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Background: Ethylene oxide (EO) is a toxic compound extensively used in 
industrial applications. This study quantified serum EO levels by measuring 
hemoglobin-bound ethylene oxide (HbEO). However, the link between bone 
mineral density (BMD) and HbEO levels remains unexplored.

Methods: A total of 2,570 participants were evaluated using data from National 
Health and Nutrition Examination Survey (NHANES) (2015–2018). Generalized 
linear regression models (LRM) and restricted cubic spline (RCS) analyses were 
used to investigate the association between blood EO levels and BMD. Adjusted 
models were also applied for comprehensive analysis.

Results: Blood EO levels and BMD were inversely related (p = 0.007). This RCS 
analysis also showed an L-shaped dose–response correlation between EO 
levels and BMD (p for nonlinearity <0.001).

Conclusion: This study highlights a substantial correlation between EO exposure 
and BMD. Further randomized controlled trials are required to establish a causal 
relationship.
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Introduction

Ethylene oxide (EO) is a significant industrial and environmental chemical derived from 
ethylene, extensively used in sterilizing medical devices, producing various consumer 
products, and other industrial processes (1–3). Moreover, EO is also found in polluted air, 
vehicle emissions, and tobacco smoke (4, 5). At ambient temperature, EO exists as a gas, with 
inhalation serving as the primary route of human exposure. Once inhaled, EO is readily 
absorbed into the circulation, enabling widespread distribution and the formation of 
macromolecular adducts with nucleic acid and proteins (6).

EO-hemoglobin (Hb) adducts, specifically N-(2-hydroxyethyl) valine hemoglobin-
bound ethylene oxide (HbEO), are frequently utilized as biomarkers for assessing exposure 
to EO After entering the bloodstream through respiration or dermal absorption, EO 
preferentially binds to hemoglobin to form HbEO adducts . The biological half-life of HbEO 
in the human body approximates the lifespan of red blood cells (approximately 120 days)  (7), 
theoretically reflecting average exposure levels over the past 2–4 months. This characteristic 
makes it superior to direct measurement of EO (half-life of mere minutes to hours) or its 
urinary metabolites  (8). Furthermore, the binding between EO and hemoglobin is 
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irreversible . With continuous exposure, HbEO may gradually 
accumulate, rendering it more suitable for chronic exposure 
assessment . Previous studies have also demonstrated that HbEO has 
high sensitivity and effectiveness as a biomarker of EO exposure (9, 
10). The International Agency for Research on Cancer regards EO as 
a group 1 human carcinogen (11). Previous studies have indicated 
that EO directly contributes to increased oxidative stress (OS). 
Furthermore, emerging evidence suggests a link between EO and 
various conditions, including elevated risks of developing asthma, 
diabetes, hypertension (HTN), cardiovascular disorders, and renal 
stones (12–17).

Healthy bones are essential for maintaining the body’s structural 
integrity, storing calcium, protecting vital organs, and anchoring 
muscles. Bone mineral density (BMD) is a widely used parameter for 
assessing bone health, with reductions in BMD serving as an early 
indicator of osteoporosis, a chronic condition that remarkably 
elevates the risk of fragility fractures (18). The prevalence of 
osteoporosis and associated fractures is rising sharply due to the 
aging population, leading to functional deterioration, reduced 
independence, economic and social burdens, and even death (19). 
Thus, the prevention of osteoporosis has emerged as a crucial 
challenge in modern medicine (20). Multiple factors contribute to the 
reduction of BMD, including environmental influences, genetic 
predisposition, and individual physiological factors such as 
endogenous hormone levels (19). Recent evidence suggests that 
environmental contaminants may significantly disrupt bone 
homeostasis (21, 22).

Besides, the association between HbEO and BMD remains poorly 
understood. Therefore, this study examined the possible correlation 
between blood HbEO levels and BMD by using data from the National 
Health and Nutrition Examination Survey (NHANES) to explore 
effective pathogenic mechanisms.

Methods

Data and participants

Data from NHANES between 2015 and 2018 were analyzed. This 
program, initiated by US Centers for Disease Control and Prevention, 
evaluated the health and nutrition of the US population. Data 
collection comprised stratification, multistage sampling, and 
probability cluster techniques. The National Center for Health 
Statistics Institutional Review Board approved the study protocols, 
and all individuals signed an informed consent form (23).

Previous evidence suggested that most bone mass accumulation 
occurs in late adolescence (24) and adults face various adverse factors 
that can negatively affect their BMD (25). Participants were excluded 
as per the following criteria: (1) age < 10 years; (2) missing data on 
key variables, i.e., age, gender, race, total-body BMD, blood 
biochemistry, body mass index (BMI), physical activity levels, and 
alcohol consumption; and (3) previous malignancy [cancers often 
lead to bone loss (26)]. After excluding them, approximately 2,570 
eligible individuals participated in the final analysis (Figure 1).

