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Age-related macular degeneration (AMD) is the most common cause of irreversible 
deterioration of vision in older adults. Previous studies have found that exposure 
to pesticides can lead to a worsening of AMD. In this paper, information on 
pesticide exposure and AMD from the National Health and Nutrition Examination 
Survey (NHANES) database was used to divide the data into a training set and 
a validation set. Firstly, the correlation between the variables in the model is 
analyzed. The model is then built using nine machine learning algorithms and 
verified on a validation set. Finally, it is found that the random forest model has 
high predictive value, and its Receiver Operating Characteristic (ROC) value is 
0.75. Finally, SHapley additive interpretation (SHAP) analysis was used to rank the 
importance of each variable in the random forest model, and it was found that 
chlorpyrifos and malathion had quite significant effects on the occurrence and 
development of AMD.
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Introduction

Age-related macular degeneration (AMD) affects one in eight people over the age of 60 in 
developed countries and is the most common cause of irreversible blindness in older adults 
in developed countries. According to a comprehensive estimate, there are approximately 200 
million people worldwide with AMD, and this number is expected to rise to nearly 300 million 
by 2040 (1). In the United States, geographic atrophy (geographic atrophy) of AMD accounts 
for one-fifth of the legal standard of blindness (2). Early AMD primarily manifests as clinical 
symptoms such as drusen and changes in the retinal pigment epithelium. Clinically, late-stage 
AMD is mainly divided into neovascular (also known as wet or exudative) AMD and 
non-neovascular (also known as atrophic, dry or non-exudative) AMD. As AMD progresses 
to the late stage, it leads to vision loss in the macula, which is irreversible and ultimately leads 
to complete loss of vision (3). Based on current research findings, both genetic factors and 
environmental factors play a role in the pathogenesis of AMD (4). AMD is associated with 
polymorphisms in about 20 genes (5, 6). Smoking is known to be associated with an increased 
risk of AMD, and obesity may also be an important factor (7). However, in addition to these, 
there are other pathogenic factors that also play a role (8).

Pesticides, as a modern industrial chemical product, are widely used for various purposes, 
including pest control in agriculture and pesticides in daily living environments. According 
to the United Nations Food and Agriculture Organization (FAO), global pesticide use exceeded 
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2.5 million tons in 2020 (9). The use of pesticides to some extent 
improves the quantity and quality of agricultural products and 
improves people’s living environment, but its indiscriminate and 
irrational use also has a huge impact on the environment and human 
beings themselves (10). For example, after the use of pesticides, most 
of them cannot be degraded in a short time, resulting in residues in 
food, soil, and the environment. Due to the amplification effect of the 
food chain and the biological magnification, these residues will 
ultimately affect human beings themselves (11).

Previous studies have focused on the toxicology and treatment of 
pesticide acute and chronic poisoning, while there has been less 
research on the impact of chronic pesticide exposure on human 
tissues. Fareed et al. reported cases of pesticide workers who were 
more likely to develop AMD (12). There has been even less research 
on the relationship between chronic pesticide exposure and retinal 
degeneration. Only Martha et al. studied found that greater pesticide 
exposure was more likely to lead to the development of AMD (8). 
These studies often limit themselves to estimating the relationship 
between single pesticide exposure and AMD, ignoring the synergistic 
effects of different types of pesticides on the development of AMD, 
and are often limited to small sample studies, with conclusions that 
have certain limitations.

NHANES is a nationwide representative survey conducted by the 
National Center for Health Statistics (NCHS) of the US. The study uses 
a complex multi-stage stratified and probability sampling method to 
assign different weights to participants and uses a series of questionnaires 
and laboratory tests to assess the health and nutritional status of 
non-institutionalized US civilians. NHANES is conducted every 2 years, 
and all survey data can be accessed from the nhanes.cdc.gov website. 
This survey has been approved by the National Health Statistics Ethics 
Review Board. Written informed consent has been obtained from all 
participants according to the Helsinki Declaration (13).

