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Background: Depression is major global public health problems among

university students. Currently, the evaluation and monitoring of depression

predominantly depend on subjective and self-reported methods. There is

an urgent necessity to develop objective means of identifying depression.

Acoustic features, which convey emotional information, have the potential

to enhance the objectivity of depression assessments. This study aimed to

investigate the feasibility of utilizing acoustic features for the objective and

automated identification and characterization of depression among Chinese

university students.

Methods: A cross-sectional study was undertaken involving 103 students

with depression and 103 controls matched for age, gender, and education.

Participants’ voices were recorded using a smartphone as they read neutral texts.

Acoustic analysis and feature extraction were performed using the OpenSMILE

toolkit, yielding 523 features encompassing spectral, glottal, and prosodic

characteristics. These extracted acoustic features were utilized for discriminant

analysis between depression and control groups. Pearson correlation analyses

were conducted to evaluate the relationship between acoustic features

and Patient Health Questionnaire-9 (PHQ-9) scores. Five machine learning

algorithms including Linear Discriminant Analysis (LDA), Logistic Regression,

Support Vector Classification, Naive Bayes, and Random Forest were used to

perform the classification. For training and testing, ten-fold cross-validation

was employed. Model performance was assessed using receiver operating

characteristic (ROC) curve, area under the curve (AUC), precision, accuracy,

recall, and F1 score. Shapley Additive exPlanations (SHAP) method was used for

model interpretation.

Results: In depression group, 32 acoustic features (25 spectral features,

5 prosodic features and 2 glottal features) showed significant alterations

compared with controls. Further, 27 acoustic features (10 spectral features,

3 prosodic features, and 1 glottal features) were significantly correlated

with depression severity. Among five machine learning algorithms, LDA

model demonstrated the highest classification performance, with an AUC

of 0.771. SHAP analysis suggested that Mel-frequency cepstral coe�cients

(MFCC) features contributed most to the model’s classification e�cacy.
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Conclusions: The integration of acoustic features and LDAmodel demonstrates

a high accuracy in distinguishing depression among Chinese university students,

suggesting its potential utility in rapid and large-scale depression screening.

MFCC may serve as objective and valid features for the automated identification

of depression on Chinese university campuses.
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1 Introduction

The rising prevalence of depression among Chinese university

students underscores the critical necessity for an effective system

to identify depression. The university period is a crucial stage in

the transition from student identity to social identity, students

face heavy academic workloads, diverse course offerings, and

intense competition (1, 2). The prevalence of depression among

Chinese university students exceeds 20% (3, 4), with 11% exhibiting

suicidal ideation (5). Depression in university students typically

manifests as loss of pleasure, interest, energy, and appetite,

reduced attention and concentration, and insomnia (6, 7). These

manifestations not only impact on their academic performance

and overall wellbeing, but also increase suicide risk. In light of

this, early identification is of particular importance. Presently,

the assessment and monitoring of depression in this population

predominantly depend on subjective psychological scales. Most of

these scales depend on individuals’ self-reported emotional states,

which easily cause ignored and missed (5, 8, 9). Therefore, there is

an imperative to develop facile and effective methodologies that can

offer objective and accurate identification of depression, facilitating

large-scale screening on Chinese university campuses.

The acoustic approach offers distinct advantages for depression

assessment by addressing limitations of conventional methods.

As objective physiological measures, acoustic features circumvent

the response biases inherent in self-report instruments while

capturing subtle emotional cues through prosodic variations such

as pitch variability and speech rhythm. Acoustic analysis provides

multidimensional insights by concurrently revealing emotional

states through prosodic characteristics and physiological changes

via glottal features including vocal fold vibration patterns. These

features encompass a range of quantitative data extracted from

speech signals, such as pitch, speech rate, volume, timbre, and

elements related to speech pauses and fluency. Meanwhile, acoustic

features can provide insights into the speaker’s physical health,

emotional fluctuations, and psychological traits (10). According

to the linear speech production system, acoustic features include

spectral, prosodic, and glottal features (11, 12). Spectral features

represent the correlation between changes in vocal tract shape and

movements of articulatory organs, reflecting the characteristics of

speech signals in the frequency domain (13). Prosodic features

can be characterized by rhythm, intensity, pitch, and duration,

which correspond to the elements of stress, timing, and intonation

in speech (14–16). Glottal features provide insights into the type

of phonation and vocal quality conveyed by irregular sounds,

reflecting the airflow from the lungs through the glottis and the

vibrations of the vocal folds (13). These acoustic features have

been employed in the domain of speech emotion recognition.

Prior studies have identified that individuals with depression

exhibit distinct acoustic features, characterized by decreased

vocal volume, a reduced pitch range and voice intensity, a

slower speech rate, prolonged pauses, and a monotonous tone

(17–21). Variations in emotional states and fatigue can influence

muscle tension, leading to pronunciation errors and alterations

in vocal tract characteristics (22). Cognitive impairments may

hinder the planning and execution of neuromuscular commands

essential for voice production (23, 24). Most importantly, voice-

based methods enable real-time, scalable screening without active

user participation. Therefore, acoustic features, as objective,

readily accessible, non-invasive physiological measures, have been

increasingly utilized in the study of depression (10, 25–28).

