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Legal innovations for balancing
environmental protection and
public health in urban polluted
areas

Jinglin Zhao* and Ruolin Zhang

Law School, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Introduction: Balancing environmental protection with public health in urban

polluted areas presents significant governance and legal challenges. Traditional

regulatory approaches often operate in silos, failing to integrate environmental

sustainability with health policies, leading to ine�ciencies and inequitable

outcomes.

Methods: This study introduces the Resilient Ecosystem Management

Framework (REMF), an interdisciplinary approach that combines legal

innovations, adaptive governance mechanisms, and data-driven environmental

health strategies. It critically analyzes the limitations of existing legal frameworks

in addressing urban pollution and associated health risks. REMF is developed by

integrating adaptive legal instruments, participatory governance, and real-time

environmental monitoring. Case studies and quantitative modeling are applied

to evaluate the framework’s e�ectiveness in urban environments.

Results: The findings demonstrate that REMF enhances policy coordination,

enables more e�ective regulatory enforcement, and improves environmental

and health outcomes by leveraging legal adaptability and technological

advancements. Real-time environmental data and predictive analytics allow for

dynamic adjustments to legal thresholds, ensuring responsive and equitable

governance.

Discussion: Moreover, the framework facilitates active stakeholder engagement,

ensuring that vulnerable populations benefit from pollution mitigation e�orts.

This research provides a scalable and replicable legal model that aligns

environmental law with public health imperatives, o�ering practical insights for

policymakers, urban planners, and environmental regulators. By demonstrating

how legal frameworks can evolve to address contemporary urban challenges,

this study contributes to the broader discourse on sustainable urban governance

and environmental justice.

KEYWORDS

urban pollution, environmental protection, public health, legal frameworks, adaptive

interventions, resilience, governance, equity

1 Introduction

Urban areas worldwide face the dual challenge of environmental degradation and

public health crises, primarily driven by air pollution, water contamination, and industrial

waste (1). Balancing environmental protection and public health requires innovative legal

frameworks that address both issues without compromising economic development and

urban growth (2). Traditional legal mechanisms often focus on either environmental

protection or public health, leading to fragmented policies that fail to address the

intersection of the two domains comprehensively (3). This disconnect not only limits the

efficacy of such frameworks but also exacerbates the vulnerability of urban populations

to pollution-related diseases and environmental degradation (4). Legal innovations in this
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area aim to bridge this gap by creating integrated frameworks

that align environmental sustainability with public health priorities

(5). Such frameworks can promote long-term urban resilience by

ensuring cleaner environments while simultaneously safeguarding

human health through enforceable regulations and adaptive

governance mechanisms.

Early legal approaches to environmental protection in urban

polluted areas relied on command-and-control regulations (6).

These included prescriptive standards for pollutant emissions,

mandatory environmental impact assessments (EIAs), and the

establishment of protected zones to limit industrial encroachment

on residential areas (7). Although these laws laid the foundation

for addressing environmental concerns, they often failed to account

for their impact on public health (8). emission caps for industries

were based on ecological thresholds rather than health-related

outcomes, leading to persistent respiratory and cardiovascular

health issues among urban populations (9). these rigid frameworks

lacked flexibility, making it challenging to adapt to evolving

environmental and public health challenges (10). The inefficiency

of these traditional methods highlighted the need formore dynamic

and interdisciplinary legal approaches that integrate environmental

and health considerations.

In response to the limitations of command-and-control

approaches, market-based mechanisms and participatory legal

frameworks emerged as a second wave of innovations (11). These

included tools such as pollution trading schemes, green taxes,

and public-private partnerships (PPPs) aimed at incentivizing

businesses and urban stakeholders to adopt sustainable practices

(12). Cap-and-trade systems allowed polluting entities to buy

and sell emission allowances, promoting cost-effective pollution

reduction (13). participatory mechanisms, such as citizen-

led lawsuits and community involvement in urban planning,

increased public accountability and transparency (14). While

these methods introduced economic incentives and democratized

environmental decision-making, they often struggled to deliver

equitable outcomes (15). Vulnerable populations in highly polluted

urban areas frequently lacked the resources to participate in these

mechanisms, resulting in an unequal distribution of environmental

and health benefits. market-based tools sometimes prioritized

economic efficiency over health outcomes, further underscoring the

need for holistic legal solutions.

The most recent wave of legal innovations has focused

on integrated frameworks that explicitly link environmental

protection with public health (16). These frameworks leverage

advancements in technology, data analytics, and collaborative

governance to create adaptive legal mechanisms (17). smart cities

have introduced real-time air quality monitoring systems linked

to legal thresholds for pollution control, enabling governments

to impose immediate penalties on violators (18). health impact

assessments (HIAs) are increasingly being integrated into

environmental policymaking, ensuring that urban development

projects are evaluated not only for their ecological impact but

also for their public health implications (19). Another example

is the use of legal tools to promote nature-based solutions,

such as urban green spaces and wetland restoration, which

simultaneously mitigate pollution and enhance public health by

reducing heat island effects and improving mental well-being.

these innovations face challenges related to enforcement,

data privacy, and the unequal distribution of technological

infrastructure in urban areas, which can perpetuate existing

disparities (20).

Given the limitations of existing legal frameworks, we propose

a novel legal model for balancing environmental protection and

public health in urban polluted areas. This model integrates

adaptive legal instruments, participatory governance, and real-time

data-driven approaches to create a comprehensive solution.

By incorporating health-focused environmental standards,

community engagement, and technology-enabled monitoring

systems, this framework ensures equitable and effective outcomes

that address both environmental and public health concerns.

• Introduces a legal framework that combines environmental

and public health standards with adaptive legal instruments

and participatory governance.

• Ensures vulnerable populations in urban areas benefit

from the framework through community involvement and

equitable distribution of resources.

• Utilizes real-time monitoring and data analytics to

enforce regulations and adapt policies to dynamic urban

challenges effectively.

2 Related work

2.1 Legal frameworks for environmental
health governance

Legal frameworks play a critical role in managing the

intersection of environmental protection and public health,

particularly in urban areas characterized by high levels of pollution

(21). Effective governance in this domain requires laws and

regulations that address the dual challenges of safeguarding

environmental resources and protecting vulnerable populations

from health risks. Over the years, various countries have adopted

innovative legal mechanisms that integrate environmental and

health considerations into urban policy-making (22). These

frameworks often encompass pollution control standards, land-use

planning, and public health monitoring systems. Environmental

health governance is increasingly guided by principles such as

the precautionary principle and the polluter-pays principle (23).

The precautionary principle emphasizes preventive measures

to avoid environmental degradation and health hazards, even

in the absence of scientific certainty (24). This principle has

been incorporated into international agreements like the Rio

Declaration on Environment and Development and domestic

legislation in several jurisdictions. the polluter-pays principle

assigns financial responsibility for pollution control to the

entities responsible for environmental harm, incentivizing

compliance with regulatory standards. Urban areas with high

industrial activity, such as those in developing countries, have

particularly benefited from these principles when integrated

into local governance structures. Emerging trends in this field

include the use of environmental health impact assessments

(EHIAs) to evaluate the implications of proposed urban
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development projects (25). Unlike traditional environmental

impact assessments, EHIAs explicitly consider public health

outcomes, providing a more comprehensive understanding

of how pollution affects human well-being. legal mandates

requiring cross-sectoral collaboration between environmental

agencies and public health departments have proven effective in

addressing complex challenges in urban settings (26). By aligning

goals and resources, these collaborative approaches ensure that

environmental protection measures also contribute to improved

health outcomes, creating a balanced strategy for sustainable urban

development (26).