Total bone mineral density

Bone mineral density (g/cm2) was observed via dual-energy 
X-ray absorptiometry (DXA) scans. Pregnant women, as well as 
individuals with a positive urine pregnancy test, were not included. 
However, individuals exceeding a BW of 136 kg or a height of 
195.6 cm were deemed ineligible for DXA scanning. Whole-body 
DXA scans were carried out via a QDR 4500A fan-beam 
densitometer (Hologic, USA) as per the provided protocols. Scans 
were analyzed and reviewed by the Department of Radiology at the 

FIGURE 1

Flowchart portraying the sample selection.
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University of California, San Francisco, utilizing standard 
NCHS procedures.

Exposure definitions

In this study, HbEO was used as a biomarker due to its remarkably 
high sensitivity in evaluating EO exposure (27). The measurement of 
HbEO adhered strictly to the guidelines outlined in the NHANES 
Laboratory/Medical Technologist Protocols Manual, available at 
https://wwwn.cdc.gov/Nchs/Nhanes/2013-2014/ETHOX_H.htm 
(accessed 25 June 2024). All specimen collection, processing, and 
transportation procedures were carried out per the standardized 
established procedures.

Total Hb levels and their adducts were quantified in this study. 
The modified Edman reaction measured Hb levels via a provided 
assay kit (Tech Diagnostics, USA). Moreover, HbEO levels in both 
whole blood and red cells were analyzed using high-performance 
liquid chromatography coupled with tandem mass spectrometry and 
are reported as pmol/g Hb. Detailed experimental procedures are 
provided in the NHANES manual.

Covariates

The demographic variables evaluated in this study included age (in 
years), race (categorized as Black, White, or Other), sex (male or 
female), serum vitamin D level and dietary calcium intake. BMI was 
measured as the weight (kg)/height (m2) ratio. Medical conditions such 
as HTN, asthma, chronic kidney disease (CKD), diabetes mellitus 
(DM), and were self-reported based on previous diagnoses by 
physicians. Further, HTN was recognized if medication was taken for 
the condition, systolic blood pressure ≥140 mmHg, or diastolic blood 
pressure ≥ 90 mmHg. Levels of physical activity were quantified using 
the metabolic equivalent task (MET) and determined as: physical 
activity (MET·min/week) = suggested MET × exercise duration for 
respective activities (min/day) × frequency of exercise (days/week) (28).

Statistical analysis

All data were statistically analyzed via the nhanesR package. 
Participants were stratified into 4 groups, with HbEO levels 
categorized by quartiles: Q1 (≤22.65), Q2 (22.65 < Q2 ≤ 32.7), Q3 
(32.7 < Q3 ≤ 92.77), and Q4 (>92.77). The NHANES sample was 
designed to represent the population of the US, and analyses reported 
here are weighted following the NHANES Analytic Guidelines (29). 
Weighted chi-squared tests compared inter-groups of categorical 
variables. Because BMD is a continuous variable and confounding 
factors include multiple continuous and categorical variables, we use 
a weighted generalized linear regression model. These included model 
1 (not adjusted) and model 2, with additional adjustments for race, 
age, sex, BMI, DM, HTN, CKD, asthma, MET, alcohol consumption, 
ALT, AST, Hb, HbA1c, serum vitamin D level and dietary calcium 
intake. Moreover, We  investigated whether the shape of the 
relationship between BMD and HbEO was non-linear using the 
restricted cubic spline (RCS) regression model, and HbEO was 
included in the model as a continuous variable by using model 2. 

Subgroup analyses further explored possible sources of variability in 
this relationship. Several sensitivity analyses were conducted to 
evaluate the robustness of the findings. First, we used unweighted data 
to perform sensitivity analysis. Secondly, we converted HBEO into a 
continuous variable to determine if there is a linear relationship. 
Finally, explore the relationship between BMD of Lumbar spine and 
HbEO. In addition, we  conducted variance inflation factor (VIF) 
analysis to evaluate multicollinearity and check the stability of the 
results. p < 0.05 was considered significant.

Result

Participant features

Table 1 details the initial characteristics of all participants. All 
participants were American aged 10 to 59 (mean age, 35.104 ± 0.382), 
comprising 913 (39.35%) White and 1,382 (53.85%) male individuals. 
Table 1 shows the weighted features of the individuals arranged by 
HbEO quartiles. Moreover, substantial variations in confounding 
variables were observed across the quartiles (see Figure 2).

