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The retention of occupational and environmental particles in the lung is a

primary determinant of biological e�ects. In the distal respiratory tract, particle

clearance includes phagocytosis by alveolar macrophages (AMs), migration to

the terminal bronchiole, and transport of AMs and particles by the mucociliary

escalator. With increasing particle exposure, a focal collection of particle-laden

macrophages results at the respiratory bronchiole (RB) which is that site in

the clearance pathway demanding the greatest traverse by these cells after

a commencement from the alveoli. With the greatest particle doses, there

is “particle overload” and impaired mobility which is reflected by an excess

accumulation of particle-ladenmacrophages throughout the RBs, alveolar ducts,

and alveoli. With deposition of fibrous particles in the distal respiratory tract,

the AM is unable to extend itself to enclose fibers with a major diameter

of 10–20 microns or longer resulting in “frustrated phagocytosis” and longer

retention times. Clearance pathways for particles are shared. There can be a

summation of particle exposures with exhaustion in the capacity of the AMs

for transport. Cigarette smoking (CS) is the greatest particle challenge humans

encounter. Associated with its enormous magnitude, CS profoundly impacts the

clearance pathways and subsequently interacts with other particle exposures to

increase biological e�ects. Interstitial lung disease, pulmonary function, chronic

obstructive pulmonary disease, infections, lung cancer, and mortality can be

altered among smokers exposed to occupational and environmental particles

(e.g., silica, coal mine dust, air pollution particles, other particles, and asbestos).

It is concluded that both decreasing CS and controlling particle exposures are of

vital importance in occupational and environmental lung disease.
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Introduction

The retention of occupational and environmental particles in

the lung is a primary factor in determining their biological effects.

Clearance pathways for particles are shared. Cigarette smoking

(CS) is currently the greatest particle challenge humans encounter,

by mass, with the respiratory tract exposed to between 15,000 and

40,000µg/cigarette. Themean diameter of this particle is frequently

<0.1 micron. Associated with its enormous magnitude, CS will

profoundly impact the clearance pathways and subsequently

interact with other particle exposures to biological effects.

Particle clearance in the distal respiratory
tract

The distribution of ventilation following air entry is affected

by a gravitational gradient in the lung and, as a result, is 50%

greater at the bases relative to the apices (1–3). Therefore, an

increased number of particles is delivered to the lower relative

to the upper lung fields. The retention of these particles is

dependent on their incomplete clearance (4). The major pathway

for clearance of particles deposited in the conducting airways is

the mucociliary escalator which is both efficient and rapid (5).

Ciliated epithelial cells which participate in this pathway continue

to the terminal bronchiole (TB; sometimes designated the 16th

generation of airways) but do not extend into the distal airway.

The respiratory bronchioles (RBs; sometimes designated the 17th

to 19th generations of airways), alveolar ducts (ADs; sometimes

designated 20th to 22nd generations of airways) and alveoli (i.e.,

the acinus) are removed from the mucociliary escalator (although

the initial respiratory bronchioles can have some ciliated cells). In

the acinus, particle clearance includes (1) phagocytosis by alveolar

macrophages (AMs), (2) migration of these cells with the particle

along the alveolar and bronchiolar surfaces to the TBs where

the mucociliary removal mechanism begins, and (3) transport of

the AMs by the moving surface fluid layer (6, 7) (Figure 1A).

This clearance pathway is supported by the direct observation of

“dust cells” (AMs with phagocytosed particles) on the intraluminal

surfaces of airways (8). AM-mediated clearance is slower than

that by the mucociliary escalator in the conducting airways and

particle retention half-times in the distal respiratory tract are

subsequently greater (9, 10). Eventually, the AMs with particle

are either conveyed to the gastrointestinal tract via swallowing or

expectoration (11).

Particle exposure stimulates a production of mediators

recognized to accelerate monocyte release from the bone marrow

Abbreviations: AD, alveolar duct; AM, alveolar macrophage; CMD, coal

mine disease; COPD, chronic obstructive pulmonary disease; CS, cigarette

smoking; DIP, desquamative interstitial pneumonitis; FEV1, forced expiratory

volume in 1 second; FVC, forced vital capacity; ILA, interstitial lung

abnormality; ILD, interstitial lung disease; IPF, idiopathic pulmonary fibrosis;

NSIP, nonspecific interstitial pneumonia; OP, organizing pneumonia; RB,

respiratory bronchiole; RB-ILD, respiratory bronchiolitis-interstitial lung

disease; RBitis, respiratory bronchiolitis; TB, terminal bronchiole; UIP, usual

interstitial pneumonia.

