teams performing hourly 
high-touch surface disinfection and tri-daily chlorinated (500 ppm) 
wipe-downs of all patient care areas. Quality-controlled verification of 
cleaning efficacy was implemented using adenosine triphosphate 
bioluminescence monitoring. On February 15, a unit-wide shutdown 
enabled terminal disinfection utilizing hydrogen peroxide vapor 
(HPV) technology for airspace decontamination, complemented by 
sporicidal surface treatment and complete curtain replacement. Post-
intervention environmental surveillance on February 16 confirmed 
eradication of residual contamination (all environmental cultures 
returned negative results). Subsequent monitoring revealed complete 
containment with no new CRKP acquisitions detected throughout the 
remaining surveillance period, demonstrating a statistically significant 
reduction in transmission rates compared to pre-intervention baseline 
data. The cohort ultimately included 11 laboratory-confirmed CRKP 
cases with no secondary transmissions observed.

During the three-month surveillance period from March 1st to 
June 30th, two cases of CRKP colonization were identified through 
active surveillance cultures upon hospital admission. Both cases were 
promptly placed under contact isolation protocols, successfully 
preventing secondary transmission within the healthcare facility.

Figure 1 chronologically illustrates the CPKP outbreak progression 
in the Respiratory Intensive Care Unit (RICU), with detailed 
epidemiological characteristics of the 42 affected patients presented in 
Supplementary Table S1. Comparative analysis in Table 1 demonstrates 
a statistically significant reduction in CRKP infection rates when 
comparing the epidemic phase with the 3-month post-intervention 
period, indicating the effectiveness of implemented control measures.

Microbiological investigations

Antimicrobial susceptibility testing of carbapenemase-producing 
K. pneumoniae (CPKP) strains isolated from the 42 patients revealed 
universal resistance to multiple antibiotic classes, with susceptibility 
retained only to amikacin and gentamicin. All strains tested positive 
for class A carbapenemase production, confirming their enzymatic 
resistance mechanism (Supplementary Table S2). Environmental 
surveillance during the outbreak further identified CPKP 
contamination across high-touch surfaces, including bedside tables, 
bed rails, instrument buttons, treatment trays, blood glucose meters, 
and electrocardiogram equipment. Notably, CPKP was also detected 
on the hands of cleaning staff, implicating healthcare personnel and 
environmental reservoirs as critical vectors in transmission (Table 2).

Discussion

Multidrug-resistant organisms (MDROs) infections, particularly 
those caused by carbapenem-resistant K. pneumoniae (CRKP), 
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represent a significant challenge in healthcare settings due to their 
limited treatment options and substantial public health implications. 
CRKP, recognized as one of the most critical MDRO pathogens, is 
associated with markedly worse clinical outcomes. Studies indicate 
that patients with CRKP infections experience prolonged 
hospitalization, with an average increase of 15.8 days compared to 
non-CRKP cases. Furthermore, CRKP infections are linked to a 
mortality rate approximately 2.17 times higher than infections caused 
by non-resistant strains, underscoring the urgent need for targeted 
interventions to mitigate its impact (19).

This study investigated a CRKP outbreak involving 42 cases in a 
tertiary hospital in Chongqing, China. While conventional wisdom 
posits that enhanced infection control measures during the 

COVID-19 pandemic would suppress multidrug-resistant organism 
(MDRO) transmission, our findings align with global reports of 
paradoxical MDRO surges during this period (20, 21). The 
contributing factors are multifaceted: firstly, pandemic-driven 
human resource strain. The abrupt surge of COVID-19 patients 
necessitated redeployment of healthcare staff, including personnel 
lacking expertise in infection prevention protocols, to high-risk 
units such as isolation wards and intensive care units (ICUs). This 
disruption likely compromised adherence to MDRO containment 
practices (22). Also, the reduction in human resources has led to a 
decrease in the supervision of infection control measures. Secondly, 
pandemic-driven infection control lapses. An overemphasis on 
COVID-19-specific precautions—such as prioritizing glove use over 

FIGURE 1

Epidemic curve of CRKP outbreak in RICU. Carbapenem-resistant Klebsiella pneumoniae detection time of 42 patients.