Relationship between EO and BMD

Table 2 presents the substantial correlation between the levels of 
HbEO and BMD. No significant link was seen between the two in 
Model 1 (p for trend = 0.921).

Model 2 was constructed, incorporating additional variables, 
including age, race, sex, BMI, DM, HTN, CKD, asthma, MET, alcohol 
intake, ALT, AST, Hb, HbA1c, serum vitamin D level, and dietary 
calcium intake.

In the adjusted model 2, upregulation of HbEO was substantially 
correlated with reduced BMD (p = 0.007).

When using the first HbEO level as the reference, the β coefficient 
for level 2 was 0.00614 (95% CI: −0.00766, 0.01994), for level 3 was 
−0.00946 (95% CI: −0.02632, 0.00739), and for level 4 was −0.01944 
(95% CI: −0.03382, −0.00507), with p for trend = 0.007. The 
multivariable-adjusted RCS model further examined the correlation 
between HbEO and BMD, revealing an L-shaped dose–response curve 
(p for nonlinearity <0.001). This model indicated that BMD reaches 
its minimum value when HbEO exceeds 219.56. The VIF values of all 
factors were less than 5 (Supplementary Table 4).

Subgroup analyses

All parameters, i.e., gender, age, race, BMI, alcohol intake, HTN, 
CKD, DM, asthma, and MET, were used as stratification variables to 
assess the trend in effect size (Table 3).

Subgroup analysis revealed considerable associations between HbEO 
levels and BMD based on age (p for interaction = 0.009). Specifically, 
higher HbEO levels were related to lower BMD in individuals between 
ages 30 and 39 (p < 0.001) and 50 and 59 (p for trend = 0.002). Among 
individuals with HTP, those with the highest HbEO Q4 had a substantial 
negative relationship with BMD (β = −0.032; 95% CI: −0.057,-0.007; p for 
trend = 0.005, p for interaction = 0.041). No substantial variations were 
seen in the remaining subgroups (p > 0.05).
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TABLE 1 Characteristics of the study population based on HbEO quartiles.

Variable Total Q1 Q2 Q3 Q4 P value

Age (years) 35.104(0.382) 35.907(0.704) 33.300(0.863) 31.811(0.657) 38.305(0.661) < 0.0001

Race/ethnicity, n (%) < 0.0001

  Black 512(11.216) 101(7.857) 101(8.719) 128(12.761) 182(16.372)

  Other 1,145(27.844) 301(26.505) 341(33.151) 365(41.109) 138(14.493)

  White 913(60.940) 248(65.638) 199(58.130) 144(46.131) 322(69.135)

BMI 0.43

  <18.5 96(2.743) 15(2.027) 31(3.459) 31(2.817) 19(2.882)

  18.5 ≤ BMI < 25 780(29.536) 171(28.715) 185(26.187) 225(31.782) 199(31.909)

  25 ≤ BMI < 30 1,694(67.721) 464(69.258) 425(70.354) 381(65.401) 424(65.209)

Sex, n (%) 0.005

  Female 1,188(45.367) 342(50.217) 298(46.796) 304(44.805) 244(38.666)

  Male 1,382(54.633) 308(49.783) 343(53.204) 333(55.195) 398(61.334)

TBMD (g/cm2) 1.113(0.004) 1.116(0.007) 1.114(0.005) 1.100(0.008) 1.119(0.006) 0.285

HbA1c (mmol/L) 5.420(0.022) 5.327(0.038) 5.395(0.028) 5.504(0.051) 5.492(0.044) 0.002

Alt (IU/L) 25.553(0.526) 24.000(0.603) 25.518(1.192) 26.414(1.012) 26.791(1.700) 0.138

Ast (IU/L) 25.164(0.417) 23.878(0.495) 24.920(0.667) 25.865(0.741) 26.399(1.395) 0.088

Hemoglobin (g/dl) 14.388(0.037) 14.146(0.059) 14.308(0.072) 14.292(0.064) 14.826(0.065) < 0.0001

Serum vitamin D level (nmol/L) 65.784(1.106) 67.282(1.452) 64.837(1.529) 64.479(2.236) 65.853(1.519) 0.536

dietary calcium intake (mg) 1039.556(14.640) 1030.891(32.310) 1073.167(21.558) 1047.146(26.858) 1013.139(42.309) 0.5

Drinks(g/day) < 0.0001

  0 2010(72.222) 498(68.941) 546(80.796) 542(77.847) 424(63.971)

  0–500 273(13.087) 84(17.117) 55(11.076) 54(11.718) 80(11.157)

  > = 500 287(14.691) 68(13.942) 40(8.128) 41(10.435) 138(24.872)