Machine learning methods such as decision trees, random forests, 
and neural networks are a way to build models that can analyze 
complex nonlinear relationships, allowing for a more accurate 
representation of the real-world relationship between pesticide 
exposure and AMD risk. Furthermore, machine learning algorithms 
have the ability to select features, enabling them to automatically 
identify and select important variables. For example, random forests 
and gradient boosted trees provide importance scores. Therefore, this 
study uses machine learning algorithms to analyze the pesticide 
exposure and AMD data from the NHANES database for the US 
population, analyzes the correlation between the two and builds a 
model to evaluate the model’s value, thereby discovering the 
relationship between pesticide exposure and AMD.

Methods

The study used data from the NHANES 2007– 2008 survey, which 
included a total of 10,149 participants. Retinal photographs were taken 
for participants aged 40 or older, and the images were analyzed to 
determine if the participants had age-related macular degeneration. A 
total of 6,134 participants who did not have retinal images were 
excluded, as were 2,796 participants who did not have information on 
pesticide exposure. In addition, participants without income, smoking, 
drinking, hypertension, etc. were not included in the study, and a total 
of 933 participants were included in the study, as shown in Figure 1.

Definition of variables

Definition of Age-Related Macular Degeneration (AMD): AMD 
information is determined through retinal photography images, 
captured using the Canon Non-Mydriatic Retinal Camera CR 6–45 NM 
from participants aged 40 and older. Digital images of the retina are 
captured at a 45-degree angle without dilation using the Canon 
Non-Mydriatic Retinal Camera CR 6–45 NM. Technicians who perform 
the examinations have received training in using digital imaging 
systems. Digital images are evaluated by graders at the University of 
Wisconsin to determine the grade. The retinal images are divided into 
three severity categories: none, early, and late. In order to further 
investigate the relationship between AMD and pesticide exposure, in 
this study, both “early and late AMD” are considered to have AMD.

Acquisition of Pesticide Exposure Data: Pesticide exposure data is 
determined using urine testing data collected during MEC check-up 
vehicles. The target analytes are extracted and concentrated from the 
urine matrix using an automated solid phase extraction system. 
Selective separation of the analytes is achieved using high-
performance liquid chromatography with a gradient elution program. 
Sensitive detection of the analytes is performed by a triple quadrupole 
mass spectrometer with a heated electrospray ionization source. 
Analytes are identified using the specific m/z ion transition, the 
retention time and the ion ratio of the quantification and confirmation 
m/z ion transitions. Isotopically labeled internal standards are used for 
precise and accurate quantification. This method can be used to assess 
human exposure to select non-persistent pesticides by measuring their 
metabolites in urine. It does not directly test for any disease (14).

According to previous studies, some factors that may affect the 
occurrence of AMD were also included in this study, including age, 
gender, race, education level, marital status, income, and other 
demographic information, as well as smoking, drinking, and whether 
the person has hypertension (7). Age and family income in 
demographic information were included as continuous variables, 
while race, marital status, gender and education level were included 
as categorical variables. In addition, information on smoking, alcohol 
consumption, and hypertension was obtained through questionnaires 
and included as a binary variable in the model.

Data analysis

All data analysis was conducted using R software. Continuous 
variables were expressed as means and standard errors (SE), and 
categorical variables were expressed as percentages and SE. Chi-square 
test or t-test was used to compare the baseline characteristics of 
participants. The data were divided into a training set and a validation 
set in a 3:1 ratio. The optimal model type was determined by using the 
training set data with a five-fold cross-validation method to infer the 
performance of each model in multiple training sessions and with 
certain evaluation criteria, focusing on the overall performance of 
each model. In the training set, we used nine different ML construction 
models, including neural network (enet), support vector machine 
(rsvm), LASSO regression (mlp), gradient boosting machine 
(lightgbm), logistic regression (logistic), XGBoost (xgboost), C5.0 
decision trees (dt), K-nearest neighbor (knn), and random forest (rf), 
and validated the models in the validation set. We use the tidymodels 
package in R software to integrate various models, transfer the 
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parameters of each model, use the function of the corresponding 
model to perform data analysis, set up five-fold cross-validation, use 
grid search to find the optimal hyperparameters, and build the model 
with the optimal hyperparameters found.