(12). Blood monocytes accordingly increase in number after

particle-associated exposures (e.g., CS, ambient air pollution, diesel

exhaust, and traffic-related pollution) (13–17). This is not unique

to lung exposures and an intraperitoneal injection of various

particles (i.e., silica, kaolin, and polystyrene latex) can be associated

with a comparable monocytosis in the peripheral blood (18). An

accelerated release of monocytes from the bone marrow after

particle inhalation is followed by their recruitment into the lung

with differentiation to macrophages (12, 19). Particle exposure

accordingly augments the numbers of macrophages recruited into

the lungs allowing for their increased participation in clearance

from the distal respiratory tract (19, 20).

The effects of gravity on the distribution of blood flow are

attributed to the hydrostatic pressure difference between the top

and bottom of the lung (2). At the uppermost parts of the lung,

the pressure within the vessels may be less than the alveolar

pressure, the vessels collapse, and the alveoli receive little to no

blood flow (i.e., physiological dead space). In the lower lung zones,

pulmonary venous pressure exceeds alveolar pressure. Therefore,

perfusion is greatest in the lower lung fields comparable to

ventilation (2). With a major source of alveolar macrophages being

vascular monocytes, numbers of these cells present in the lung

after particle exposure will accordingly be greatest in the lower

fields reflecting perfusion (21). Based on a greater availability of

monocyte-derived macrophages which phagocytose particles to

expedite their removal, more proficient particle clearance in the

lower lung fields is predicted.

The magnitude of exposure is a major factor which impacts

particle clearance from the distal respiratory tract. As it increases,

AM transport of particles from the surfaces of the RBs, ADs,

and alveoli to the entry site of the mucociliary escalator (i.e.,

the TB) is overwhelmed (Figure 1B). The RB is that site in the

clearance pathway demanding the greatest traverse by these cells

originating in the alveoli and destined for the TB. There results

a focal collection of particle-laden macrophages in the region of

the RB (i.e., respiratory bronchiolitis; RBitis) following elevated

particle exposures (Figure 2). The host response to phagocytosed

particles will initially include inflammation but, when prolonged,

there will be associated fibrosis with deposits of reticulin/collagen

(22–24). When RBitis is associated with evidence of interstitial

lung disease (ILD) including diffuse pulmonary infiltrates (typically

patchy ground glass opacities on a CT scan) and/or pulmonary

function impairment, the disease process is referred to as RB-

associated interstitial lung disease (RB-ILD). These inflammatory

and fibrotic lesions follow significant exposures most frequently

in cigarette smokers but they can be associated with numerous

different occupational and environmental particles (25, 26). The

mass flow velocity into the airways approaches zero at the

RB, augmenting mechanical deposition of particulate matter

(27). It is at the level of the RB that maximal dust retention

will occur with sheets of dust-laden macrophages which taper

in number toward the level of the AD (21). With increased

magnitude of the exposure, particles can further accumulate in the

same region and histopathologic observations can include RBitis,

macules, nodules, and simple pneumoconiosis (e.g., silicosis, coal

workers’ pneumoconiosis, kaolinosis, and talcosis) (28). Particle

type will also affect the histopathology. Miners can show a high

prevalence of simple pneumoconiosis, an exaggerated form of an
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FIGURE 1

Schematics of clearance from the distal respiratory tract after varying doses of exposures to particles (A–C) and fibrous particles (D). In the distal

respiratory tract, particle clearance includes phagocytosis by alveolar macrophages, migration with the particle to the terminal bronchiole and

transport of the macrophages, with the particle, by the mucociliary escalator (A). The respiratory bronchiole is the most vulnerable site of this

clearance pathway since it demands the greatest traverse of the macrophage and with increasing particle exposure, a focal collection of

particle-laden macrophages (i.e., respiratory bronchiolitis) results here (B). With the greatest particle doses, there is “particle overload” and impaired

mobility of alveolar macrophages which is reflected by their excess accumulation in the respiratory bronchioles, alveolar ducts, and alveoli (C). With

deposition of fibrous particles in the distal respiratory tract, the AM is unable to extend itself to enclose fibers with a major diameter of 10–20

microns or longer (D). Subsequently, there is diminished clearance with this “frustrated phagocytosis” resulting in long retention times.

RB-ILD with deposition of dust, macrophages, and connective

tissue (Figure 3A) (29). The distribution of these lesions is

symmetrical involving both lungs and most frequently with a

preponderance in the upper lobes (Figure 3B). Toward the bases,

these lesions tend to diminish in size and number. Such a

conventional presentation of simple pneumoconiosis is consistent

with particle clearance being most successful in the lower lung

fields. These lesions can coalesce and while most often observed

with silica and coal dust, the resultant large mass (i.e., complicated

pneumoconiosis) can be observed after exposures to numerous,

different particles. With the development of RBitis, macules,

nodules, and simple pneumoconiosis, the clearance system is still

effective in diminishing particle accumulation in the most distal

respiratory tract where the exchange of oxygen and carbon dioxide

occurs. Therefore, pulmonary function is usually normal in patients

with simple silicosis and coal workers’ pneumoconiosis and even

with complicated disease.