Notably, the direct extraction and analysis of acoustic features

using conventional statistical methods can be quite complex,

potentially resulting in diminished recognition performance (29).

The advantages of machine learning methods lie primarily

in their exceptional modeling flexibility and algorithmic

scalability. Compared to traditional statistical methods,

machine learning can effectively capture complex nonlinear

relationships and interaction effects between variables through

automated feature learning mechanisms, particularly excelling

in handling high-dimensional feature spaces and unstructured

data (such as medical images, natural language text, etc.). In

terms of model optimization, machine learning significantly

enhances generalization performance through ensemble learning

frameworks, regularization constraints, and rigorous cross-

validation strategies. This approach overcomes the strict reliance of

traditional statistical methods on linear assumptions and specific

distribution patterns, thereby demonstrating stronger adaptability

in modeling complex real-world problems. By automatically

learning from data, machine learning algorithms are capable of

establishing functional relationships, identifying latent patterns,

and generating predictions that were previously inaccessible

via conventional statistical methodologies (30). This capacity

is particularly crucial for the early detection and intervention

of depression, as the timely identification of symptoms can

profoundly influence management and intervention strategies

for university students. Several machine-learning techniques

such as Support Vector Classification (SVC), Random Forest

(RF), Light Gradient Boosting Machine (LightGBM), Linear

Discriminant Analysis (LDA), and logistic regression (LR) have

been applied for classification. Among these methods, SVM

is particularly adept at finding hyperplanes that best separate
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different classes in high-dimensional spaces, making it a powerful

tool for classification tasks (31). RF constructs an ensemble of

decision trees and merges their outputs to enhance predictive

accuracy (32, 33). LightGBM utilizes a histogram-based approach

to bin continuous features, thereby substantially accelerating the

training process while preserving high accuracy (10, 34). LR is

distinguished by its simplicity and physical interpretability (35).

LDA can handle high-dimensional data, and effectively separate

classes by maximizing the ratio of between-class variance to

within-class variance. This characteristic allows LDA as an effective

tool for classification tasks. Although machine learning has the

potential to aid in the detection of depression, these models often

function as a “black box” that requires further interpretation

(36). Correspondingly, SHapley Additive exPlanations (SHAP)

is a well-established post-hoc interpretability method that ranks

selected features according to their contributions, with larger

values indicating a greater contribution (37). Most acoustic studies

on depression primarily focus on group differences and employ one

or more machine learning techniques (13, 38–40), the integration

of multiple machine learning models with SHAP interpretability

analysis among Chinese university students is rarely reported.

This study aims to present an intelligent system that not

only identifies depression through acoustic features but also

integrates advanced machine learning techniques to improve

detection accuracy and reliability. We sought to address the

following questions: First, do acoustic features exhibit alterations

in depression among Chinese university students? Second, how

do these acoustic alterations correlate with depression severity in

the speech of university students? Third, can acoustic features

effectively differentiate between depression and non-depression

using machine learning methodologies? If this is the case, which

acoustic features hold relative importance in the classification of

depression? The integration of these methodologies could facilitate

the development of more effective strategies for monitoring and

intervening in depression on Chinese university campuses.

2 Materials and methods

2.1 Participants

This cross-sectional study was carried out at Xinxiang Medical

University between March and May 2024. A total of 206 university

students (103 subjects with depression and 103 matched controls)

were recruited for this study (Figure 1). University students with

depression were included if: (1) between 17 to 26 years old; (2)

Patient Health Questionnaire-9 (PHQ-9) scores≥5; (3) able to read

and understand Chinese; (4) have not received minimally adequate

treatment (antidepressant medication, neurostimulation therapy,

and evidence-based psychotherapy). Controls were required to

meet all of the following criteria: (1) PHQ-9 scores < 5; (2)

Generalized Anxiety Disorder-7 (GAD-7) scores < 5; (3) Insomnia

Severity Index (ISI) scores < 8; and (4) no personal or family

history of mental disorders. All subjects were excluded if: (1)

history of mental disorder or drug abuse; (2) history of neurological

disorders; (3) primary language other than Chinese. All participants

provided written informed consent approved by the institutional

review boards of the SecondAffiliatedHospital of XinxiangMedical

University (XEEFY-2023-35-4), in accordance with the Declaration

of Helsinki’s Ethical Principles of Medical Research Involving

Human Subjects.