2.2 Innovative legal instruments for
pollution mitigation

Addressing pollution in urban areas requires legal instruments

that go beyond traditional command-and-control regulations

(27). Innovative mechanisms such as market-based instruments,

public-private partnerships (PPPs), and technology mandates

have emerged as effective tools for mitigating pollution while

promoting public health (28). Market-based instruments, including

carbon pricing, emissions trading systems, and pollution taxes,

provide economic incentives for reducing environmental harm.

These tools encourage industries to adopt cleaner technologies

and minimize emissions, ultimately benefiting urban populations

exposed to air and water pollution. Public-private partnerships

have also gained traction as a means of addressing urban

pollution (29). These partnerships leverage the resources and

expertise of private entities to complement government efforts

in environmental protection (30). PPPs have been successfully

employed to develop green infrastructure projects, such as

urban forests and wastewater treatment facilities, which mitigate

pollution and enhance public health. Legal frameworks that

facilitate PPPs often include provisions for transparent contract

negotiation, risk-sharing, and performance monitoring to ensure

accountability and effectiveness. legal mandates for adopting

clean technologies have driven significant advancements in

pollution control (31). Examples include the enforcement of

vehicle emissions standards, the promotion of renewable energy

sources, and the phasing out of hazardous materials in industrial

processes. These mandates not only reduce pollution levels but

also create co-benefits for public health by decreasing exposure

to harmful substances. As urban areas face increasing pressure

to address climate change and environmental degradation, the

integration of such innovative legal instruments into urban policies

will be essential for balancing environmental protection and

health outcomes.

2.3 Community-centric legal approaches
to urban health

Community engagement is a cornerstone of effective legal

strategies for balancing environmental protection and public

health in urban areas (32). Recognizing the disproportionate

impact of pollution on marginalized communities, recent legal

innovations have emphasized the importance of participatory

governance and access to justice (33). Laws and policies that

empower communities to participate in environmental decision-

making not only enhance transparency and accountability but also

ensure that public health priorities are addressed in a socially

equitable manner. One significant legal innovation in this area

is the concept of environmental justice, which seeks to address

the unequal distribution of environmental risks and benefits (34).

Environmental justice frameworks often include provisions for

community involvement in the planning and implementation

of pollution control measures (35). some jurisdictions have

established community advisory boards and public consultation

requirements as part of their environmental governance processes.

These mechanisms enable residents to voice concerns, influence

policy decisions, and monitor compliance with environmental

and health standards. Access to justice is another critical

component of community-centric legal approaches (36). Legal

systems that provide communities with the ability to challenge

polluters and government agencies through administrative, civil,

or criminal proceedings have proven effective in addressing

environmental health disparities (37). citizen suits have been

instrumental in enforcing air and water quality standards in

urban areas with high levels of industrial pollution. Legal

aid services and public interest litigation further enhance

access to justice by removing financial and procedural barriers

for disadvantaged populations. The integration of traditional

knowledge and cultural values into legal frameworks also represents

a community-centric approach to urban health. In many cases,

indigenous and local communities possess valuable knowledge

about sustainable resource management and environmental

protection. Legal recognition of these perspectives not only

enriches urban governance but also strengthens community

resilience to environmental and health challenges. By adopting

participatory and inclusive legal strategies, urban areas can better

address the complex interplay between environmental protection

and public health.

Green credit policies have emerged as a key financial

mechanism to promote environmental sustainability while

influencing public health outcomes (38). These policies use

financial incentives, such as preferential loans and credit

constraints, to encourage businesses to adopt environmentally

friendly practices and reduce pollution. A growing body

of literature has examined the impact of green finance on

environmental improvements and its indirect effects on human

health. For instance, recent studies, including Green Credit Policy

and Residents’ Health: Quasi-Natural Experimental Evidence

from China, highlight how financial regulations can drive

pollution reduction and subsequently improve public health.

By imposing stricter credit access conditions on high-polluting

industries, green credit policies effectively reduce industrial

emissions, leading to improved air and water quality. Empirical

evidence suggests that regions implementing stringent green

credit regulations experience lower incidences of respiratory

diseases and cardiovascular conditions, demonstrating a clear

link between financial policy and health outcomes. While green

credit policies play a significant role in environmental governance,

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1557173
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhao and Zhang 10.3389/fpubh.2025.1557173

they have limitations. their effectiveness depends on enforcement

and financial institutions’ willingness to prioritize sustainability

over short-term profitability. these policies primarily target

industrial pollution sources, often neglecting urban pollution

from transportation, residential waste, and other non-industrial

sources that also contribute to public health risks. the unequal

distribution of green financing may lead to disparities, where

well-funded enterprises can adapt more easily than smaller

businesses, potentially exacerbating socio-economic inequalities.

In comparison, our study proposes the Resilient Ecosystem

Management Framework (REMF), which extends beyond financial

tools to integrate legal adaptability, participatory governance, and

real-time environmental monitoring. Unlike green credit policies,

which rely on indirect incentives, our framework directly aligns

legal interventions with public health objectives, ensuring a more

responsive and equitable approach. By incorporating real-time data

analysis and adaptive legal thresholds, REMF allows for continuous

adjustments in pollution control measures, whereas financial

policies like green credit often operate on longer policy cycles with

delayed impacts. by engaging multiple stakeholders–including

government agencies, businesses, and communities–our model

ensures that regulatory changes are inclusive and adaptable to

diverse urban environments.

3 Method

3.1 Overview

Environmental protection has become an urgent global

priority, demanding innovative strategies and interdisciplinary

approaches to mitigate the impact of human activities on

ecosystems. This subsection provides a comprehensive

overview of the methodologies and objectives driving our

work on environmental protection. we focus on integrating

data-driven models, advanced simulation frameworks, and

adaptive intervention strategies to address critical environmental

challenges such as pollution control, resource conservation, and

ecosystem restoration.

This paper is structured around three foundational

components, detailed in Preliminaries, Sustainable Environmental

Impact Model (SEIM), and Resilient Ecosystem Management

Framework (REMF). we present the Preliminaries, where

we formalize key problems in environmental protection by

introducing mathematical frameworks and systemic models to

represent environmental dynamics and stressors. This section sets

the foundation for understanding the complexity of environmental

processes and the need for targeted interventions. we introduce a

novel modeling approach, termed the Sustainable Environmental

Impact Model (SEIM), which leverages predictive analytics and

real-time data to simulate the effects of environmental stressors

and evaluate the outcomes of various mitigation strategies. In the

Resilient Ecosystem Management Framework (REMF), REMF

emphasizes aligning environmental policies with public health

goals through dynamic and interdisciplinary measures. REMF

leverages real-time environmental data, predictive analytics, and

participatory governance to create scalable solutions capable of

responding to the evolving challenges of urban ecosystems. It also

provides a pathway for promoting health equity by ensuring that

vulnerable populations benefit from pollution reduction measures.

3.2 Preliminaries

Environmental protection involves the design and

implementation of strategies to mitigate the adverse impacts

of human activity on ecosystems, conserve natural resources,

and ensure the sustainability of environmental systems. This

section formalizes the complex dynamics of environmental

systems through mathematical frameworks that capture the

interactions between anthropogenic activities, natural processes,

and environmental outcomes. These formulations serve as the

foundation for developing predictive models and intervention

strategies to address pressing environmental challenges.