TABLE 1 Temporal comparison of CRKP infection rates among RICU hospitalized patients: December 2022 to June 2023.

Period Total inpatients CRKP cases Infection rate (%) χ2 p

Dec 1, 2022–Feb 28, 2023 118 42 35.59 47.847 <0.001

Mar 1, 2023–Jun 30, 2023 127 2 1.57

TABLE 2 Positive results of environmental and hand hygiene monitoring in the RICU from December 2022 to March 2023.

Environmental and hand hygiene 
samples

Dec 2022 (n/N,%) Jan 2023 (n/N,%) Feb 2023 (n/N,%) Mar 2023 (n/N,%)

Hand hygiene 0/20,0 2/20,10 2/20,10 0/20,0

Handwashing sink surfaces 2/20,10 9/20,45 6/20,30 0/20,0

Staff uniforms 0/20,0 6/20,30 4/20,20 0/20,0

Mobile devices* 0/20,0 3/20,15 5/20,25 0/20,0

Bedside tables and bed rails 0/20,0 2/20,10 4/20,20 0/20,0

Treatment trays 0/20,0 1/20,5 2/20,10 0/20,0

*Mobile devices include electrocardiogram monitors, blood glucose meters, blood pressure monitors, etc.
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hand hygiene—may have inadvertently reduced compliance with 
fundamental infection control measures (23, 24). For instance, 
improper or prolonged use of personal protective equipment (PPE) 
without concurrent environmental hygiene protocols created 
ambiguities in maintaining sterile patient environments. PPE, while 
protecting healthcare workers, fails to prevent MDRO colonization 
or transmission to patients if environmental disinfection is 
neglected. Concurrently, PPE shortages forced facilities to ration or 
reuse supplies, further escalating cross-contamination risks (25, 26). 
Thirdly, antibiotic misuse related to the COVID-19 pandemic. The 
high antibiotic selection pressure due to the high proportion of 
patients with COVID-19 infection, especially those with severe 
illness, who are empirical using broad-spectrum antibiotics, 
contributes to the generation of MDROs (27). Rawson et al. found 
that up to 72% of COVID-19 patients were given broad-spectrum 
antibiotics (28). The near-universal empirical use of broad-spectrum 
antibiotics in our cohort (41/42 patients) highlights a critical 
vulnerability. Such practices not only fuel resistance but also obscure 
the clinical distinction between viral and bacterial infections, 
complicating outbreak management.

Environmental disinfection and infrastructure deficiencies. 
While our outbreak shares similarities with global MDROs trends—
such as staff redeployment, lapses in routine infection control, and 
antibiotic overuse—distinct differences emerge. For instance, in 
European hospitals, CRKP outbreaks during the pandemic were 
frequently linked to overwhelmed intensive care units (ICUs) and 
prolonged patient stays (29). In contrast, our study identified 
environmental reservoirs (e.g., sinks, medical equipment) and 
healthcare worker-mediated transmission as primary drivers, a 
pattern more commonly reported in resource-limited settings where 
infrastructure maintenance lags. Epidemiological investigations have 
identified multiple potential sources of infection during multidrug-
resistant organism (MDRO) outbreaks, including colonized patients, 
contaminated hospital environments (e.g., sinks, toilets), and 
healthcare workers acting as transient vectors (30–32). During such 
outbreaks, resistant pathogens frequently colonize high-touch 
surfaces near patient beds and medical equipment. Notably, certain 
resilient strains, including CRKP, can persist on dry surfaces for 
months, facilitating persistent environmental reservoirs (33–36). 
Transmission dynamics are further compounded by healthcare 
workers’ roles as carriers, with studies demonstrating that drug-
resistant bacteria predominantly spread via contaminated hands, 
attire, or medical devices (37).