2.2 Psychological assessment

All psychological questionnaires were completed on the

WeChat-based official account platform. Depression was assessed

by the self-rated PHQ-9, which is a widely used depression

detection instrument based on Diagnostic and Statistical Manual

of Mental Disorders, fourth edition (DSM-IV) criteria in primary

care evaluation (41). In this study, a PHQ-9 total score ≥ 5 was

defined as depression (42). Severity of anxiety was assessed by

the GAD-7, and sleep by the ISI. To address potential biases in

PHQ-9 self-assessment, we implemented a comprehensive quality

control protocol. All participants submitted questionnaires through

an encrypted WeChat platform, ensuring anonymity and reducing

social desirability bias. Field investigators received standardized

training to supervise data collection consistently. Post-collection,

two researchers independently reviewed the data, removing

duplicate submissions, logical inconsistencies (e.g., extreme age

values or uniform responses), and ambiguous answers (e.g., “don’t

know”). For minimal missing data, multiple imputation was

applied tomaintain data completeness. Thesemeasures ensured the

reliability and validity of our findings.

2.3 Acoustic data acquisition

The acoustic data were recorded in a quiet room with minimal

background noise on the day of psychological assessment. Acoustic

data was collected through a WeChat official account platform.

All participants read the neutral text “Let life be beautiful like

summer flowers” displayed on the screen for about 3min. To

ensure the continuity of psychological state and voice data, all

participants transitioned immediately to a standardized recording

environment for audio collection after completing the mental

health questionnaire. The recordings were conducted in the same

room under the guidance of trained investigators, ensuring a

relatively quiet environment to minimize reverberation and other

environmental noise influences. We standardized the recording

equipment by using HUAWEI MatePad BAH3-AN10 tablets. This

consistency ensures standardized recording quality and reduces the

impact of environmental noise. Each participant was asked to read

same text at a normal speech rate and intonation, maintaining

approximately 20 cm distance from the device’s microphone to

ensure data quality. To reduce possible confounding factors, a

set of pre-processing steps were taken, our audio preprocessing

pipeline is split into two stages: voice activity detection (VAD)

and resampling:

(1) voice activity detection (VAD): Non-vocal parts has been

removed to reduce interference with subsequent investigations. We

used a dual-threshold endpoint detection algorithm to cut and

retain relevant sections. This algorithm operates by evaluating the

short-term energy and zero-crossing rate of the audio signal. The

implementation sequence of the algorithm is outlined as follows:
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FIGURE 1

Study design. (A) A total of 206 Chinese university students were recruited for this cross-sectional study. We collected psychological questionnaires

and acoustic data through a WeChat o�cial account platform. After data preprocessing, we extracted 523–dimensional acoustic features for all

participants. (B) Z score normalization was applied to the data. Acoustic features with significant di�erences were selected, and correlation analysis

was performed. Subsequently, five machine learning-based classification models were built using 10-fold cross-validation. Finally, we evaluated the

performance of models and assessed the importance of the selected acoustic features.

Initially, we denote s(n) as the input signal, where n represents the

time index. Then, we calculate the short-time energy (STE) using a

Hammingwindow, denoted as w(n). The STE can be determined as:

E(n) =
∑+∞

m=−∞
s2 (m) · w (n−m) (1)

The start and end of speech segments can be approximated as:

nstart =
min

n
(n|(n) > HT ),

nend =
min

n > nstart
(n|(n) < LT) (2)

Where HT and LT are the high and low thresholds,

respectively. The high threshold HT is determined based on the

peak energy levels typical of vocal segments to ensure accurate

detection of speech onset, while the low threshold LT is set to

identify the trailing edges of speech, avoiding the inclusion of

minimal non-speech artifacts. This can minimize the possibility of

false positives and negatives. The level of accuracy is particularly

crucial in depression detection, as the vocal features such as

tone, pitch, and speech pauses play a significant role in diagnosis.

Additionally, the merits of employing VAD in our study include

the improved clarity of the extracted vocal features. By isolating

pure speech segments, our approach ensures that the subsequent

feature analysis is not contaminated by background noise or

silence, thus enhancing the predictive power of our machine

learning approach.

(2) Resampling: Participants’ recordings were initially stored

with a sampling rate of 48 kHz and a bit rate of 128 kbps.

Upon uploading, the audio file was compressed to 8 kHz and

5.6 kbps. For subsequent analysis, we resampled the audio to a

unified 44.1 kHz sampling rate. This rate is frequently used in

speech signal analysis due to its compliance with the Nyquist

Theorem, effectively capturing the pertinent frequency range of

human speech while enhancing computational efficiency. This

strategic choice ensures our model’s applicability across various

recording environments, thus broadening the potential for real-

world deployment.

2.3.1 Signal-to-noise ratio (SNR) calculation
To ensure audio clarity and validate recording quality, we

calculated the SNR for each voice sample as follows:

(1) Signal preprocessing: Audio recordings were resampled to

16 kHz (mono channel) and normalized to 16-bit PCM format.