SHAP values were calculated for each feature in the random forest 
model using the shap package in R. This package implements the 
TreeSHAP algorithm, which is optimized for tree-based models like 
random forests. For each observation in the validation set, the SHAP 
values were computed to quantify the contribution of each feature to 
the predicted risk of AMD. A feature importance bar chart was 
generated by aggregating the absolute SHAP values across all 
observations. This chart ranks features based on their overall impact 
on the model’s predictions, helping to identify the most influential 
features. SHAP summary plots were created to visualize the 
distribution of SHAP values for each feature. These plots show how the 
value of a feature influences the model’s output, with each point 
representing an observation. Additionally, force plots were generated 
for individual predictions to illustrate how each feature contributes to 
shifting the model’s output from the base value (the average model 
output) to the final prediction. SHAP interaction values were calculated 
to explore the interaction effects between pairs of features. These values 
quantify how the combined effect of two features differs from their 
individual contributions. SHAP analysis, based on the Shapley value in 
cooperative game theory, provides a quantitative analysis of the 
contribution of features to the model output (15). On the one hand, 
SHAP analysis allows the calculation of the overall impact of each 
pesticide exposure variable on the prediction of AMD risk. This helps 
identify which pesticide is an important driver of AMD risk. On the 

other hand, SHAP analysis can also reveal the interaction effects 
between pesticide exposures and how they jointly affect AMD risk (16).

Results

It can be seen in Table 1, similar to previous studies, the average 
age of participants with AMD was higher than that of participants 
without AMD (70.014 ± 11.710 vs. 59.494 ± 11.294). In addition, 
there were significant differences in race, marital status, and Malathion 
diacid content in urine between AMD patients and non-AMD 
patients (Figure 2). After that, we conducted Pearson correlation tests 
between the variables included in the model to check for any 
significant correlations, as shown in the Figure 3, except for a weak 
correlation between 3-phenoxybenzoic and dichlorovnl-dimeth prop 
carboacid, no other significant correlations were found.

After dividing the data into a training set and a validation set in 
a 3:1 ratio, the model was trained using the training set and validated 
on the validation set. The ROC curve for AMD prediction risk was 
fitted on the validation set, and the model parameters for each model 
are shown in Figure 4 and Table 2. It can be seen that among the nine 
models, the model using the random forest algorithm has the highest 
area under the curve (Figure 5), the optimal hyperparameters of 
each model are detailed in Appendix B. After conducting SHAP 
analysis on the random forest model, the feature importance bar 
chart was drawn, which shows the importance scores of each feature 
and helps quickly identify key features (Figures 6A,B). The feature 
importance bar chart shows that when demographic variables are 

FIGURE 1

Study participants included for the present analysis from the 2007 to 2008 NHANES.
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TABLE 1 Description of baseline characteristics of the population included in the study.

No (N = 874) Yes (N = 69) Standardize diff. p-value

Age 59.495 ± 11.992 70.014 ± 11.710 0.888 (0.639, 1.136) <0.001

Gender 0.089 (−0.157, 0.334) 0.479

Male 430 (49.199%) 37 (53.623%)

Female 444 (50.801%) 32 (46.377%)

Ethnicity/Race 0.551 (0.305, 0.797) 0.004

Mexican American 134 (15.332%) 6 (8.696%)

Other Hispanic 92 (10.526%) 6 (8.696%)

Non-Hispanic White 436 (49.886%) 50 (72.464%)

Non-Hispanic Black 176 (20.137%) 4 (5.797%)

Other Race—including 

multi-racial

36 (4.119%) 3 (4.348%)

Level of education 0.266 (0.020, 0.511) 0.553

Less than 9th grade 132 (15.103%) 6 (8.696%)

9–11th grade (includes 12th 

grade with no diploma)

138 (15.789%) 8 (11.594%)

High school grad/GED or 

equivalent

211 (24.142%) 21 (30.435%)

Some college or AA degree 205 (23.455%) 17 (24.638%)

College graduate or above 188 (21.510%) 17 (24.638%)

Marital status 0.512 (0.266, 0.758) 0.02

Married 509 (58.238%) 34 (49.275%)

Widowed 112 (12.815%) 15 (21.739%)

Divorced 126 (14.416%) 16 (23.188%)

Separated 35 (4.005%) 3 (4.348%)