With those particle exposures which are most extreme in

magnitude, there can be a “particle overload” of the distal

respiratory tract. With “particle overload,” there is a reduction

in AM mobility associated with an impairment of clearance by

these cells (30) (Figure 1C). Subsequently, the hallmark of the

“particle-overloaded” lung is altered retention kinetics with the

half-times increasing linearly with the burden (30–33). Changes

in AM function with “particle overload” have been attributed to

augmented particle mass, volume, and/or surface area (31, 32, 34–

39). This is reflected by an excess accumulation of particle-laden

macrophages frequently observed diffusely distributed throughout

the RBs, ADs, and alveoli. These lesions become large, and

irregular (often stellate). The histopathology is consistent with a

desquamative interstitial pneumonitis (DIP) which is defined to

include an alveolar accumulation of particle-laden macrophages

(Figure 4). This can be observed with CS, passive smoking, and

other particles and are associated with interstitial inflammation and

fibrosis (40).

An inability of the AMs to eliminate particles from the

distal respiratory tract recruits alternative routes or pathways of

clearance. The accumulation of AMs in the distal respiratory
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FIGURE 2

Lung tissue from a cigarette smoker demonstrating respiratory bronchiolitis after particle exposure (hematoxylin and eosin stain; magnification of

approximately 100x). There is an accumulation of macrophages and pigmented particles evident at the respiratory bronchiole (designated by arrows)

but not in the alveolar region (designated by a star) and the terminal bronchiole (designated by an arrowhead).

tract accelerates their migration with phagocytosized particles

into the interstitium and subsequent transport to lymphatics,

lymph nodes, and pleura (41). Particle-laden AMs penetrate the

pulmonary interstitium (8, 41). AMs with phagocytosed particles

then accumulate in bronchus-associated lymphoid tissue, migrate

to peribronchial and perivascular lymphatics, and are transported

(1) antegrade to regional lymph nodes (41–43) and (2) retrograde

to the pleura (44). In animal models, AMs with phagocytosed

particles can be identified in the pulmonary interstitium (45, 46),

intravascular and sub-epithelial locations in the bronchioli (47),

and in draining lymph nodes (45, 48). Particle numbers increase

in the thoracic and retroperitoneal lymph nodes, accordingly, these

appear black in smokers and coal miners (49). The lymphatics also

transport particles retrograde to sub-pleural areas with access to

the pleural space. While there are no direct connections with the

lung, specific areas of the parietal pleura absorb and retain high

concentrations of particles from the pleural space. These particle-

collecting structures have been called “black spots” which can be

observed in 92.7% of urban autopsies (50, 51). “Black spots” of the

pleura develop in close correlation to lymphatic channels and blood

vessels. AMs accordingly can redistribute a particle burden across

the epithelium into the interstitium, lymphatics, lymph nodes, and

pleura (6, 41). Inflammation and fibrosis can result wherever the

particle is retained. In addition to pneumoconiosis in the lung

parenchyma, inflammation and fibrosis can also impact the lymph

nodes and the pleura. With particle exposures, lymphadenopathy

with both inflammation and fibrosis is observed (42, 52–58). In the

pleura, “black spots” are characterized by an inflammatory reaction

to the incorporated particles and a fibrosis comparable to lymph

nodes (59–61). Increased particle burdens at “black spots” following

occupational exposures to mixed dusts may affect macrophage

function (i.e., transport and phagocytosis) (59).

Cigarette smoking and particle clearance

The biological effects after smoking can be related to particle

exposure (62–65). The mean diameter of CS particles is 0.2–0.5µm

and the deposition fraction is projected to be 70%−90% with the

greatest of this occurring at the RBs (66, 67). CS accelerates a release

of monocytes from the bone marrow and these are recruited to

differentiate to macrophages accounting for increased numbers in

the smoker’s lung and allowing for their participation in clearance

from the distal respiratory tract (12, 19, 21). Despite this, particle

clearance was demonstrated to be impaired in smokers with 50%

retention compared to 10% in non-smokers (68). Exposure to CS

impacted mucociliary clearance with decreases in both ciliated

cell numbers and ciliary beat frequency (69). Accordingly, CS

decreases the efficiency of clearance from both the alveolar and

bronchial compartments and smokers retain more particles than

non-smokers (70).