(2) Noise reference extraction: Non-speech segments (e.g., silence,

background noise) were detected using WebRTC Voice Activity

Detection (VAD) in aggressive mode (level= 3), with 30-ms frame

segmentation. (3) Power calculation: Speech power (Psignal) was

computed from VAD-identified speech segments. Noise power

(Pnoise) was derived from non-speech segments. SNR formula:

SNRdB = 10·log10(
Psignal−Pnoise

Pnoise
). (5) Quality control: Recordings

with SNR < 20 were excluded from analysis. The final dataset

exhibited a mean SNR of 25.06 dB (SD= 3.33).
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2.4 Acoustic feature extraction

Subsequently, we extracted acoustic features from the voice

samples using the emoLarge feature set provided by the open-

source toolkit called Speech and Music Interpretation by Large-

space Extraction (openSMILE v.3.0.1) and the Librosa toolkit (43).

Acoustic features were categorized into Low-Level Descriptors

(LLD) and High-Level Statistical Functions (HSF). LLD represents

the basic attributes of the speech signals. In this study, acoustic

features were grouped into three main categories: spectral, prosodic

and glottal features. Specifically, spectral features refer to Mel-

frequency cepstral coefficients (MFCC). Prosodic features include

Fundamental Frequency (F0), Effective segmentation (Duration),

Sound Pressure Level (SPL), voiceless, voiced, Short-Time Energy

(STE), Zero-Crossing Rate (ZCR), and Energy. Glottal feature

consists of Formant Frequencies F1, F2, F3, Formant Bandwidths

B1, B2, B3, jitter, and shimmer. HSF is descriptive statistical

analysis of the LLDs, including maximum, minimum, mean,

range, standard deviation, kurtosis, and skewness. Among these

features, MFCC features were particularly emphasized due to their

computational simplicity and significant discriminative power (43).

The extraction of MFCC features generally involves several steps:

pre-emphasis, framing, windowing, fast fourier transform, Mel

filter bank, logarithmic computation, discrete cosine transform,

and the extraction of dynamic differential parameters (44).

Ultimately, 523-dimensional acoustic features were extracted for

each participant. All acoustic features were divided into three main

categories: 273 spectral features, 120 prosodic features, and 130

glottal features.

2.5 Statistical analysis

The Kolmogorov-Smirnov single-sample test was applied to

assess the normality of continuous variables, confirming the normal

distribution of all subjects. Continuous data were demonstrated

as mean ± standard deviation or median, and ranges, and

compared using two-tailed Student’s t tests, or Mann-Whitney U-

test, respectively. Categorical data were reported as frequencies (%),

and comparisons were performed with the chi-square test. Partial

correlation analyses were conducted, controlling for age and gender

as covariates. P < 0.05 was considered statistically significant.

Statistical analysis was performed using SPSS 23.0 software.

2.6 Machine learning algorithms for
classification

In this study, we employed five supervised machine learning

techniques to develop classifiers, specifically Support Vector

Classification (SVC), Random Forest (RF), Linear Discriminant

Analysis (LDA), and Naive Bayes (NB). Prior to model training,

Z-score normalization was implemented to mitigate the influence

of data units, expedite model convergence, and minimize biases

among features, thereby enhancing model accuracy and efficiency.

For feature selection, we posited that acoustic features exhibiting

significant variations and associations with depression may possess

superior discriminative capabilities. In this study, we employed

five supervised machine-learning techniques to construct the

classifiers: SVC, RF, LDA, and NB. Prior to model training, Z-

score normalization was implemented to mitigate the influence

of data units, accelerate model convergence, and minimize biases

among features, thereby improving the accuracy and efficiency. For

feature selection, we hypothesized that acoustic features exhibiting

significant changes and associations with depression may have

superior discriminative ability. In this study, we employed two-

tailed Student’s t-tests and Pearson correlation analyses to identify

statistically significant acoustic features for input. A ten-fold

cross-validation approach, allocating 90% of the data for training

and 10% for internal validation, was implemented to optimize

the model and mitigate overfitting and bias. The GridSearchCV

method was utilized to determine the optimal hyperparameters for

five machine learning models, while other hyperparameters were

set as default.

Specifically, the optimized parameters were solvers (“lbfgs”,

“liblinear”, “saga”) and shrinkage (None, “auto”, “log”, 0.1, 0.5, 1.0)

in LDA, regularization parameter C (0.1, 1, 10, 100), penalty (None,

“l2”) and solvers (“lbfgs”, “liblinear”, “saga”) in LR, regularization

parameter C (0.1, 1, 10, 100) and kernels (“linear”, “rbf”, “poly”)

in SVC, variance smoothing (1e-9, 1e-8, 1e-7, 1e-6) in NB, and

the number of trees in the forest (n_estimators: 10, 100, 200,

500, 1000) and the maximum depth of the trees (max_depth:

None, 5) in RF. Subsequently, five classifiers were utilized to

construct the depression classification model. Depression was

classified as binary, with a PHQ-9 score of ≥ 5 indicating the

presence of depression (absent depression = 0, and depression

= 1). Evaluation metrics of the models included area under the

receiver operating characteristic curve (AUC), ROC (Receiver

Operating Characteristic), accuracy, precision, recall, and F1 score.