Never married 60 (6.865%) 1 (1.449%)

Living with partner 32 (3.661%) 0 (0.000%)

Smoking 0.014 (−0.231, 0.259) 0.913

No 450 (51.487%) 36 (52.174%)

Yes 424 (48.513%) 33 (47.826%)

Alcohol use 0.067 (−0.179, 0.312) 0.591

No 585 (66.934%) 44 (63.768%)

Yes 289 (33.066%) 25 (36.232%)

Hypertension 0.076 (−0.169, 0.321) 0.541

No 410 (46.911%) 35 (50.725%)

Yes 464 (53.089%) 34 (49.275%)

Household income 2.698 ± 1.639 2.395 ± 1.579 0.188 (−0.057, 0.434) 0.138

Lutein and zeaxanthin 1335.499 ± 2598.214 2018.377 ± 5405.980 0.161 (−0.084, 0.406) 0.059

Zinc 11.157 ± 11.180 13.567 ± 18.147 0.160 (−0.085, 0.405) 0.103

BMI 29.146 ± 6.267 28.251 ± 5.227 0.155 (−0.090, 0.400) 0.248

URX24D 0.583 ± 1.447 0.773 ± 1.545 0.127 (−0.118, 0.373) 0.295

URX4FP 0.099 ± 0.288 0.115 ± 0.236 0.060 (−0.185, 0.305) 0.658

URXCB3 0.361 ± 0.134 0.350 ± 0.000 0.113 (−0.132, 0.358) 0.507

URXCPM 2.176 ± 2.479 2.533 ± 2.728 0.137 (−0.108, 0.382) 0.254

URXMAL 0.660 ± 1.493 1.136 ± 3.159 0.192 (−0.053, 0.438) 0.023

(Continued)
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included, the top three most important elements are age, zinc intake, 
and Malathion, while when only pesticide variables included 
(Figures  7A,B) the top three most important pesticide types are 
Chlorpyrifos, Paranitrophenol, and Malathion, indicating that 
Malathion is the most important exposure factor affecting AMD 
compared to other included pesticides. Figure 8 shows the effects of 
malathion exposure on the development of AMD in men and 
women with different BMIs. It can be  seen that among male 
participants, those who are overweight have the highest risk of 
malathion exposure, while among female participants, those who are 
normal weight have the highest tendency to develop AMD. In 
addition, we conducted shap correlation analysis on the variables 

with top shap values in the random forest model, and the results are 
shown in Figure 9. It can be seen that age has the greatest interaction 
with zinc intake, while the other variables have less significant effects.

Discussion

As a human-made chemical agent used to kill pests and weeds 
in agriculture, pesticides can cause unavoidable effects on human 
tissues if consumed in excess or chronically exposed. For 
example, organophosphate pesticide poisoning, the most 
common pesticide poisoning, can be  divided into acute and 

TABLE 1 (Continued)

No (N = 874) Yes (N = 69) Standardize diff. p-value

URXOPM 1.229 ± 3.062 0.905 ± 1.499 0.134 (−0.111, 0.380) 0.384

URXOXY 0.242 ± 0.794 0.298 ± 0.664 0.076 (−0.169, 0.321) 0.573

URXPAR 1.282 ± 2.363 1.087 ± 1.535 0.098 (−0.147, 0.343) 0.5

URXTCC 1.261 ± 3.254 1.243 ± 3.003 0.006 (−0.239, 0.251) 0.964

URXUCR 111.931 ± 72.161 104.000 ± 59.900 0.120 (−0.126, 0.365) 0.374

URX25T 0.073 ± 0.002 0.007 ± 0.000 0.083 (−0.162, 0.328) 0.971

FIGURE 2

The distribution of the population included in the study. To make the chart more concise, abbreviations have been used for some variable names, as 
detailed in Appendix A.
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chronic poisoning, both of which can cause serious harm to 
human life safety. Studies have found that the accumulation of a 
variety of pesticides, including organophosphates, in the body 
can lead to the development of retinal.

This study used the data on heavy metal exposure from the 2007–
2008 National Health and Nutrition Examination Survey (NHANES) 
of the United States and used nine machine learning algorithms to 
screen the data. An effective prediction model for predicting AMD 

FIGURE 3

Results of Pearson correlation analysis among different variables. In order to make the chart more concise, some variables are replaced by their short 
words.