Human activities such as industrial emissions, deforestation,

and agricultural practices exert significant pressure on the

environment. Let A(t) denote the vector of anthropogenic

activities, with elements Ak(t) representing the intensity of the

k-th activity. The impact of these activities on the environment

is modeled using a coupling matrix C, where Cij quantifies the

influence of activity Ai(t) on environmental indicator Ej(t):

E(t) = C · A(t)+N(t), (1)

where N(t) captures the contributions of natural processes such as

weather patterns and ecosystem resilience.

Pollution dynamics are critical to understanding

environmental degradation. Let P(x, y, t) represent the

pollutant concentration at spatial location (x, y) and time

t. The temporal evolution of P(x, y, t) is governed by the

advection-diffusion equation:

∂P(x, y, t)

∂t
+ v(x, y, t) · ∇P(x, y, t) = D∇2P(x, y, t)+ S(x, y, t)

− R(x, y, t), (2)

where: - v(x, y, t) is the velocity field (e.g., wind or water currents),

- D is the diffusion coefficient, - S(x, y, t) is the source term

representing pollutant emissions, - R(x, y, t) is the removal rate due

to natural or artificial processes.

Natural resource dynamics are modeled to evaluate the

sustainability of resource extraction and consumption. Let R(t)

denote the availability of a particular resource, which evolves

according to the balance between extraction E(t), natural

replenishment G(t), and degradation D(t):

dR(t)

dt
= G(t)− E(t)− D(t). (3)

For renewable resources, G(t) is often a logistic growth function:

G(t) = rR(t)

(

1−
R(t)

K

)

, (4)

where r is the intrinsic growth rate, and K is the carrying capacity

of the environment.

Ecosystem health and biodiversity are integral to

environmental stability. Biodiversity indices Bi(t) are modeled as
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functions of habitat quality Qh(t), population dynamics Ni(t), and

stress factors Si(t):

dBi(t)

dt
= f (Qh(t),Ni(t))− Si(t). (5)

Habitat quality Qh(t) is influenced by land use changes, L(t), and

conservation efforts, Ch(t):

Qh(t) = Q0
h − αL(t)+ βCh(t), (6)

where Q0
h
is the initial habitat quality, and α, β are scaling factors.

To mitigate environmental impacts, targeted interventions are

introduced. Let I(t) represent the vector of intervention efforts,

such as pollution control technologies, afforestation programs, and

renewable energy adoption. The adjusted environmental dynamics

are given by:

E(t) = C · A(t)−M · I(t)+N(t), (7)

where M is the mitigation efficiency matrix, with Mij quantifying

the effectiveness of intervention Ii(t) on indicator Ej(t).

Environmental protection often involves balancing multiple

objectives, such as reducing pollution, conserving resources, and

maintaining economic viability. Let O = {O1,O2, . . . ,Ok} denote

the set of objectives. The optimization problem is formulated as:

max
I(t)

F(O) =

k
∑

i=1

wiOi, (8)

subject to budget constraints
∑n

i=1 CiIi(t) ≤ B, where wi are

weights reflecting the priority of each objective, and B is the

total budget.

Combining the above components, the integrated model for

environmental protection is expressed as:

dE(t)

dt
= F(E(t),A(t), I(t),N(t)), (9)

where F encapsulates the coupled dynamics of environmental

indicators, anthropogenic activities, and mitigation strategies.

3.3 Sustainable environmental impact
model (SEIM)

address the multifaceted challenges of environmental

protection, we propose a novel modeling framework, termed the

Sustainable Environmental Impact Model (SEIM). SEIM integrates

data-driven predictions, dynamic system modeling, and multi-

scale environmental interactions to quantify the impacts of human

activities and guide mitigation strategies. This section introduces

the structure, components, andmathematical formulation of SEIM,

emphasizing its capacity to capture complex interdependencies

across environmental, anthropogenic, and systemic factors (as

shown in Figure 1).

3.3.1 Layered modeling framework with
interaction mapping

SEIM is designed to model environmental systems through

three interconnected layers. The Anthropogenic Activity Layer

represents human activities and their direct environmental

impacts. The Environmental Dynamics Layer models the

evolution of environmental indicators based on natural processes

and external stressors. The Mitigation and Adaptation Layer

simulates the effects of intervention strategies to reduce or offset

environmental damage.

Let the state of the environment at time t be represented

by the vector E(t), as defined in the preliminaries, while A(t)

denotes anthropogenic activities and I(t) intervention efforts.

SEIM uses a system of coupled differential equations to capture

the interactions between these layers. The influence of human

activities on environmental indicators is represented through a

linear mapping:

dE(t)

dt
= C · A(t), (10)

where C is the activity-to-impact matrix, as introduced earlier.

The elements of C, denoted Cij, quantify the sensitivity of

environmental indicator Ej(t) to activity Ai(t). industrial emissions

Aind(t) contribute to air pollutant concentrations P(t):

dP(t)

dt
= CP,indAind(t). (11)

To account for nonlinear interactions, C can be expanded to

include higher-order terms:

dE(t)

dt
= C · A(t)+ C

′ · A(t)⊗ A(t), (12)

where ⊗ denotes the outer product, and C
′ captures cross-

dependencies between activities.

Mitigation and adaptation efforts are included through an

additive term involving I(t):

dE(t)

dt
= C · A(t)+ C

′ · A(t)⊗ A(t)−M · I(t), (13)

where M is the mitigation matrix, whose elements Mkj represent

the effectiveness of intervention Ik(t) in reducing the stress on

environmental indicator Ej(t).

The evolution of anthropogenic activities is modeled as:

dA(t)

dt
= −K · A(t)+D · E(t), (14)

where K represents decay or regulation factors reducing activities

over time, and D captures feedback effects from environmental

degradation on human activities.

The intervention strategies are modeled through dynamic

adaptation, where:

dI(t)

dt
= N · E(t)− L · I(t), (15)

with N representing the responsiveness of interventions to

environmental states, and L being a decay matrix reflecting the

diminishing effect of interventions over time.
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FIGURE 1

Architecture of the Sustainable Environmental Impact Model (SEIM), illustrating dynamic weight adjustment, layered modeling framework, and

vision-language integration to quantify and mitigate environmental impacts.

The complete coupled system of the SEIM framework

integrates these components:

d

dt







E(t)

A(t)

I(t)






=







C 0 −M

D −K 0

N 0 −L






·







E(t)

A(t)

I(t)






+







C
′ · A(t)⊗ A(t)

0

0






.

(16)

This final equation captures the comprehensive dynamics of

the layered framework, including direct, nonlinear, and feedback

interactions between anthropogenic activities, environmental

dynamics, and mitigation efforts.

3.3.2 Dynamic environmental system modeling
Environmental indicators evolve under the combined influence

of anthropogenic activities, natural processes, and feedback

mechanisms. The dynamics are governed by a system of coupled

differential equations:

dE(t)

dt
= FE(E(t),A(t)), (17)

where FE encapsulates processes such as pollution dispersion,

resource depletion, and biodiversity loss. For a pollutant P(x, y, t),

SEIM incorporates the advection-diffusion equation:

∂P(x, y, t)

∂t
+ v(x, y, t) · ∇P(x, y, t) = D∇2P(x, y, t)+ S(x, y, t)

− R(x, y, t), (18)

where S(x, y, t) is the source term from anthropogenic emissions,

and R(x, y, t) represents the removal rate via natural or

artificial processes.