SHAP analysis was utilized to enhance the interpretability of five

machine learning models. The contribution and impact of the

selected features were assessed using SHAP values. The ten most

significant acoustic features were identified and visualized utilizing

the SHAP Python package. All machine learning procedures

were implemented using the python sklearn package version

1.2.1 (https://scikit-learn.org/).

3 Results

3.1 Demographic characteristics

The normal distribution of data was tested using the Shapiro–

Wilk W-test (P > 0.05). Compared to controls, depression group

showed higher scores on the PHQ-9, GAD-7 score, and ISI score (P

< 0.05). No significant differences were identified in age, gender, or

education level between groups (P > 0.05). See Table 1.

3.2 Significant changes of acoustic features
in depression

Compared to the control group, 32 differentially acoustic

features were identified in the depression group. Specifically, 25

spectral features, 5 prosodic features, and 2 glottal features were
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TABLE 1 Demographic characteristics of controls and depression among Chinese university students.

Characteristics Control (N = 103) Depression
(N = 103)

Statistics P values

Age, year 20.99± 1.82 20.58± 1.58 1.718 0.087

Gender (Female/Male) 75/28 75/28 0.000 1.000

Education level (Year) 14.93± 1.65 14.57± 1.37 1.603 0.111

PHQ-9 score 1.59± 1.35 8.18± 3.38 −18.388 <0.001∗

GAD-7 score 0.85± 1.22 5.50± 3.78 −11.853 <0.001∗

ISI score 2.24± 1.95 7.15± 4.30 −11.080 <0.001∗

Continuous data are presented as mean (SD) and categorical data as n (%). ∗Significance level was set at P< 0.05. GAD-7, Generalized Anxiety Disorder-7; ISI, Insomnia Severity Index; PHQ-9,

Patient Health Questionnaire-9.

significantly altered according to three categories. The detailed

results are summarized in Table 2 and Figure 2.

3.3 Correlation between acoustic features
and depression severity

A total of 10 spectral features, 3 prosodic features, and 1 glottal

features significantly associated with PHQ-9 scores in depression

group. Specifically, PHQ-9 scores was positively correlated with

spectral features (MFCC_para6_min, MFCC _para6_mean,

MFCC _de2_para2_min, MFCC _de2_para11_max, MFCC

_de2_para11_ptp), prosodic features (F0_kur, F0_de2_kur, and

F0_de2_std) and glottal feature (Shimmer_abs), while negatively

correlated with spectral features (MFCC _para7_std, MFCC

_para13_mean, MFCC _de_para3_skew, MFCC _de_para7_std,

MFCC _de_para11_skew), and prosodic feature (F0_de2_std). The

detailed results are presented in Table 3 and Figure 3.

3.4 Classification results

Based on the above results, acoustic features with significant

alterations were selected as input for the machine learning

algorithm. As shown in Table 4 and Figure 4, LDA model achieved

superior classification performance compared with SVC, RF, NB,

and LightGBM. Its trained 10-fold cross-validated classifier had

an accuracy of 72.8% with an AUC of 0.771 in distinguishing

depression from controls. LR model had the second highest

accuracy of 72.3% with an AUC of 0.76. In contrast, RF exhibited

the lowest performance (AUC = 0.718, Accuracy = 0.66, Precision

= 0.665, Recall = 0.67, and F1 = 0.664). The top ten acoustic

features that had the most influence on prediction of depression

were identified using the SHAP method. The SHAP importance

plots of five models is shown in Figure 5, which shows how

high and low values of each feature are related to SHAP.

Consistently, We found that MFCCwas the most important feature

among five machine learning models. MFCC_de2_para11_max,

and MFCC_para7_std, and MFCC_para9_skew had the highest

mean absolute SHAP value in the LDA , LR, SVC , NB, and RF

models, respectively.

4 Discussion

In this study, we developed an acoustic-based system for

identifying depression among Chinese university students by

integrating 3-min voice recordings with five machine learning

algorithms. Firstly, individuals with depression demonstrated

significant alterations in spectral, prosodic, and glottal features

compared to controls. Secondly, these three categories of

acoustic features were significantly correlated with the severity of

depression. Lastly, these distinct acoustic variations were employed

to construct classification models for detecting depression in

university students. LDA model exhibited optimal performance,

with a mean AUC of 0.771 and an accuracy rate of 0.728. An

analysis of feature importance indicated that MFCC features were

the most significant contributors to the model’s classification

efficacy. This research highlights the potential of acoustic features as

an objective measure for identifying and characterizing depression

among Chinese university students. The findings suggest that

MFCC features combined with LDA classifier could provide a more

objective and accurate tool to complement current assessments.

A significant finding of the study is the presence of acoustic

differences between individuals with depression and control

group, specifically in spectral, prosodic, and glottal features.