CS is the paramount particle exposure and it is frequently

associated with a “particle overload.” Since AMs normally direct

the clearance process in the distal respiratory tract, pathways

are overwhelmed with CS and particles are not successfully

removed from the RBs, ADs, and alveoli; particle retention

results (30). Histopathologically, smoking is characteristically by

an accumulation of AMs containing fine brown granules which do

not polarize light in the distal respiratory tract (Figure 4). There

can be varying amounts of fibrosis in smoking-related RBitis, RB-

ILD, and DIP (71). RBitis is a universal response in all smokers

(i.e., smoker’s bronchiolitis) characterized histologically by a patchy

accumulation of pigmented, smoker’s macrophages in the RB

(72–75). This reflects the failure of particle-laden AMs to enter

the mucociliary escalator at the TB. Loss of epithelial ciliation

as well as alterations in lung architecture such as observed in

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1558723
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ghio et al. 10.3389/fpubh.2025.1558723

FIGURE 3

Human lung tissue from a coal miner reveals accumulation of particle in the region of the respiratory bronchiole recognized as a coal macule

(designated by arrow) [(A); hematoxylin and eosin stain; magnification of approximately 100x]. After accretion and coalescence, these collections of

macrophages, particles, and associated inflammation and fibrosis can be observed as a simple pneumoconiosis on a chest X-ray (B). Lesions are

symmetrical involving both lungs and a preponderance in the upper lobes is noted.

chronic obstructive pulmonary disease (COPD), as well as other

chronic lung diseases after long-term smoking can further particle

retention. With continued smoking, greater particle deposition

initiates an inflammatory and fibrotic response consistent with

DIP; CS is associated with most DIP cases (76, 77). While the

feature that differentiates RBitis from DIP is most frequently

cited as the distribution and extent of macrophage accumulation

(bronchiolocentric in RBitis and diffuse throughout the entirety of

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1558723
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ghio et al. 10.3389/fpubh.2025.1558723

FIGURE 4

Human lung tissue from a smoker reveals an accumulation of macrophages in the alveolar region (hematoxylin and eosin stain; magnification of

100x). With extreme particle exposures, “particle overload” of the distal respiratory tract is reflected by an excess accumulation of particle-laden

macrophages in the acinus (designated by arrows). This is pathologically recognized as desquamative interstitial pneumonitis. With smoking, the

macrophages can contain fine brown granules supporting a failure of particle-laden macrophages to enter the mucociliary escalator.

the RBs, ADs, and alveoli in DIP), there are no reliable histologic

features to distinguish the two responses with complete certainty

and they can be considered separate phases of a single response

(78). Smoking cessation is currently considered the primary

treatment for both RBitis and DIP and survival rates are high. This

inflammatory response can persist after smoking cessation as CS

particle persists in the lung for years (79–82).

With an absence of effective clearance pathways associated

with “particle overload,” the biological response (inflammation and

fibrosis) with CS will be evident in the lower lung fields where

the ventilation, and exposure, is greater relative to the upper

lung fields. Subsequently, radiographic evidence of smoking is

recognized to include opacities in the lower lung fields reflecting

the inflammation and fibrosis in response to CS particle (83–89).

In the last two decades, interstitial lung abnormalities (ILAs) have

been observed on 8%−20% of smokers’ CT scans screened for lung

cancer and without clinical symptoms (90–95). On pathological

examination, ILAs include both inflammation and fibrosis (95, 96).

These ILAs are a precursor to clinically evident smoking-related

lung fibrosis.

Evidence supports a causative relationship between smoking

and lung inflammatory and fibrotic disease (72, 77, 82, 97–

103). Before chest X-rays and CT scans of the chest demonstrate

any abnormalities, inflammation and fibrosis can be observed

histologically in most smokers (96). This chronic pulmonary

inflammation and fibrosis can progress and manifests as several

different histologic patterns: (1) organizing pneumonia (OP),

characterized by round or oval pale-staining deposits consisting

of fibroblasts, myofibroblasts, collagen, and fibrin within RBs,

alveolar ducts and alveoli; (2) nonspecific interstitial pneumonia

(NSIP), characterized by inflammation and/or fibrosis in the

lung interstitium occurring in a spatially homogeneous pattern

and with preservation of overall lung architecture; and (3) usual

interstitial pneumonia (UIP), the most severe form of lung fibrosis,

characterized by heterogeneous areas of dense fibrosis interspersed

with areas of relatively normal lung architecture, fibroblastic foci,

and honeycombing (82, 97, 101, 104–111). OP and NSIP can

represent earlier phases of the response to CS while UIP represents

a response to greater doses (pack-years) and subsequently a later

stage. One histologic presentation of injury may progress into the

next with overlapping patterns being observed which make strict

histopathologic diagnosis difficult or impossible (112, 113). OP

components are common lesions in both NSIP and UIP cases,

and as fibrosis evolves, pathological areas of NSIP are observed

with UIP (114–119). It is the retention of particle in the distal

respiratory tract with CS which is proposed to impact a dose-

response fibrosis (120).

In smokers, excessive accumulation of AMs accelerates their

“interstitialization” and migration into lymphatics, lymph nodes,

and pleura. With the biological effects after smoking being related

to particle exposure, inflammation and fibrosis then occur in the

interstitium, bronchus-associated lymphoid tissue, peribronchial

and perivascular lymphatics, regional lymph nodes, and pleura as

well as the distal respiratory tract. Enlarged mediastinal lymph

nodes occur in over 50% of heavy smokers (43).