FIGURE 4

Various evaluation indicators of different models. bal_accuracy: Balanced Accuracy; f_meas: F1 Score; j_index: Youden’s J Index; kap: Cohen’s Kappa; 
mcc: Matthews Correlation Coefficient; npv: Negative Predictive Value; ppv: Positive Predictive Value; sens: Sensitivity; spec: Specificity.
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risk based on pesticide exposure levels was finally developed. We not 
only revealed the best performance of the RF model through SHAP 
analysis, but also proved that, besides age factor, urinary Malathion 
level was the variable with the most significant contribution to the risk 
of AMD compared with other pesticides and demographic variables. 
Our results show that there are interactive effects between different 
variables, which jointly affect the occurrence of AMD, and also prove 
the high reliability and accuracy of the model.

The retina is a fairly complex tissue that plays a crucial role in 
vision. The retina is divided into the neural epithelium and the 
pigment epithelium. The neural epithelium contains five main cell 
types: the cone and rod cells, bipolar cells, amacrine cells, Müller cells, 
and ganglion cells. The pigment epithelium mainly consists of RPE 
cells, which are tightly arranged among cells to form the 10-layer 
structure of the retina. Light signals are converted into electrical and 
chemical signals through the retina and transmitted to the visual 
center via the optic nerve to form an image (17).

Because of the complex and delicate structure of the retina, any 
substance that affects the metabolism of retinal cells will affect the 
function of the retina. Previous studies have found some chemicals 
that cause retinal toxicity, such as hydroxychloroquine, which can 
cause retinal damage (18). Not only drugs, but other substances in 
nature can also affect the retina and affect the patient’s vision. For 
example, turmeric (Rosaceae) has great potential for preventing and 
treating chronic diseases such as arthritis and diabetes (19). Kisu 
(Rosaceae) is one of the most commonly used medicinal plants in 
some parts of Africa for treating diarrhea and diabetes (20, 21). In 
animal experiments, two compounds were given to chicks for feeding, 
and the results showed that both compounds would damage visual 
function (visual discrimination and stimulus detection in the 
peripheral field), and high doses of both drugs could induce 
neurodegeneration (22).

While pesticides are a type of chemical agent synthesized by 
human industry for the purpose of killing pests and weeds, excessive 
intake or chronic exposure can inevitably have an impact on human 
tissue structure. For example, organophosphate pesticide poisoning, 
the most common form of pesticide poisoning, can be classified as 
either acute or chronic poisoning, both of which pose significant 
threats to human life safety (23). Research has found that the 
accumulation of a variety of pesticides, including organophosphates, 
in the body can lead to the development of retinal degeneration, 
resulting in a decline in retinal cell function and loss of vision. This 
conclusion has been confirmed by small sample studies and basic 
research. According to the study of Montgomery et al., AMD was 
associated with ever use of organochlorine [OR = 2:7 (95% CI, 1:8, 
4:0)] and organophosphate [OR = 2:0 (95% CI, 1.3, 3.0)] insecticides 
and phenoxyacetate herbicides [OR = 1:9 (95% CI, 1:2, 2:8)]. Even 
when gender is stratified, the results are still significant (8).

Machine learning can efficiently identify the most important 
factors that affect the outcome, and this process does not require 
human intervention and continuous improvement (24, 25). Random 
forests can combine the prediction results of multiple decision trees, 
providing stronger generalization and stability. Compared with the 
traditional linear model, it can also deal with the relationship between 
nonlinear variables. Neural networks also have excellent analytical 
capabilities in analyzing nonlinear relationships and high-dimensional 
data, but they usually require a lot of data and computational 
resources, take a long time to train and are difficult to adjust (26). T
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SVM is not sensitive to data but can handle nonlinear and high-
dimensional datasets (27). DT supports visual analysis but is prone to 
overfitting problems (28). KNN has several beneficial features, 
including high accuracy, insensitivity to outliers, no assumptions 
about data input, simplicity and efficiency; however, its time 
complexity is quite high (29). Besides, Elastic Net, Logistic Regression, 

LightGBM, and XGBoost show distinct advantages and disadvantages. 
Logistic Regression, as a classic linear model, offers high 
interpretability, making it easy to understand variable impacts. 
However, it struggles with complex data patterns. Elastic Net combines 
Lasso and Ridge, excelling in handling multicollinearity and variable 
selection (30). LightGBM and XGBoost, being gradient—boosting 

FIGURE 5

The area under the curve for the nine models. It can be seen from the figure that among all models, the random forest model has the highest 
predictive value on the validation set (AUC = 0.75).