Spectral features represent the characteristics of speech signals

within the frequency domain and demonstrate the relationship

between alterations in vocal tract shape and the occurrence

of motion (13). These features are highly highly dependent

on speech content. A prior study constructed a set of 3

(emotion) × 4 (task) speech scenarios involving 104 participants,

revealing that spectral features significantly differed between

individuals with and without depression (45). Variations in

prosodic features primarily reflect speaking behavior in response

to stress, intonation, and emotional factors. Notably, F0 and

energy indicate the pitch and loudness of speech (15). The

depression group demonstrated significantly lower F0_de2_std

and Energy_de2_kur values, suggesting that individuals with

depression exhibit reduced pitch variability, which may manifest as

a more monotonous tone. Mundt et al. (38) identified a reduction

in F0 during depressive states, indicative of alterations in the

vocal cord vibration cycle. According to the source-filter theory

of speech production, glottal features represent the initial sound
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TABLE 2 Significant di�erences of acoustic features between control and depression. among Chinese university students.

Categories Acoustic
features

Control Depression Statistics P values

Spectral features

MFCC_para2_min −125.665± 36.722 −112.619± 41.713 −2.382 0.018

MFCC _para9_mean 19.562± 21.069 25.332± 20.114 −2.010 0.046

MFCC _para5_min −360.949± 47.296 −348.195± 44.763 −1.988 0.048

MFCC _para6_min −267.82± 50.571 −252.729± 44.179 −2.281 0.024

MFCC _para6_mean −13.698± 25.677 −6.073± 25.565 −2.136 0.034

MFCC _para9_skew −0.147± 0.183 −0.094± 0.205 −1.973 0.050

MFCC_de_para4_mean 0.035± 0.036 0.048± 0.031 −2.832 0.005

MFCC_de_para7_min −122.761± 14.222 −118.73± 14.527 −2.012 0.046

MFCC_de_para13_kur 0.218± 0.185 0.278± 0.233 −2.053 0.041

MFCC_de2_para1_min −6.976± 1.197 −6.635± 0.859 −2.345 0.020

MFCC_de2_para2_min −238.468± 41.094 −227.644± 31.426 −2.123 0.035

MFCC_de2_para11_max 258.389± 28.661 271.946± 37.433 −2.918 0.004

MFCC_de2_para11_ptp 523.45± 43.036 542.494± 55.498 −2.752 0.006

MFCC _para4_skew 0.056± 0.167 0.007± 0.174 2.061 0.041

MFCC _para7_ptp 434.236± 46.834 421.327± 38.34 2.165 0.032

MFCC _para7_std 62.567± 5.636 59.983± 4.863 3.523 0.001

MFCC _para9_std 61.899± 5.802 60.36± 4.324 2.159 0.032

MFCC _para13_max 91.773± 17.773 85.359± 20.023 2.431 0.016

MFCC _para13_mean −39.789± 9.172 –45.248± 13.401 3.411 0.001

MFCC_de_para3_skew −0.287± 0.134 −0.324± 0.13 2.036 0.043

MFCC_de_para7_ptp 244.541± 24.687 237.238± 22.247 2.231 0.027

MFCC_de_para7_std 31.623± 2.167 30.854± 1.862 2.733 0.007

MFCC_de_para9_std 31.959± 2.468 31.283± 1.978 2.170 0.031

MFCC_de_para11_skew 0.006± 0.068 −0.015± 0.063 2.247 0.026

MFCC_de2_para1_kur 3.262± 0.896 3.018± 0.689 2.190 0.030

Prosodic features

F0_kur −1.248± 0.26 −1.05± 0.809 −2.370 0.019

F0_de2_kur −1.373± 0.29 −1.227± 0.6 −2.221 0.028

Energy_de2_min −6.976± 1.197 −6.635± 0.859 −2.345 0.020

F0_de2_std 326.206± 25.276 315.237± 37.086 2.480 0.014

Energy_de2_kur 3.262± 0.896 3.018± 0.689 2.190 0.030

Glottal features

Shimmer_abs 2.888± 2.026 3.534± 2.485 −2.045 0.042

B2_de_skew −0.045± 0.076 −0.069± 0.069 2.371 0.019

F0, Fundamental Frequency; MFCC, Mel Frequency Cepstral Coefficients.

source, which is subsequently modified by the vocal tract. The

characteristics of the glottal pulse and its shape are crucial in the

acoustic analysis of depression. Depression group demonstrated

significantly elevated Shimmer_abs values, suggesting heightened

irregularities in voice intensity. These differences illustrate the

potential physiological impact of depression on voice production

mechanisms. This impact may manifest as delayed planning and

preparation processes for neuromuscular commands, attributable

to cognitive impairments, as well as alterations in emotional states

that influence muscle tension, resulting in articulation errors and

alterations in vocal tract characteristics. Collectively, our study

provides further evidence of cross-sectional acoustic variations

in university students experiencing depression. The use of non-

invasive and more accessible vocal information for preliminary
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FIGURE 2

The di�erences in the acoustic features between control and depression among Chinese university students. F0, Fundamental Frequency; MFCC, Mel

Frequency Cepstral Coe�cients. Significance level was set at P < 0.05.
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TABLE 3 Correlation between acoustic features and PHQ–9 scores in

depression group.