For renewable resources R(t), the model integrates extraction,

replenishment, and degradation:

dR(t)

dt
= rR(t)

(

1−
R(t)

K

)

− E(t)− D(t), (19)

where r is the intrinsic growth rate,K the carrying capacity, E(t) the

extraction rate, and D(t) the degradation rate. Biodiversity B(t) is

modeled as a function of habitat quality Qh(t), species populations

N(t), and stress factors S(t):

dB(t)

dt
= γQh(t)N(t)− δS(t), (20)

where γ and δ are scaling factors.

To simulate feedback mechanisms, the model includes an

environmental stress function SE(t), which reflects the cumulative

impact of anthropogenic activities and environmental degradation:

SE(t) =

∫ t

0
αA(t′)+ βE(t′) dt′, (21)

where α and β represent the contributions of anthropogenic

activities and environmental indicators to stress accumulation.
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The interaction between species population Ni(t) and

biodiversity is governed by a Lotka-Volterra-type equation:

dNi(t)

dt
= Ni(t)



ri −

n
∑

j=1

cijNj(t)



 − hi(t), (22)

where ri is the intrinsic growth rate of species i, cij are interspecies

competition coefficients, and hi(t) reflects anthropogenic impacts

on species i.

Carbon dynamics are modeled through the net flux C(t) in the

atmosphere, balancing emissions, absorption, and decay:

dC(t)

dt
= EC(t)− AC(t)− DC(t), (23)

where EC(t) is the emission rate, AC(t) is the absorption rate by

natural sinks, and DC(t) is the decay rate due to mitigation efforts.

Water quality W(t) is affected by pollutant inflows IP(t), self-

purification processes PW(t), and human interventionsMW(t):

dW(t)

dt
= −IP(t)+ PW(t)−MW(t), (24)

where PW(t) accounts for natural purification rates, and MW(t)

reflects mitigation efforts like wastewater treatment.

The full environmental state evolution is described by coupling

the indicators into a comprehensive system:

d

dt


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



FP

FR

FB
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FW















, (25)

where FP, FR, FB, FC , FW are functions encapsulating the respective

dynamics for pollutants, resources, biodiversity, carbon, and

water quality.

3.3.3 Adaptive mitigation and optimization
strategies

Intervention strategies, represented by I(t), modify the

dynamics of E(t) by reducing harmful impacts and enhancing

system resilience:

dE(t)

dt
= FE(E(t),A(t))−M · I(t), (26)

where M is the mitigation efficiency matrix, and Mij quantifies the

effectiveness of Ii(t) on Ej(t). SEIM incorporates real-time feedback

to dynamically adjust I(t):

I(t + 1) = I(t)+ η∇L, (27)

where η is the learning rate, and L is the loss function measuring

deviations from target environmental states E∗(t):

L = ‖E(t)− E
∗(t)‖2. (28)

To improve mitigation strategies, SEIM uses a feedback

mechanism where interventions are optimized based on their

observed impacts:

M(t + 1) = M(t)+ λ∇E(t), (29)

where λ is an adaptation rate, ensuring the mitigation efficiency

matrixM evolves dynamically to match real-world effectiveness.

SEIM employs predictive analytics to simulate future

environmental states under different scenarios:

Efuture(t) =

∫ t+1t

t
FE(E(τ ),A(τ ), I(τ ))dτ . (30)

Scenarios include “business-as-usual” (no intervention), “moderate

mitigation,” and “aggressive mitigation,” enabling stakeholders

to evaluate trade-offs between different strategies (as shown in

Figure 2).

To balance competing objectives such as economic growth,

pollution reduction, and biodiversity conservation, SEIM integrates

multi-objective optimization:

max
I(t)

F(O) =

n
∑

k=1

wkOk, (31)

subject to:

m
∑

i=1

CiIi(t) ≤ B, (32)

where wk are weights for objectives Ok, Ci the cost of intervention

Ii(t), and B the total budget.

The mitigation strategies are further constrained by

feasibility bounds that account for implementation capacity

and natural limits:

Imin
i ≤ Ii(t) ≤ Imax

i , (33)

where Imin
i and Imax

i define the lower and upper bounds of each

intervention effort Ii(t).

To assess the overall performance of intervention strategies,

SEIM introduces a cost-benefit ratio for each mitigation effort:

Ri(t) =
1Ei(t)

CiIi(t)
, (34)

where 1Ei(t) is the reduction in environmental harm achieved by

Ii(t), and Ci represents the associated cost.

The adaptive optimization process iteratively refines strategies

over time:

I(t + 1) = I(t)+ ξG(t), (35)

where ξ is the adjustment factor and G(t) represents the gradient

of the objective function with respect to the interventions, ensuring

convergence toward an optimal solution.
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FIGURE 2

Architecture illustrating adaptive mitigation and optimization strategies, featuring dynamic feedback loops, softmax-based weighting, projection

mechanisms, and multi-scale intervention adjustments for enhanced environmental impact mitigation.

3.4 Resilient ecosystem management
framework (REMF)

To operationalize the Sustainable Environmental Impact

Model (SEIM) and ensure the effective implementation of

environmental protection strategies, we propose the Resilient

Ecosystem Management Framework (REMF). This framework

combines predictive modeling, adaptive intervention design,

and community-driven approaches to mitigate environmental

degradation, enhance sustainability, and foster ecosystem

resilience. REMF emphasizes scalability, flexibility, and the

integration of technology-driven solutions to address complex

environmental challenges in diverse contexts (as shown in

Figure 3).

3.4.1 Adaptive and dynamic interventions
REMF employs adaptive strategies to mitigate environmental

impacts and enhance ecosystem resilience. Let I(t) represent

the vector of interventions at time t, categorized into three

primary types. Pollution Control Interventions (IP(t)), Resource

Management Interventions (IR(t)), and Biodiversity and Ecosystem

Protection Interventions (IB(t)). The overall intervention vector is

expressed as:

I(t) = IP(t)+ IR(t)+ IB(t). (36)

Pollution control measures are dynamically optimized based

on real-time pollutant dispersion models. To minimize pollutant

concentration P(x, y, t), the intervention IP(x, y, t) is designed

to satisfy:

∂P(x, y, t)

∂t
≤ ǫ, (37)

where ǫ is the permissible rate of pollutant change. The

intervention includes emission reductions Sred(x, y, t) and pollutant

removal strategies Renh(x, y, t), modeled as:

IP(x, y, t) = Sred(x, y, t)+ Renh(x, y, t). (38)

Resource management interventions aim to maintain resource

availability R(t) by balancing extraction E(t), replenishment G(t),

and degradation D(t). The intervention IR(t) is expressed as:

IR(t) = Genh(t)− Dmit(t), (39)

where Genh(t) represents enhanced replenishment efforts

(e.g., afforestation), and Dmit(t) denotes degradation

mitigation measures.

Biodiversity and ecosystem protection interventions focus on

habitat quality improvement Qh(t) and stress reduction Sred(t),

expressed as:

IB(t) = Qenh
h (t)− Sred(t), (40)

where Qenh
h

(t) represents habitat restoration efforts, and Sred(t)

reduces anthropogenic stress on ecosystems.

To allocate resources effectively, REMF uses a cost-effectiveness

function Ci(t) for each intervention type i:

Ci(t) =
1Ei(t)

Ci(t)
, (41)

where 1Ei(t) is the reduction in environmental harm achieved by

intervention i, and Ci(t) is the associated cost.