In this outbreak, the spatial separation of the first two patients’ 
beds—coupled with the detection of CRKP on environmental 
surfaces (e.g., bed rails, sinks), healthcare workers’ hands, and 
medical instruments (e.g., electrocardiogram machines)—strongly 
implicates healthcare personnel or environmental contamination as 
key transmission routes. Genotypic and phenotypic analyses of 
bacterial resistance profiles further confirmed epidemiological 
linkages between patient isolates and environmental samples, 
definitively classifying this event as a nosocomial outbreak. Following 
the implementation of stringent infection control measures—
including enhanced environmental disinfection, strict hand hygiene 
protocols, and contact precautions—transmission was effectively 
curtailed, with no subsequent CRKP cases detected in patients or 
environmental screenings.

The detection rate of CRKP in medical institutions has reached 
almost 22% in China. Nosocomial infection outbreaks that can 
spread rapidly and cause serious consequences if not actively 
controlled after detection. Therefore, strict infection management 
measures, such as active surveillance and isolation of positive 
colonized patients, are required to prevent and respond to the 
spread of drug-resistant bacteria in hospitals, especially in the 
ICU. To mitigate future outbreaks, a dual focus on active 
surveillance and antimicrobial stewardship is imperative. First, 
proactive CRKP screening, particularly in high-risk populations 
(e.g., ICU admissions, immunocompromised patients), must 
be prioritized. Studies demonstrate that active surveillance cultures 
(ASCs) reduce CRKP transmission by 40–60% when combined with 
preemptive isolation (38). However, currently in China, ASC 
implementation remains limited due to cost concerns, leaving 
facilities vulnerable to undetected colonization. But according to a 
research report from Maryland, the implementation of a statewide 
CRE active surveillance and registry reduced annual CRE infections 
by 6.3% and estimated to save $572,000 statewide in averted 
infections per year (39). We  advocate for national guidelines 
mandating ASCs in high-risk units, as seen in Italy, early detection 
and isolation have effectively reduced the spread of CRKP in ICUs 
(40). Second, antimicrobial stewardship programs (ASPs) must 
address the pervasive use of broad-spectrum antibiotics. In our 
cohort, all patients received such agents, mirroring global trends 
that most COVID-19 patients have been prescribed unnecessary 
antibiotics (41, 42). ASPs incorporating real-time prescribing audits 
and clinician education have proven effective in reducing 
inappropriate antibiotic use, thereby lowering selection pressure for 
MDROs (43, 44). Following the pandemic, our institution has 
implemented enhanced antimicrobial stewardship measures 
through a multidisciplinary ASP framework. As a core intervention, 
clinical pharmacists now conduct prospective audits of all 
antimicrobial prescriptions to ensure adherence to evidence-based 
prescribing protocols. Notably, the prescription of restricted 
antimicrobial agents (particularly carbapenems and extended-
spectrum antibiotics) by non-infectious diseases specialists requires 
prior authorization following a comprehensive assessment. This 
authorization process mandates collaborative evaluation by either 
a board-certified infectious diseases physician or an antimicrobial 
stewardship clinical pharmacist, who verify the clinical necessity 
through systematic review of microbial culture results, 
inflammatory markers, and clinical symptom progression. This 
tiered authorization system aims to optimize clinical outcomes 
while mitigating antimicrobial resistance through appropriate 
spectrum targeting.

Conclusion

The interplay of pandemic-related disruptions and preexisting 
gaps in infection control fueled this CRKP outbreak. While short-term 
measures (e.g., contact precautions, staff training) successfully 
contained transmission, sustained resilience demands actionable 
reforms. Specific recommendations for future outbreaks include: (1) 
mandatory admission screening protocols for high-risk populations 
(e.g., ICU transfers, immunocompromised patients) using rapid 
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PCR-based assays to enable early isolation; (2) strict enforcement of 
antibiotic stewardship programs (ASPs), including preauthorization 
for carbapenems and real-time feedback on prescribing patterns; (3) 
standardized environmental monitoring to validate cleaning efficacy 
in critical care units. By institutionalizing such targeted strategies, 
healthcare systems can preempt transmission chains and mitigate the 
dual threat of MDROs in both clinical and community settings.
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