Categories Acoustic
features

R values P values

Spectral features

MFCC_para6_min 0.148 0.035∗

MFCC

_para6_mean

0.150 0.032∗

MFCC

_de2_para2_min

0.136 0.052

MFCC

_de2_para11_max

0.230 0.001∗∗

MFCC

_de2_para11_ptp

0.223 0.001∗∗

MFCC _para7_std −0.195 0.005∗∗

MFCC

_para13_mean

−0.163 0.020∗

MFCC

_de_para3_skew

−0.222 0.001∗∗

MFCC

_de_para7_std

−0.191 0.006∗∗

MFCC

_de_para11_skew

−0.159 0.023∗

Prosodic features

F0_kur 0.140 0.046∗

F0_de2_kur 0.156 0.026∗

F0_de2_std −0.200 0.004∗∗

Glottal features

Shimmer_abs 0.142 0.042∗

F0, Fundamental Frequency; MFCC, Mel Frequency Cepstral Coefficients; PHQ–9, Patient

Health Questionnaire–9. ∗P < 0.05, ∗∗P < 0.01.

screening purposes holds promise for reducing the costs of

psychological assessments in school.

Another notable finding is significant association between

spectral, prosodic, and glottal features and depression in Chinese

university students. These three feature categories are linked to

perceptual and physiological components that characterize by

human speech production model. Spectral features were associated

with fewer vocal tract alterations in depression due to the

tighter vocal tract caused by slow thinking, reduced language

communication and activity (40). Research has shown that

prosodic features can serve as a significant indicator of depression

severity. A recent study involving 57 participants demonstrated

that naive listeners were capable of perceiving the severity of

depression through vocal recordings, with vocal prosody explaining

a significant portion of the variance in depression scores (46). Prior

research has similarly identified a significant correlation between

F0 and the severity of depression (38, 47). Depression induces

atypical alterations in the autonomic nervous and somatic systems,

potentially influencing muscle tension and respiratory rate, which

consequently result in alterations to glottal features. Our findings

align with prior research, further confirming the association

between acoustic features and depression. Therefore, we speculate

that depression may exert a direct effect on the physiological

structures underlying vocal production—the vocal tract, larynx,

and lungs, thereby altering the voice structure itself, and ultimately

manifesting as spectral, prosodic, and glottal feature changes.

More interestingly, our study demonstrated that university

students experiencing depression could be effectively differentiated

from control subjects through the application of rapid, cost-

efficient, feasible, and automated speech-based methodologies.

Among five machine learning models, LDA exhibited the highest

performance, achieving an AUC of 0.771 and accuracy of 0.728.

The primary advantage of LDA lies in its capacity to provide an

effective and interpretable classification method by maximizing the

ratio of between-class variance to within-class variance. This allows

LDA to generate a linear combination of features that optimally

differentiates between distinct classes, making it particularly useful

in contexts where classes are well-separated within the feature

space. In line with our findings, Kaur et al. (48) proposed a two-

phase speech-based depression detection system and reported that

LDA outperformed K-Nearest Neighbors (KNN), SVC, and LR

classifiers, achieving a superior F1-score of 0.846. Andreev et al.

(49) applied LDA on data from 35 individuals with depression

and 50 controls to distinguish between the two groups, utilizing

functional networks’ global networks. They also found LDA

achieved the optimal performance, with a classification accuracy

exceeding 0.6. Ji et al. (50) reported that LDA can be utilized for

voice analysis of depression detection, attaining an accuracy of

78.9%. These findings highlight the robustness of the LDA model

in handling classification tasks, suggesting its potential practical

applications in future research. Collectively, the integration of five

distinct machine learning methodologies in this study facilitates

the development of more effective and robust classification

frameworks. These frameworks can be specifically tailored to

acoustic datasets, thereby enhancing predictive performance in

educational applications.

Perhaps the most compelling finding is that MFCC features

contributed the most to five model’s classification efficacy. To

elucidate the decision-making processes of these models, we

employed SHAP for model interpretation. This makes our

classification model more interpretable and ultimately makes the

model suitable for applications. Consistently, our analysis identified

MFCC features (MFCC_de2_para11_max, and MFCC_para7_std,

and MFCC_para9_skew) as the most critical predictors of

depression across the fivemachine learningmodels. MFCC features

are highly effective in simulating human auditory processing

and align well with human auditory characteristics. They also

demonstrate robust recognition capabilities under low signal-

to-noise ratio conditions (29). MFCC is commonly viewed as

a superior method for identifying differences in vocal emotion

characteristics and examining the subtle differences in voice

emotions (51). A previous study has found MFCCs are a more

stable acoustic feature to reflect the vocal difference between

depressed and healthy individuals (45). The density of the spectral

feature correlates positively with depression severity, indicating

that as depression worsen, the MFCC feature space becomes

notably denser (52).Taguchi et al. (43) investigated the differences

in MFCC between individuals with and without depression,

finding evidence of higher sensitivity and specificity in the

second dimension of MFCC, confirming that MFCC may be a
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FIGURE 3

Correlation of acoustic features and PHQ-9 scores in depression group. Heatmap of the correlations between acoustic features and PHQ-9 scores.