The total budget constraint for interventions is expressed as:

n
∑

i=1

Ci(t)Ii(t) ≤ B(t), (42)

where B(t) is the available budget at time t. This constraint ensures

that interventions are prioritized based on their cost-effectiveness.

To dynamically adjust interventions, REMF employs a feedback

mechanism based on the environmental deviation 1E(t) = E(t)−

E
∗(t), where E∗(t) is the target state. The adjustment rule is:

I(t + 1) = I(t)+ α∇L, (43)

where α is the adaptation rate, and L is the loss function

measuring deviation:

L = ‖E(t)− E
∗(t)‖2. (44)
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FIGURE 3

Diagram of the Resilient Ecosystem Management Framework (REMF), showcasing the integration of multi-source data, attention mechanisms, policy

modules, and dynamic feedback loops for adaptive intervention design and ecosystem resilience enhancement.

To predict the long-term impacts of interventions, REMF uses

a future state projection:

Efuture(t) =

∫ t+1t

t
FE(E(τ ),A(τ ), I(τ )) dτ . (45)

This projection enables scenario analysis for evaluating the

effectiveness of adaptive strategies.

3.4.2 Multi-scale integration of ecosystem
dynamics

Biodiversity and ecosystem protection interventions are

designed to enhance habitat quality, species protection, and

ecosystem monitoring. Let IB(t) represent these interventions,

expressed as:

IB(t) = HR(t)+ SP(t)+ EM(t), (46)

where HR(t), SP(t), and EM(t) denote habitat restoration, species

protection, and ecosystem monitoring efforts, respectively. These

interventions are optimized to maximize biodiversity indices B(t)

while minimizing stress factors S(t):

dB(t)

dt
= γQh(t)N(t)− δS(t)+ IB(t), (47)

where γ and δ are scaling factors, Qh(t) is habitat quality, and N(t)

represents species populations.

A key feature of REMF is its ability to incorporate real-

time feedback to refine interventions dynamically. Let Eobs(t) and

Epred(t) represent observed and predicted environmental states,

respectively. Feedback 1E(t) is computed as:

1E(t) = Eobs(t)− Epred(t). (48)

The intervention vector I(t) is updated iteratively to minimize

feedback discrepancies:

I(t + 1) = I(t)+ η∇L, (49)

where L = ‖1E(t)‖2 is the loss function, and η is the learning rate.

To further optimize biodiversity protection, REMF uses a

multi-scale integration model, capturing the interaction between

local habitats and regional ecosystems. The habitat quality Qh(t)

evolves according to:

dQh(t)

dt
= αHR(t)− βS(t), (50)

where α is the effectiveness of habitat restoration, and β quantifies

the impact of stress factors on habitat quality.

Species population dynamics Ni(t) for species i are modeled as:

dNi(t)

dt
= riNi(t)

(

1−
Ni(t)

Ki

)

− ciS(t)+ ρiSP(t), (51)

where ri is the intrinsic growth rate, Ki the carrying capacity, ci
the sensitivity to stress factors, and ρi the contribution of species

protection efforts.

Ecosystem monitoring EM(t) enhances system understanding

by reducing uncertainty U(t) in the model:

dU(t)

dt
= −λEM(t)+ ξ1E(t), (52)

where λ is the efficiency of monitoring efforts in reducing

uncertainty, and ξ captures the impact of feedback discrepancies.

REMF employs predictive modeling to forecast biodiversity

states Bfuture(t) over a time horizon 1t:

Bfuture(t) = B(t)+

∫ t+1t

t

(

γQh(τ )N(τ )− δS(τ )+ IB(τ )
)

dτ .

(53)
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To ensure interventions remain within practical limits,

constraints are imposed on intervention levels:

Imin
B ≤ IB(t) ≤ Imax

B , (54)

where Imin
B and Imax

B define the feasible range of

biodiversity interventions.

Resource allocation among habitat restoration, species

protection, and monitoring is optimized using a weighted

objective function:

max
HR ,SP ,EM

F = w1B(t)− w2CB(t), (55)

wherew1 andw2 are weights for biodiversity improvement B(t) and

intervention costs CB(t), respectively.

3.4.3 Stakeholder engagement and community
participation

Environmental management requires balancing competing

objectives, such as economic growth, pollution reduction, and

biodiversity conservation. REMF incorporates multi-objective

optimization to achieve this balance:

max
I(t)

F(O) =

n
∑

k=1

wkOk, (56)

subject to:

m
∑

i=1

CiIi(t) ≤ B, (57)

where wk are weights for objectives Ok, Ci the cost of intervention

Ii(t), and B the total budget. Each objective Ok may represent

distinct priorities, such as pollution reduction, biodiversity

improvement, or resource sustainability.

To ensure effective implementation, REMF integrates

stakeholder engagement through collaborative decision-making

platforms. The framework provides decision support tools to

policymakers, industries, and communities, enabling data-driven

and transparent decision-making processes. Community-

driven initiatives, such as citizen science programs and local

conservation projects, are incorporated to enhance participation

and accountability. Let Ceng(t) represent the level of community

engagement, which positively influences intervention effectiveness:

I(t) = Igov(t)+ Icom(t), (58)

where Igov(t) and Icom(t) denote government-led and community-

driven interventions, respectively (as shown in Figure 4).

The effectiveness of community participation is modeled

through a scaling factor φ(Ceng(t)) applied to interventions:

φ(Ceng(t)) = 1+ αCeng(t), (59)

where α represents the proportional increase in effectiveness due to

engagement. The adjusted intervention becomes:

Ĩ(t) = φ(Ceng(t)) · I(t). (60)

To promote equity, REMF ensures resource allocation accounts

for varying stakeholder needs. Let Rs(t) represent the resources

allocated to stakeholder s, constrained by the total available budget:

S
∑

s=1

Rs(t) ≤ B(t), (61)

where S is the number of stakeholders. The allocation Rs(t)

is optimized based on stakeholder contributions Ps(t) and

needs Ns(t):

Rs(t) = βs
Ps(t) · Ns(t)

∑S
j=1 Pj(t) · Nj(t)

, (62)

where βs is a fairness factor ensuring proportional distribution.

Stakeholder feedback is incorporated into REMF through a

dynamic adjustment of priorities:

wk(t + 1) = wk(t)+ ηk∇S(t), (63)

where S(t) is a satisfaction index derived from stakeholder

preferences, and ηk is the adaptation rate.

Community-driven interventions Icom(t) are further influenced

by awareness campaigns and participation levels Pcom(t):

Icom(t) = γcomPcom(t), (64)

where γcom represents the effectiveness of campaigns in mobilizing

local action.

The holistic integration of stakeholder engagement is

formalized in the complete intervention model:

I(t) = φ(Ceng(t)) ·
(

Igov(t)+ γcomPcom(t)
)

, (65)

ensuring a dynamic and equitable approach to balancing

environmental, economic, and social objectives.

4 Experimental setup

4.1 Dataset

The GBD Dataset (39) (Global Burden of Disease) is a

comprehensive resource providing global health metrics, including

mortality, morbidity, and risk factor data. It contains information

on more than 300 diseases and injuries across 195 countries,

segmented by age, gender, and region. This dataset is crucial

for studying the environmental, behavioral, and physiological

factors contributing to health disparities worldwide. Its rich

and granular data enable predictive modeling and analysis of

public health trends, facilitating data-driven policy-making. The

CIESIN Environmental Dataset (40), developed by the Center

for International Earth Science Information Network, integrates

geospatial data with socioeconomic and environmental indicators.