Smoking and disease after exposure to
silica

Comparable to all particles, the clearance of silica in the distal

respiratory tract includes phagocytosis by AMs with transport to

mucociliary escalator at the TB. With exposure to silica, there can
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TABLE 1 Interactions of silica with smoking.

Impact of smoking

Interstitial lung disease Increased silicosis

Decreased silicosis

Changes silicosis to include irregular opacities

Pulmonary function tests Excess loss in spirometry indices

COPD Higher rates

Infections Increased tuberculosis rates

Malignancy Increased lung cancer

Mortality Increased overall mortality

Increased lung cancer mortality

be an RBitis which progresses to RB-ILD and pneumoconiosis

(simple and complicated). In silicosis, the upper lobes reveal greater

involvement since particle clearance is more effective at the bases.

With greater exposures to silica, AM mobility will be impaired

and the particle may not be successfully translocated to the TB.

This sequence suggests a dose-response in which there is an initial

increase in the accumulation of particles removed from the distal

respiratory tract to the region of the RB (i.e., pneumoconiosis)

followed by patterns of involvement reflecting an injury including

DIP; idiopathic cases of DIP demonstrate a history of particle

exposure including silica (121). In addition, alternative routes or

pathways of clearance (e.g., interstitium, lymphatics, lymph nodes,

and pleura) are recruited at higher exposure levels and other forms

of inflammatory and fibrotic lung disease can be evident (e.g., OP,

NSIP, and UIP as well as sarcoidosis) (122, 123).

Collagen deposition and fibrosis increase with particle

retention in the lung and the failure of clearance pathways

including alveolar macrophages to remove particle from the distal

respiratory tract. A dose response of fibrotic lung injury with several

different particles has been demonstrated (e.g., silica, coal mine

dust, and asbestos) (124). Dissimilarities between dose-response of

these particles is also evident (e.g., silica generates a greater fibrotic

response relative to coal mine dust).

Interactions are described between smoking and silica exposure

and these can vary widely depending on the specific endpoint

(Table 1) (125). Smoking increases the total particle delivered to the

distal respiratory tract and clearance mechanisms are subsequently

overwhelmed. Smokers exposed to silica dust have been observed

to develop silicosis more frequently than non-smokers exposed

to the same dose (126–129). In one study, 85% of silicosis cases

were ever smokers (vs. 70% in controls) (130). In the pottery and

stone benchtop industries, silicosis was associated with smoking

(131, 132). In these investigations, the types of opacities observed

on the chest X-ray were not specified while others analyzed (1)

only rounded opacities consistent with conventional silicosis or

(2) both rounded and irregular opacities. Many of the opacities in

silicosis among smokers were irregular and observed in the lower

lung fields which is not considered consistent with the appearance

of conventional silicosis (133, 134). Animal studies support an

interaction between smoking and silica with greater biological

effect initiating lung inflammation and fibrosis after combined

exposures (135).

With a summation of particles in CS and silica exposure,

there is an exhaustion in the capacity of the AMs for transport.

Subsequently, the pattern of biological effect can change. In

smokers, exposure to silica may not be associated with nodules

and rounded opacities in the upper lung fields. Rather, opacities

after silica exposure in smokers may be in the lower lung fields

where most of the inhaled breath with particles is distributed.

While smoking can increase incidence of silicosis, it might also

alter the natural history of silicosis. In support of this, a slight

inverse relationship between smoking and collagenization of the

parenchyma was observed (after controlling for age and cumulative

exposure to silica dust) among deceased miners who underwent

postmortem examination between 1976 and 1981 (136). While

smoking could decrease the incidence of pneumoconiosis, the silica

would accumulate in different sites; these would be more distal

and contribute to other types of inflammation and fibrosis (e.g.,

OP, NSIP, and UIP). Such patterns of fibrotic lung injury have

been observed after silica exposure and almost all were among

smokers (137–139).