The horizontal and vertical axes represent the PHQ-9 score and acoustic features. Red and blue indicate positive and negative correlations,

respectively. In the upper right of the heatmap, the correlation coe�cients between the two metrics are labeled, and statistical significance is shown

by *
P < 0.05; **P < 0.01. Color bar represents the intensity of the correlations.

TABLE 4 Performances of five machine learning algorithms using acoustic features.

Classifier AUC Accuracy Precision Recall F1 score

LDA 0.771 0.728 0.735 0.757 0.737

LR 0.760 0.723 0.730 0.757 0.734

SVC 0.741 0.715 0.732 0.700 0.710

NB 0.727 0.680 0.737 0.553 0.627

RF 0.718 0.660 0.665 0.670 0.664

AUC, area under the curve; LDA, Linear Discriminant Analysis; LR, Logistic Regression; NB, Naive Bayes, RF, Random Forest; SVC, Support Vector Classification.

distinguishing feature between depression and healthy individuals.

One study found that a Gaussian mixture model combined with

MFCC could be used to differentiate depression (53). Ozdas

et al. (54) reported that MFCC distinguishes depressed individuals

from controls with an accuracy rate of 75%. Mobram et al. (55)

investigated the accuracy of MFCC features in the depression

detection system utilizing the support vector discriminant analysis

method was 78%. Altogether, these results suggest that MFCC may

serve as objective and valid features for identifying depression from

Chinese university students.

5 Limitations

Several limitations should be considered. First, this study

utilized a convenience sample from a single province in China,

which may limit the generalizability of our findings. Future

research should incorporate a more diverse, representative

sample. Second, we did not adjust for multiple comparisons in

this study. Future studies with larger sample sizes will allow

for stricter multiple comparison correction methods. Although

we applied ten-fold cross-validation, the risk of overfitting
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FIGURE 4

The performance of five machine learning algorithms. Receiver operating characteristic (ROC) curve (left) and confusion matrix (right). (A) LDA; (B)

LR; (C) SVC; (D) NB; (E) RF. AUC, area under the curve; LDA, Linear Discriminant Analysis; LR, Logistic Regression; NB, Naive Bayes, RF, Random

Forest; ROC, Receiver operating characteristic; SVC, Support Vector Classification.
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FIGURE 5

Feature importance analysis based on SHAP method. The top 10 acoustic features identified by SHAP for the classification model are ordered from

most to least important. (A) LDA; (B) LR; (C) SVC; (D) NB; (E) RF. In the left plots, feature importance is determined by calculating the mean of

absolute SHAP values for each feature. A bar plot displays the mean absolute SHAP value for the top 10 features, where larger bars indicate the

feature’s importance in discriminating between depression and non-depression. In the right plots, each dot corresponds to the SHAP value of each

sample. Red and blue correspond to higher and lower values, respectively. LDA, Linear Discriminant Analysis; LR, Logistic Regression; NB, Naive

Bayes; RF, Random Forest; SHAP, Shapley Additive Explanations; SVC, Support Vector Classification.
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remains. Replication of our results in an independent dataset

is required.

Third, our classification model was constructed using only

one objective measure. Our model employed objective acoustic

features to reduce reliance on self-reports, these features may

still be indirectly influenced by response biases inherent in the

PHQ-9 labels used for model training. Fourth, there may still

be unavoidable background noise despite our efforts to create a

controlled recording environment. The speech signals collected

might contain artifacts related to the acoustic characteristics of

the recording space, potentially impacting the extracted acoustic

features. Future research should focus on developing more robust

feature extraction and modeling techniques that can adapt to

different environmental conditions. Lastly, we did not use data

augmentation in the study. Some acoustic features may exhibit

multicollinearity, but we retained all relevant biomarkers to

maximize detection sensitivity in this exploratory phase. This

approach preserves clinical information but warrants caution

when interpreting individual feature effects. Future studies should

aim to enhance the accuracy and reliability of depression

recognition by incorporating larger sample sizes, a global profile

of acoustic features with uncompressed formats, multi-model

clinical assessments, multi-center datasets, data augmentation

methodologies or deep learning techniques.

6 Conclusions

These findings demonstrate the effectiveness and convenience

of utilizing acoustic feature as objective measures to differentiate

between control and depression in Chinese university students.

The integration of the LDA algorithm with acoustic features can

accurately identification of depression, underscoring the significant

contribution of MFCC feature in the detection process. This study

provides an automated and intelligent acoustic system for large-

scale depression screening in Chinese university students.
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