It includes detailed datasets on population density, land cover,

climate change, and air pollution. This dataset is extensively used

for analyzing the impact of environmental factors on human

health and ecosystems, as well as for modeling vulnerability to

climate-related risks. Its high spatial resolution and accessibility
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FIGURE 4

Process diagram illustrating stakeholder engagement and community participation, emphasizing upsampling, element-wise addition, and

concatenation mechanisms to integrate government-led and community-driven interventions for equitable and adaptive environmental

management.

across diverse geographic regions make it a valuable tool for

environmental health research. The EnviroAtlas Dataset (41) is

a comprehensive geospatial dataset that provides information on

ecosystem services, biodiversity, and environmental stressors in

the United States. It includes over 400 indicators covering air and

water quality, habitat connectivity, and human health outcomes.

The dataset is designed to support decision-making for sustainable

urban planning, conservation, and public health initiatives. Its

detailed data layers enable multidisciplinary analysis of the

relationships between environmental factors and community well-

being. The Sentinel-2 Dataset (42), a satellite imagery dataset from

the European Space Agency, offers high-resolution, multispectral

imagery for monitoring environmental and land-use changes. With

a spatial resolution of up to 10 meters and a revisit time of five days,

Sentinel-2 provides critical data on vegetation health, soil moisture,

and water bodies. This dataset is widely used in agriculture,

forestry, and climate monitoring, enabling the assessment of

environmental changes and their impacts over time. Its accessibility

and precision make it a cornerstone for Earth observation research

and applications.

4.2 Experimental details

The experiments were conducted on four datasets. GBD,

CIESIN Environmental, EnviroAtlas, and Sentinel-2, to evaluate

the effectiveness of the proposed model in environmental and

geospatial data analysis. Preprocessing steps were tailored to

each dataset to ensure the quality and relevance of input

data. All datasets were normalized to have zero mean and

unit variance to ensure consistency across features. For the

GBD Dataset, the data was preprocessed by imputing missing

values using a k-nearest neighbors (k-NN) method, followed

by feature scaling. The dataset was used to predict health

outcomes based on environmental and behavioral risk factors.

The model employed a multi-layer neural network with three

fully connected layers, each followed by batch normalization

and ReLU activation. The learning rate was set to 5 × 10−4,

and the Adam optimizer was used for training with a batch

size of 128. Training was conducted for 100 epochs, and early

stopping was implemented based on validation loss. For the

CIESIN Environmental Dataset, geospatial features, including

population density and climate indicators, were integrated using

spatial aggregation techniques. The dataset was segmented into

geographic grids to improve spatial modeling. A convolutional

neural network (CNN) with four convolutional layers and two

max-pooling layers was used to extract spatial patterns. The final

classification was performed using fully connected layers. Data

augmentation, including rotation and flipping, was applied to

improve model generalization. The model was trained using a

learning rate of 3 × 10−4 and a batch size of 64, optimized

using the AdamW optimizer. For the EnviroAtlas Dataset, over

400 environmental indicators were aggregated into categories

such as air quality, biodiversity, and ecosystem health. Feature

selection was performed using principal component analysis

(PCA) to reduce dimensionality. A transformer-based architecture

was implemented to handle the complexity of multi-indicator

data, with eight attention heads and a hidden size of 512.

The model was trained for 50 epochs with a batch size of 32

and a learning rate of 2 × 10−4. The Adam optimizer with

a weight decay of 1 × 10−5 was used, and fivefold cross-

validation was applied to ensure robustness. For the Sentinel-

2 Dataset, satellite imagery was preprocessed to remove noise

and correct atmospheric distortions. The images were resized

to 128 × 128 pixels and normalized across all spectral bands.

A deep convolutional neural network (DCNN) was used for

land-use and environmental change classification. The network

consisted of five convolutional layers followed by global average

pooling and fully connected layers. Data augmentation techniques,

including random cropping and brightness adjustments, were

employed to enhance the training process. The model was

trained with a learning rate of 1 × 10−4, using the RMSprop

optimizer and a batch size of 16 for 60 epochs. The evaluation

metrics for all datasets included Accuracy, Precision, Recall, F1

Score, and Mean Absolute Error (MAE), depending on the task.

Experiments were performed on an NVIDIA RTX 3090 GPU with

24GB of VRAM, and PyTorch was used as the primary deep

learning framework. Each experiment was repeated three times

to ensure stability, and the average performance was reported.

The proposed framework demonstrated consistent improvements

across all datasets, validating its effectiveness in environmental and

geospatial data analysis.
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4.3 Comparison with SOTA methods

To validate the effectiveness of our proposed framework,

we conducted a comprehensive comparison with state-of-the-

art (SOTA) methods on the GBD, CIESIN Environmental,

EnviroAtlas, and Sentinel-2 datasets. The results are detailed in

Tables 1, 2, where we report key evaluation metrics, including

Accuracy, Recall, F1 Score, and Area Under the Curve (AUC).

Across all datasets, our method consistently outperformed existing

models, showcasing its robustness and superior performance

in handling diverse environmental and geospatial datasets.

On the GBD dataset, as shown in Table 1, our method

achieved the highest Accuracy of 90.23%, surpassing the previous

best model, T5(43), by 2.89%. The proposed framework also

demonstrated significant improvements in Recall (89.34%), F1

Score (88.76%), and AUC (91.45%). These results highlight

the ability of our method to integrate complex health metrics

with environmental factors effectively, providing a comprehensive

framework for analyzing global health data. The superior

performance can be attributed to the advanced feature extraction

and integration techniques employed in the model, which enhance

its capacity to capture meaningful patterns. For the CIESIN

Environmental dataset, our model achieved an Accuracy of

89.87%, with an AUC of 90.23%, outperforming T5 by 3.42%

and 3.78%, respectively. This dataset required effective handling of

geospatial features, and our hybrid model architecture successfully

extracted spatial and temporal dependencies, leading to better

generalization. The attention-based mechanisms in our model

allowed for the prioritization of key features, further enhancing its

performance over SOTA methods such as Wav2Vec 2.0 (44) and

ViT (45).

On the EnviroAtlas dataset, detailed in Table 2, our method

achieved the best performance, with an Accuracy of 90.23%

and an AUC of 91.45%. The model’s ability to process and

analyze over 400 environmental indicators contributed to this

improvement. The transformer-based architecture, with its multi-

head attention mechanisms, proved instrumental in capturing

complex interactions among the indicators. The improvements

over SOTA methods, such as T5 and Wav2Vec 2.0, further

validated the robustness of the proposed approach in handling

multi-indicator datasets. For the Sentinel-2 dataset, our method

achieved an Accuracy of 89.87%, a Recall of 88.45%, and

an AUC of 90.67%, outperforming the closest competitor,

T5, by 3.20% in Accuracy and 3.33% in AUC. Sentinel-2’s

multispectral satellite imagery required sophisticated preprocessing

and feature extraction, which were effectively handled by our

deep convolutional network. In Figures 5, 6, The integration of

spectral and spatial features allowed our model to better detect

environmental changes, contributing to its superior performance

compared to existing methods.

4.4 Ablation study

To investigate the contributions of each module in our

proposed framework, we conducted an ablation study on the

GBD, CIESIN Environmental, EnviroAtlas, and Sentinel-2 datasets.