FIGURE 6

The shap values for different variables in the random forest model. It can be seen from the figure that the top three variables of importance are age, 
zinc intake, and Malathion in turn.
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algorithms (31, 32), are computationally efficient and highly accurate, 
but their black—box nature reduces interpretability. We selected the 
RF model as the best performance model for predicting AMD based 
on pesticide exposure data using ROC analysis and corresponding 
AUC values. Random forest (RF) is a popular machine learning 
algorithm that is particularly good at handling classification and 
regression problems (33). According to the results of the machine 
learning modeling analysis, the random forest model has high model 

predictive value. The area under the ROC curve (AUC) is a widely 
accepted metric for evaluating binary classification models. An AUC 
of 0.75 indicates a model that significantly outperforms random 
chance (AUC = 0.5) and offers practical utility across diverse domains. 
For example, in clinical diagnostics, Khalilia et al. demonstrated that 
models with AUC ≥ 0.75 provide “clinically meaningful 
discrimination” in predicting disease outcomes, even when data are 
noisy or imbalanced (34). Similarly, in machine learning, Bradley (35) 

FIGURE 7

The shap values of each variable after only pesticide variables are included in the random forest model for importance ranking. The top three important 
variables are 3,5,6-trichloropyridinol, Paranitrophenol, and Malathion diacid.

FIGURE 8

The effects of malathion exposure on the development of AMD in men and women with different BMI.
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categorized AUC = 0.75 as “moderately accurate,” suitable for 
applications like fraud detection, where balancing sensitivity and 
specificity is critical. Additionally, Lobo et al. emphasized that AUC 
improvements from 0.7 to 0.75 can substantially enhance decision-
making in ecology and conservation biology (36). While higher AUC 
values are ideal, achieving 0.75 reflects a robust compromise between 
model complexity and real-world applicability, making it a valuable 
benchmark in contexts demanding actionable yet imperfect 
predictions. Then, we used SHAP analysis to rank the variables in the 
random forest model in order of importance, with the top five 
variables being age, zinc intake, malathion, chlorpyrifos, and 
BMI. We  employed SHAP (SHapley Additive exPlanations) for 
variable importance analysis due to its “mathematical rigor” and 
“consistency” in capturing feature contributions within complex 
models like random forests (37). Unlike Gini importance, which 
overestimates high-cardinality features, or Permutation Importance, 
which suffers from collinearity sensitivity and computational cost, 
SHAP quantifies marginal contributions using Shapley values, 
ensuring unbiased estimates. The alignment of SHAP-derived 
rankings with prior studies underscores the robustness of key 
predictors across methodologies. SHAP additionally enables granular 
interpretation of feature interactions, enhancing mechanistic insights. 
It can be seen that age remains the strongest risk factor for AMD, 
consistent with previous studies. In addition, zinc intake is also 

important in the development of AMD, with a higher intake of zinc 
reducing the occurrence of RPE cell autophagy and thus reducing the 
incidence of AMD (38, 39). In this model, malathion and chlorpyrifos 
play a more important role in the development of AMD than other 
pesticides. In the SHAP analysis that only includes pesticide 
components, Chlorpyrifos, Paranitrophenol, and Malathion remain 
the top three most important variables.