Like numerous particle exposures, silica is associated with

pulmonary function loss (140). The estimated excess loss of

lung function for a 50-year-old gold miner exposed to silica

associated with 24 years of underground dust exposure at an

average respirable dust concentration of 300 µg/m3 was 236mL

of forced expiratory volume in 1 second (FEV1) and 217mL

of FVC (forced vital capacity) (141). By comparison, the effect

of smoking one packet of cigarettes a day over 30 years was

associated with an estimated loss of 552mL of FEV1 and 335mL

of FVC in this same study. Interactions between smoking and

silica exposure can be observed with potentiation of the effect of

silica on pulmonary function loss, rates of airway obstruction, and

prevalence of COPD (142–146). CS was found to potentiate the

effect of dust, predominantly silica, on respiratory impairment in

gold miners (147). Those with silicosis had greater rates of COPD

with smoking (148). The two particles also interacted to impact

the capacity of AMs to eliminate respiratory pathogens in workers

substantiating a critical role for these cells in the prevention of

infection (149, 150). Current smokers had a significantly higher

risk of tuberculosis than other patients with silicosis (125, 151,

152). A negative relationship between CS and collagenization of

the pleura was observed among deceased miners on postmortem

examination suggesting an impact of smoking on lymphatic

clearance to the pleura (136). While there is a dose-response

between the cumulative exposure to silica and lung cancer among

never-smokers, 91% of silica-related lung cancer cases were ever

smokers (vs. 69% controls) (130, 153–155). The joint effects of

smoking and silica on lung cancer incidence have been additive,

super-additive, multiplicative, and even supra-multiplicative (153,

156). Excess lung cancer mortality in silica-exposed workers was

restricted to those with silicosis, and the more severe the disease,

the higher the neoplastic risk (153, 157, 158). One investigation

demonstrated that most of the excess lung cancer risk in patients

with silicosis was due to smoking, but a synergistic effect between

smoking and silica/silicosis was likely (159). Finally, smoking

increases mortality following silica exposures with interactions

between silica and smoking increasing deaths after pulmonary

diseases including pneumoconiosis and COPD (142, 143, 160,

161).
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Smoking and disease after exposure to coal
mine dust

The fundamental lesion of coal workers’ pneumoconiosis

consists of a focal aggregation of coal mine dust (CMD)-laden AMs

that accumulate in the RB and TB (28). This collection of dust-

laden AMs, reticulin and collagen (1–4mm in diameter) is referred

to as a coal dust macule; these are non-palpable and distributed

throughout the lung with greater numbers in the upper lung fields

(162). The coal macule is a RBitis. With increased exposure to

CMD, AMs with particles accumulate to extend into adjacent

regions as well as into the peribronchiolar interstitium, the size of

the coal macule increases (some by accretion until they become

visible whereas others coalesce with adjacent nodules to become

macroscopically visible), and these eventually become fibrotic

nodules of simple coal workers’ pneumoconiosis (29). This simple

pneumoconiosis demonstrates a centrilobular (centered around the

RB) deposition of coal dust, AMs, inflammation, and connective

tissue. Complicated lesions of coal workers’ pneumoconiosis

(defined pathologically and radiologically as nodules measuring

1 cm or more in diameter) follow the fusion of small opacities, an

accretion and incorporation of adjacent nodules. Mediastinal and

hilar adenopathy can be present but this is usually in less than one-

third of the cases. Exposure to CMD can cause DIP with particle-

laden (anthracotic and silica/silicate) AMs accumulated in the distal

respiratory tract (163). This advances to o types of inflammation

and fibrosis (e.g., OP, NSIP, andUIP). Cases of a UIP pattern of lung

fibrosis with honeycombing on the CT scan was reported among

coal miners (pathology was available in 2 explanted lungs and 6

open lung biopsies) (164).

The research into interactions between coal mine dust and

smoking has been limited (Table 2). Early investigation suggested

no influence of smoking on the coal dust macule and its direct

complications; coal miners who did smoke had a greater degree of

corpulmonale, more emphysema, andmore bronchiolar goblet cells

with chronic bronchiolitis than non-smoking coal miners (165).

Coal miners with primarily irregular opacities showed a lower

zone preponderance (166). In investigation, irregular opacities on

radiographs of South Wales coal workers were related to age,

smoking and coal work exposure (167). Similarly, irregular small

opacities on the radiographs of coal miners in the USA were

associated with smoking, age, years worked underground, and a

diagnosis of bronchitis (168). There is a description of chronic

interstitial pneumonia with honeycombing in coal miners (164).

Among the 38 miners included in this report, 32 were smokers.

Dust-related diffuse fibrosis was described recently in a significant

number of autopsies of coal workers (15% to 20%) (169, 170). Dust-

related diffuse fibrosis can resemble idiopathic pulmonary fibrosis

(IPF), which is associated with smoking, but has a better prognosis.

44/45 of miners with diffuse ILD were smokers.

An interaction between smoking and CMD on pulmonary

function has been demonstrated. Combined effects of smoking and

CMD exposure on pulmonary function were significantly greater

than that of the CS only and cumulative total exposure only

(171). CMDpositively correlated with abnormal rates of pulmonary

function in both the smoking and non-smoking subgroups; one

index (i.e., the FEV1) was negatively correlated with total dose

TABLE 2 Interactions of coal mine dust with smoking.

Impact of smoking on
endpoint

Interstitial lung disease Changes coal workers’ pneumoconiosis
to include irregular opacities

Pulmonary function tests Excess loss in spirometry indices

COPD Higher rates

Mortality Increased mortality (among those with
complicated disease)

only in the smoking subgroup (172). Spirometric indices (i.e.,

forced expiratory volume in one second and the ratio) were

lower among those coal miners with irregular opacities possibly

reflecting CS (168). Miners with coal workers’ pneumoconiosis

demonstrated greater rates of COPD with cigarette smoking (148).