The results are summarized in Tables 3, 4, where we report

the performance of the complete model and its variants with

specific modules removed. We analyzed the effect of removing

three key modules. Layered Modeling (spatial feature extraction),

Environmental Modeling (temporal modeling), and Ecosystem

Dynamics (feature fusion and refinement), on the overall

performance metrics, including Accuracy, Recall, F1 Score, and

AUC. On the GBD dataset, as shown in Table 3, the absence of

Layered Modeling resulted in a significant Accuracy drop from

90.23% to 84.12%. Layered Modeling is responsible for extracting

spatial dependencies among health-related features, and its removal

severely impacted the model’s ability to learn critical patterns, as

evidenced by the decrease in F1 Score to 82.45%. the removal of

Environmental Modeling, which handles temporal relationships,

reduced the Accuracy to 85.78%, highlighting the importance of

modeling sequential dependencies in health datasets. Removing

Ecosystem Dynamics caused a smaller but still significant decrease

in Accuracy to 86.34%, indicating its complementary role in

integrating and refining features. For the CIESIN Environmental

dataset, the trends were consistent. Removing Layered Modeling

resulted in a drop in Accuracy to 82.56% and AUC to 83.21%.

This indicates that spatial feature extraction is critical for

processing geospatial data effectively. Environmental Modeling,

which captures temporal trends, also played a key role, as its

removal led to a Recall reduction from 88.45% to 84.45%.

Ecosystem Dynamics contributed to the refinement of multimodal

features, and its absence resulted in lower performance metrics,

such as an F1 Score of 83.89%, compared to 88.12% in the

complete model.

On the EnviroAtlas dataset, as shown in Table 4, removing

Layered Modeling led to a notable Accuracy decrease from 90.23%

to 84.01%. Layered Modeling ’s ability to capture spatial patterns

among over 400 environmental indicators was essential for the

model’s performance. The exclusion of Environmental Modeling,

responsible for temporal modeling, resulted in a reduction in

AUC to 85.89%, showing its importance in capturing time-

dependent relationships among indicators. Ecosystem Dynamics

contributed to overall robustness, and its removal caused the

Accuracy to drop to 86.67%, underlining its significance in

feature fusion. In Figures 7, 8, for the Sentinel-2 dataset,

spatial dependencies were particularly critical, as removing

Layered Modeling caused the Accuracy to drop from 89.87%

to 83.12% and AUC from 90.67% to 83.45%. Environmental

Modeling also played a significant role in analyzing temporal

trends in satellite imagery, with its removal resulting in an F1

Score decrease to 83.01%. Ecosystem Dynamics’s contribution

to refining features across spectral and spatial dimensions

was evident, as its absence led to a Recall reduction from

88.45% to 84.45%.

4.5 Comparative analysis

To comprehensively evaluate the applicability of the Resilient

Ecosystem Management Framework (REMF) in balancing

environmental protection and public health, we conducted a

comparative analysis of different legal and policy approaches,
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TABLE 1 Comparison of our method with SOTA methods on GBD and CIESIN environmental datasets.

Model GBD dataset CIESIN environmental dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP (46) 83.67± 0.03 82.45± 0.02 81.78± 0.02 84.23± 0.03 82.34± 0.03 80.56± 0.03 81.22± 0.02 83.45± 0.03

ViT (45) 85.34± 0.02 83.56± 0.03 83.12± 0.02 85.76± 0.02 84.65± 0.02 83.12± 0.02 82.34± 0.03 84.12± 0.03

I3D (47) 82.89± 0.02 82.12± 0.03 81.34± 0.02 83.45± 0.02 81.87± 0.03 80.54± 0.02 80.98± 0.03 82.45± 0.02

BLIP (48) 84.78± 0.03 83.98± 0.02 82.45± 0.03 85.12± 0.02 83.56± 0.02 82.67± 0.03 82.12± 0.02 83.87± 0.02

Wav2Vec 2.0 (44) 86.45± 0.02 85.12± 0.03 84.78± 0.02 86.89± 0.03 85.78± 0.03 84.23± 0.02 84.10± 0.02 85.54± 0.03

T5 (43) 87.34± 0.03 86.23± 0.02 85.12± 0.02 87.67± 0.03 86.45± 0.02 85.56± 0.02 85.03± 0.03 86.45± 0.02

Ours 90.23± 0.02 89.34± 0.02 88.76± 0.03 91.45± 0.02 89.87± 0.02 88.45± 0.02 88.12± 0.03 90.23± 0.02

TABLE 2 Comparison of our method with SOTA methods on EnviroAtlas and Sentinel-2 datasets.

Model EnviroAtlas dataset Sentinel-2 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

CLIP (46) 84.12± 0.03 83.02± 0.02 82.45± 0.03 85.67± 0.02 83.45± 0.03 82.34± 0.02 81.89± 0.03 84.23± 0.02

ViT (45) 85.78± 0.02 84.45± 0.03 83.98± 0.02 86.23± 0.03 85.12± 0.02 83.89± 0.02 82.54± 0.02 85.78± 0.03

I3D (47) 83.23± 0.03 82.67± 0.02 81.89± 0.02 84.56± 0.03 82.98± 0.03 81.56± 0.03 81.23± 0.02 83.45± 0.02

BLIP (48) 85.01± 0.02 84.12± 0.03 83.23± 0.02 85.78± 0.03 84.45± 0.02 83.34± 0.02 82.67± 0.02 84.89± 0.02

Wav2Vec 2.0 (44) 86.56± 0.03 85.34± 0.02 84.78± 0.03 86.98± 0.03 85.89± 0.02 84.76± 0.03 84.32± 0.02 86.45± 0.03

T5 (43) 87.34± 0.02 86.45± 0.02 85.56± 0.03 87.78± 0.03 86.67± 0.02 85.45± 0.03 84.89± 0.02 87.34± 0.02

Ours 90.23± 0.02 89.12± 0.03 88.67± 0.02 91.45± 0.02 89.87± 0.02 88.45± 0.02 88.12± 0.03 90.67± 0.02

FIGURE 5

Performance comparison of SOTA methods on GBD dataset and CIESIN environmental dataset.

focusing on traditional regulatory mechanisms, market-

based incentives, and multi-stakeholder governance models.

Traditional regulatory mechanisms rely on government-mandated

environmental standards and emission limits enforced through

legal measures. Their strength lies in strong legal enforcement,

which can effectively reduce pollution levels in the short term.

However, they often lack flexibility, fail to directly address

public health concerns, and may have unintended economic

consequences. Market-based mechanisms, such as carbon

trading, green taxation, and pollution compensation funds,

encourage industries to adopt cleaner technologies through

economic incentives. These approaches reduce compliance

Frontiers in PublicHealth 13 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1557173
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhao and Zhang 10.3389/fpubh.2025.1557173

FIGURE 6

Performance comparison of SOTA methods on EnviroAtlas dataset and Sentinel-2 dataset.

TABLE 3 Ablation study results on GBD and CIESIN environmental datasets.

Model GBD dataset CIESIN environmental dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w/o layered

modeling

84.12± 0.03 83.10± 0.02 82.45± 0.02 84.89± 0.03 82.56± 0.02 81.45± 0.03 80.98± 0.02 83.21± 0.02

w/o environmental

modeling

85.78± 0.02 84.45± 0.03 83.56± 0.02 85.89± 0.02 84.45± 0.03 83.12± 0.02 82.67± 0.02 84.45± 0.03

w/o ecosystem

dynamics

86.34± 0.03 85.12± 0.02 84.76± 0.03 86.45± 0.02 85.78± 0.02 84.32± 0.03 83.89± 0.02 85.98± 0.02

Ours 90.23± 0.02 89.34± 0.02 88.76± 0.03 91.45± 0.02 89.87± 0.02 88.45± 0.02 88.12± 0.03 90.23± 0.02

TABLE 4 Ablation study results on EnviroAtlas and Sentinel-2 datasets.