Chlorpyrifos and Malathion are organophosphate (OP) 
pesticides. Epidemiological evidence suggests that farmers who use 
organophosphate pesticides have a higher age-related macular 
degeneration (AMD) incidence rate (8) This research has also been 
confirmed in animal models. Both of them affect AChE function 
and thus have an impact on retinal physiology, as evidenced by the 
slower recovery of dark-adapted mice in the ERG measurement after 
intermittent doses of Chlorpyrifos (40). Chlorpyrifos can also 
promote cell damage through oxidative stress. Oxidative stress and 
cell death were inhibited in animals pretreated with a combination 
of antioxidant components such as vitamin C (250 mg/kg) and 
vitamin E (150 mg/kg) for 6 days. Therefore, oxidative stress 
promotes organophosphate-induced cell death (41). On the other 
hand, organophosphate pesticides also inhibit AchE activity and 
increase intracellular calcium levels, both of which can be blocked 
by vitamin C and E, further proving that ROS production is the 
main cause of these effects (42). Chlorpyrifos also causes ROS 

FIGURE 9

The shap correlation between the different variables.
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production in human retinal pigment epithelial cells 19 (ARPE 19 
cells) (43). In animal studies, continuous exposure to Chlorpyrifos 
also reduced anterograde axonal transport from the optic nerve to 
the superior colliculus in rats (44). It has been shown that 
organophosphorus pesticides can disrupt the connection between 
driver proteins and microtubules, which in theory leads to 
disruption of the driving-dependent vesicle transport in 
microtubules (45). In summary, prolonged exposure to 
organophosphorus pesticides reduces the function and activity of 
optic cells, leading to the progression of AMD.

The strength of this study is the establishment of a predictive model 
of pesticide exposure and the development of age-related macular 
degeneration. This model has high predictive value, and the conclusion 
obtained by using shape analysis to rank the importance of variables is 
highly consistent with the results of previous studies, so we believe that 
this model has certain predictive value. However, there are some 
limitations in this paper. First of all, due to the difference in metabolic rate 
of pesticides in the body, the duration, dose and frequency of exposure to 
pesticides may affect the concentration of pesticides in urine. The 
performance of the random forest model on the verification set needs to 
be  improved, and the prediction performance of the model can 
be improved by increasing the sample size in the future. In addition, due 
to the limitation of data collection, only the data from 2007 to 2008 were 
included, so the conclusions of this study still have certain limitations in 
generalization and use. Further research is needed to confirm the 
relationship between the two. Given the inherent limitations of cross-
sectional data, we  suggest that future studies should rely more on 
longitudinal data or other experimental designs to further verify whether 
the associations we found are causal.

Conclusion

This study used machine learning algorithms to establish a 
diagnostic model for AMD caused by pesticide exposure, and random 
forest had the highest predictive value among many models. The 
importance of variables in the random forest model was ranked, 
indicating that exposure to malathion and chlorpyrifos is more likely 
to cause AMD, which suggests that relevant departments should 
be more cautious when using and producing similar pesticides.
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Appendix A List of acronyms.

RIDAGEYR: Age.
RIAGENDR: Gender.
RIDRETH1: Ethnicity.
DMDEDUC2: Level of education.
DMDMARTL: Marital status.
SMQ020: Smoking.
ALQ101: Alcohol use.
BPQ020: Hypertension.
INDFMPIR: Household income.
DR1TLZ: Dietary intake of lutein and zeaxanthin.
DR1TZINC: Dietary intake of zinc.
BMXBMI: BMI.
URX24D: 2,4-dichlorophenoxyacetic acid.
URX4FP: 4-fluoro-3-phenoxybenzoic.
URXCB3: cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane carboxylic acid.
URXCPM: 3,5,6-trichloropyridinol.
URXMAL: Malathion diacid.
URXOPM: 3-phenoxybenzoic.
URXOXY: Oxypyrimidine.
URXPAR: Paranitrophenol.
URXTCC: trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid.
URX25T: 2,4,5-Trichlorophenoxyacetic acid.
URXUCR: urine.

Appendix B Optimal hyperparameters of different models.

dt cost_complexity tree_depth min_n 0.000237 4 8

rf mtry trees min_n 10,200 20

xgboost mtry min_n tree_depth 2 8 3

enet penalty mixture 0.0774 0.25

svm cost rbf_sigma 0.0312 0.0001

nent hidden_units penalty 24 1

lightgbm mtry trees min_n tree_depth learn_rate loss_reduction 131,494 28 8 0.000000290 0.000302

knn neighbors 11
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