While there is little evidence of a CMD exposure-lung cancer risk,

lung nodules among smokers with coal workers’ pneumoconiosis

had a higher risk of being lung cancer (173, 174). Finally,

smoking increased mortality of those coal miners with complicated

pneumoconiosis (175).

Smoking and disease after exposure to air
pollution particles

Ambient air pollution particles are retained in the human lung

with greater concentrations (number counts) observed in the RBs

which accumulated high particle loads, typically 25–100 times the

concentrations seen in the mainstem bronchus (176). The mean

diameter of this air pollution particle was 0.38 micron. Using

analytical electron microscopy, particles retained in autopsy lung

tissue from 10 never-smokers were shown to include silica, silicates

(kaolin, feldspar, mica, and talc), andmetals (176, 177); themajority

of these particles appeared to be crustal in origin. However,

examination of human lungs confirmed that airways could also

retain relatively large numbers of carbonaceous chain aggregates

of particles (ultrafine in size) that appeared to be combustion

products (178). Black pigmented particles accumulated in the non-

smoker’s lung with increasing age and this was attributable to soot

in the ambient air originating from the burning of coal and wood

(179). Emission source air pollution particle (e.g., environmental

tobacco smoke) was associated with a RBitis comparable to other

particles (25, 26). Air pollution particles were also observed in the

peribronchial lymph nodes (forming “black glands”) (179). Disease

after air pollution particles included a diffuse pulmonary fibrosis

with exposures to combustion products of biomass fuels used for

cooking and heating in poorly ventilated huts (180).

There was an interaction between air pollution and smoking

observed in decreasing pulmonary function (181) (Table 3).

Synergistic interactions between air pollution, specifically including

particles, and smoking in contributing to cardiovascular mortality

were observed in additional epidemiological investigation (182,

183). In smokers, there was a significant excess risk of daily

mortality associated with ambient air pollution particles for all

natural causes and cardio-respiratory diseases for men aged 30
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TABLE 3 Interactions of air pollution particles with smoking.

Impact of smoking on endpoint

Pulmonary function tests Excess loss in spirometry indices

Mortality Increased cardiovascular mortality

Increased cardio-respiratory mortality

Increased overall mortality

years or older and men 65 or older (184). Mortality risks caused

by all natural causes and cardiorespiratory diseases per 10 µg/m3

change in black smoke were higher in current smokers than never

smokers (185). Ever-smokers were again more susceptible to excess

mortality risk associated with daily air pollution (186).

Smoking and disease after exposure to
other particles

Vermiculite and smoking interact to increase the interstitial

markings on the chest X-rays of miners (187). The prevalence of

opacities on the chest radiographs of talc millers could similarly

be increased among smokers (188). Flour dust also interacts with

smoking to impact an ILD observed on the CT scan (189).

Regarding pulmonary function testing, the effects of cotton dust

exposure and cigarette smoking on spirometry endpoints appeared

to be additive (190–192).

Asbestos clearance in the distal respiratory
tract

Fibrous morphology has been identified as a major

characteristic in determining clearance (193). With deposition

in the distal respiratory tract, the AM is unable to extend itself

to enclose longer fibers (those with a major diameter of 10–

20 microns or longer) resulting in incomplete or “frustrated

phagocytosis”, long retention times, and persistent biological effect

(e.g., inflammation, fibrosis, and neoplasia) (194) (Figure 1D).

Therefore, fiber dimensions are a major determinant in the

biological effect of asbestos (195). The risk for biological effect

of asbestos correlates with fiber length (196, 197). Asbestos

relevant to fibrosis and cancer can include those longer than

5 microns (198). Short fibers (those <5µm) are fully engulfed

(internalized) by macrophages and removed by lung clearance

more efficiently (193, 199–202). Accordingly, while short fibers

may also be associated with biological effects, these are observed

most frequently only at greatly increased exposure levels (203, 204).

Asbestos exposure is associated with both RBitis and DIP (205–

207). With ineffective clearance, disease associated with asbestos

occurs at much lower levels of exposure relative to other particles

such as silica and coal (208). Subsequently, the exposure (the

dose of dust retained in the lungs) is far less in asbestosis (i.e.,

milligrams) relative to silicosis and coal workers’ pneumoconiosis

(i.e., grams or tens of grams) (209, 210). In addition, the

radiographic and pathologic appearance of asbestosis are distinct

FIGURE 5

A chest radiograph of inflammatory and fibrotic injury following

asbestos exposure. This is characterized by bilateral, small irregular

opacities involving the lower lobes of the lungs. The dimensions of

asbestos preclude e�cient clearance (“frustrated phagocytosis”).