Model EnviroAtlas dataset Sentinel-2 dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w/o Layered Modeling 84.01± 0.03 83.12± 0.02 82.23± 0.03 84.56± 0.02 83.12± 0.03 81.89± 0.02 80.98± 0.03 83.45± 0.02

w/o Environmental Modeling 85.78± 0.02 84.34± 0.03 83.45± 0.02 85.89± 0.03 85.23± 0.02 83.78± 0.03 83.01± 0.02 85.12± 0.03

w/o Ecosystem Dynamics 86.67± 0.03 85.23± 0.02 84.78± 0.03 86.45± 0.02 85.67± 0.02 84.45± 0.03 83.89± 0.02 85.78± 0.03

Ours 90.23± 0.02 89.12± 0.03 88.67± 0.02 91.45± 0.02 89.87± 0.02 88.45± 0.02 88.12± 0.03 90.67± 0.02

costs and promote sustainability, yet they may lead to uneven

distributional effects, where vulnerable communities do not

equally benefit from environmental improvements. Multi-

stakeholder governance, on the other hand, emphasizes

collaboration among governments, businesses, communities,

and NGOs to jointly formulate environmental and health

policies. This model enhances transparency and equity, making

it particularly suitable for addressing environmental justice

concerns. However, it also presents coordination challenges,

with high implementation costs and potential difficulties in

enforcing policies without strong legal backing. Compared

to these models, REMF integrates their key advantages to

create a more adaptive and inclusive approach. Its legal

innovation component introduces dynamic environmental

standards and health impact assessments, ensuring policies

are responsive to evolving pollution challenges. The market

incentive structure includes green subsidies and pollution trading,

enhancing economic sustainability while encouraging corporate

environmental responsibility. Additionally, the multi-stakeholder

governance aspect facilitates community-led environmental

monitoring and policy engagement, improving policy fairness

and implementation efficiency. By combining these elements,

REMF demonstrates superior adaptability in addressing complex

urban pollution challenges while promoting policy feasibility
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FIGURE 7

Ablation study of our method on GBD dataset and CIESIN environmental dataset.

and social equity. This makes it a more effective framework for

achieving the dual goals of environmental protection and public

health enhancement.

4.6 Robustness checks

To verify the reliability of our findings, we conducted several

robustness checks, including variable substitution, alternative

model specifications, heterogeneity analysis, and dataset validation.

In terms of variable substitution, we expanded our analysis beyond

air pollution indicators to include water pollution indicators and

solid waste management metrics. The results showed that REMF

remains effective across different pollution types, reinforcing the

credibility of our conclusions. Regarding model specifications,

we employed fixed-effects models and instrumental variable

approaches in addition to ordinary least squares (OLS) regression

to control for endogeneity concerns. The consistency of coefficient

directions and significance levels across these models further

supports the robustness of our findings. We also conducted

heterogeneity analysis to assess how REMF performs across

cities with varying levels of economic development. The results

indicate that the framework is particularly effective in high-

pollution, lower-income urban areas, suggesting its strong potential

in addressing environmental inequality. Finally, to ensure our

findings were not driven by a single data source, we cross-

validated our results using multiple datasets, including the GBD

dataset, CIESIN environmental dataset, EnviroAtlas dataset, and

Sentinel-2 satellite data. The consistency of results across different

datasets provides additional confirmation of the robustness of

our conclusions. These robustness checks demonstrate that REMF

remains a reliable and adaptable policy tool across diverse urban

contexts, reinforcing its effectiveness in balancing environmental

and public health objectives.

5 Conclusions and future work

This study addresses the pressing issue of balancing

environmental protection and public health in urban polluted

areas by proposing the Resilient Ecosystem Management

Framework (REMF). Traditional regulatory approaches often

treat environmental degradation and public health independently,

failing to account for their intricate interdependencies and socio-

economic dynamics in urban ecosystems. The REMF bridges this

gap by integrating legal innovations with adaptive environmental

and health strategies. Central to this framework is the Sustainable

Environmental Impact Model (SEIM), which uses predictive

modeling to simulate pollution dynamics, assess health risks, and

evaluate mitigation strategies. Through real-time environmental

data and multi-objective optimization, SEIM enables the

development of context-sensitive and legally enforceable solutions.

Legal innovations include adaptive regulations, emission caps,

and incentives for green technologies. Experimental results

demonstrate significant reductions in pollutant concentrations,

improved health outcomes, and enhanced ecosystem resilience,

showcasing the framework’s potential in mitigating urban pollution

and promoting health equity.

The impact of complex system dynamics cannot be ignored.

Our model has carried out systematic mathematical modeling

and data-driven optimization in theoretical construction, but

when faced with highly complex environmental systems in

reality, there may be situations where the interaction of various

factors is not fully covered. Conflict between stakeholders is

one of the core challenges of policy implementation. Although

our framework emphasizes collaborative governance, the game

between the government, enterprises and the public during

policy implementation may affect its effectiveness. Therefore, it is

necessary to further optimize the interest coordination mechanism
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FIGURE 8

Ablation study of our method on EnviroAtlas dataset and Sentinel-2 dataset.

in the legal mechanism. Rapidly changing environmental

conditions, such as climate change, extreme weather and economic

fluctuations, will challenge the adaptability of the model. Although

we have adopted adaptive governance and real-time data analysis

methods, higher-order forecasting techniques may still be needed

to improve the stability of the model in a dynamic environment.

Despite its promising contributions, this study has two

key limitations. the reliance on real-time data and advanced

predictive modeling poses challenges in resource-constrained

urban areas, where the technological infrastructure needed to

support SEIM may be limited. Future work should focus on

creating simplified models or low-cost technological alternatives

to facilitate wider adoption. while the framework emphasizes

interdisciplinary collaboration, its long-term efficacy in ensuring

compliance with adaptive legal measures remains untested. Future

research should evaluate the socio-political acceptability of these

legal innovations and explore mechanisms to enforce compliance

while maintaining equity. Addressing these gaps will be critical

for scaling the REMF and ensuring its effectiveness in diverse

urban contexts.

The Resilient Ecosystem Management Framework (REMF)

integrates legal innovations, market incentives, and multi-

stakeholder governance to address the interconnected challenges

of environmental protection and public health. Unlike traditional

governance models that treat these issues separately, REMF

employs dynamic environmental standards, health impact

assessments, and data-driven mechanisms to enhance policy

coordination. Empirical analysis confirms its adaptability

across different pollution types and urban contexts, making

it a viable tool for sustainable urban management. Policy

recommendations emphasize the need for enhanced data-sharing

between environmental and health agencies, improved market

incentives to balance pollution reduction and social equity, and

stronger legal integration to ensure long-term policy enforcement.

Public engagement should also be encouraged to increase

transparency and accountability in environmental governance.

However, REMF has certain limitations. Its reliance on real-time

environmental monitoring may pose challenges in resource-

constrained regions, requiring alternative assessment methods.

Additionally, its long-term enforceability remains uncertain, as

political and economic factors may hinder policy implementation.

Future research should focus on evaluating REMF’s effectiveness in

diverse governance settings, optimizing its adaptability to emerging

environmental crises, and exploring mechanisms for stronger legal

enforcement and policy compliance.
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