Subsequently, in contrast to particles, the associated inflammation

and fibrosis is in the lower lung fields where delivery is greater

relative to the upper lung fields.

from other pneumoconioses associated with particle exposure

(e.g., silicosis and coal workers’ pneumoconiosis). Asbestosis is

characterized by the presence of small irregular opacities, which

are bilateral and commonly involve the lower lobes of the lungs

(205, 211–216) (Figure 5). This presentation is the result of the

particle being distributed to the lower lung fields and an ineffective

transport from the distal respiratory tract to the entry site of the

mucociliary escalator (i.e., the TB). For this same reason, asbestos

exposure is not associated with complicated pneumoconiosis.

The distribution of mineral fibers in the lung determines the

site and severity of disease (217). With decreased mobility of the

AM following “frustrated phagocytosis,” asbestos is translocated to

the interstitium where it is transported via lymphatics antegrade to

the lymph nodes and retrograde to the pleura and the peritoneum

(218, 219). As a result, thoracic lymph node enlargement occurs

frequently with asbestos exposure (220). From the lungs, asbestos

fibers can migrate to pleural and peritoneal spaces following

patterns of lymphatic drainage. In addition, a proportion of

asbestos that reaches the pleura will pass through the pleural

space and exit through the stomata. Subsequently, the fibers are

sequestered in the “black spots” in the parietal pleura. Fibers that

reach the pleural space can interrupt flow with interception of the

asbestos within the walls of the stomatal openings as well as in

the lymph vessels walls. This increases an accumulation of pleural

macrophages attempting to phagocytose retained, long fibers. The

most frequently documented pleural response to fibers are effusions

(i.e., inflammation) and plaques (i.e., fibrosis). The latter are dense

bands or weaves of collagen, frequently calcified, and occur on the

parietal pleura at sites where the stomata are in greatest profusion.
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TABLE 4 Interactions of asbestos with smoking.

Impact of smoking on
endpoint

Interstitial lung
disease

Increased asbestosis

Pleural disease Increased pleural plaques

Pulmonary
function tests

Excess loss in spirometry indices and
diffusing capacity

Malignancy Increased lung cancer

The pleural response is observed with numerous particle exposures

with the severity being dependent on the biological activity of the

dust (i.e., carbonaceous < mixed mineral dust < silica< short

asbestos < long asbestos). Pleural plaques are a special case of

a “black spot” caused by fibers eliciting an extreme collagenous

response. Finally, there is a risk of cancer (mesothelioma and

lung cancer in the pleura and lung respectively) among workers

exposed to asbestos which increases with exposure to longer fibers

(200, 221–224). Animal investigation supports that longer fibers

(>10µm) are more carcinogenic to the lung (221).

Smoking and disease after exposure to
asbestos

There is an interaction between smoking and asbestos

exposure to impact an increased incidence of small opacities

observed on both the chest X-ray and CT scan as well as in

pathological specimens (89, 225–227) (Table 4). A dose-response

pattern emerged between increasing pack-years and parenchymal

opacities (228). In those reports where the type of interaction

has been addressed, the data in general have favored an additive

effect but this could be greater (93, 221). In the US Navy’s

Asbestos Medical Surveillance Program, the prevalence of definite

radiologic parenchymal abnormalities (ILO category ≥ 1/0) was

3.10 percent for 32,233 smokers vs. 1.09 percent for 13,414

non-smokers. Mechanistic endpoints also support interactions

between smoking and asbestos exposure in lavage cellularity in

patients with asbestosis (229). However, increases in profusion

of asbestosis with smoking have been attributed to diffuse

interstitial fibrosis (88, 213). Smoking can also increase the risk for

pleural thickening/plaques (230–234). Plaques in ever smokers are

proposed to result with clearance pathways decreased by smoking

leading to higher exposures of the pleura.

Reduction in both FVC and FEV1/FVC were more frequent in

insulators who smoked compared with non-smokers or smokers

in the general population supporting an interaction (235, 236).

Occupational exposure to asbestos in the cement industry was a

risk factor for increased lung function decline which synergistically

interacted with smoking (237). There was an interaction between

asbestos exposure and smoking in the impact on pulmonary

function (238, 239). Additive but not synergistic effects between

exposures to smoking and asbestos were present for manifestations

of asbestosis including bilateral fine crackles, clubbing, dyspnea,

radiographic abnormality, decreased forced vital capacity, and

decreased single breath diffusing capacity of the lung for carbon

monoxide (240).

Finally, an interaction between smoking and exposure to

asbestos with lung cancer risk was confirmed (241–250). This can

range from additive to supra-additive to multiplicative.

Conclusions

There is an interaction between smoking and other particles

which impacts the biological effects of occupational and

environmental exposures. This interaction is mediated by an

impact of smoking on clearance. Smoking will almost always

increase the risk for or exacerbate many particle-related lung

diseases. In occupational and environmental lung disease, both

decreasing CS and controlling particle exposures are of vital

importance (251–253).
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