CKD, n (%) 0.509

  No 2,331(91.846) 592(92.985) 581(91.931) 585(92.125) 573(90.194)

  Yes 239(8.154) 58(7.015) 60(8.069) 52(7.875) 69(9.806)

Asthma, n (%) 0.243

  No 2,154(83.257) 554(84.982) 549(84.407) 534(83.538) 517(79.918)

  Yes 416(16.743) 96(15.018) 92(15.593) 103(16.462) 125(20.082)

Hypertension, n (%) < 0.0001

  No 2026(78.015) 506(79.063) 533(82.103) 540(83.928) 447(68.503)

  Yes 544(21.985) 144(20.937) 108(17.897) 97(16.072) 195(31.497)

Diabetes mellitus, n (%) 0.114

  DM 195(6.989) 44(5.615) 44(7.029) 52(7.990) 55(7.838)

  IFG 85(3.307) 28(4.535) 23(2.966) 7(1.297) 27(3.674)

  IGT 51(1.741) 7(0.911) 19(2.557) 14(2.080) 11(1.725)

  No 2,239(87.963) 571(88.938) 555(87.447) 564(88.633) 549(86.763)

MET(met·min/week) < 0.0001

  <2000 1,072(40.862) 273(41.483) 291(44.236) 291(42.705) 217(35.607)

  2,000–5,999 747(28.600) 206(32.066) 198(29.263) 203(32.559) 140(20.837)

  > = 6,000 751(30.538) 171(26.451) 152(26.500) 143(24.736) 285(43.556)

HbEO, hemoglobin-bound ethylene oxide; BMI, body mass index; TBMD, Total bone mineral density; CKD, chronic kidney disease; DM, diabetes mellitus; IFG, impaired fasting glucose; IGT, 
impaired glucose tolerance; HbA1c, glycated hemoglobin A1c; ALT, alanine aminotransferase; AST, aspartate aminotransferase. MET, metabolic equivalent task. Q1 ≤ 22.65; 
22.65 < Q2 ≤ 32.7; 32.7 < Q3 ≤ 92.77; Q4 > 92.77.
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Sensitivity analysis

The results of sensitivity analysis were consistent with those of 
main analysis. Details are listed in Supplementary Tables 1–3.

Discussion

This cross-sectional study utilized NHANES data from 2015 to 
2018, including 2,570 individuals who met the predefined inclusion 
criteria. According to our knowledge this analysis is the first to 
investigate links between exposure to EO and BMD in the US 
population. The univariate analysis did not find a significant 
correlation between the two variables. However, after adjusting for 
potential confounding variables, HbEO levels were inversely 

correlated with total-body BMD. Previously, it was reported that BMD 
is a vital parameter for assessing osteoporosis, with decreased BMD 
documented as constituting a key risk for osteoporosis-associated 
fractures (30). The identification of modifiable risk factors is highly 
important, as osteoporosis can be effectively prevented and managed 
before fractures develop. This study underscores the negative 
association between exposure to EO and the BMD in the normal 
population. Further randomized controlled trials are required to 
establish a causal relationship.

Environmental pollution is strongly associated with BMD. We did 
find a number of studies implicate various environmental pollutants 
with BMD (21). For example, Scimeca et al. (8) found that heavy 
metals such as cadmium, lead, chromium, mercury accumulation 
affects bone microarchitecture in osteoporotic patients. Particulate 
matter (PM), especially suspended particulate matter with a diameter 

FIGURE 2

Multivariable-adjusted restricted cubic spline curve for the association between blood ethylene oxide levels and bone mineral density. The solid red 
line represents the fitted curve; the light red area represents the confidence interval.

TABLE 2 Association of HbEO with TBMD.

Q1 Q2 Q3 Q4 P for trend

β(95% CI)

Model I Ref −0.00162(−0.01750,0.01426) −0.01518(−0.03600,0.00565) 0.00313(−0.01188,0.01814) 0.921

Model II Ref 0.00614(−0.00766, 0.01994) −0.00946 (−0.02632, 0.00739) −0.01944(−0.03382,-0.00507) 0.007

HbEO, hemoglobin-bound ethylene oxide; BMI, body mass index; TBMD, Total bone mineral density; COPD, chronic obstructive pulmonary disease; CKD, chronic kidney disease; DM, 
diabetes mellitus; IFG, impaired fasting glucose; IGT, impaired glucose tolerance; HbA1c, glycated hemoglobin A1c; ALT, alanine aminotransferase; AST, aspartate aminotransferase; MET, 
metabolic equivalent task. Model 1: unadjusted. Model 2: Adjusted for age, race, sex, BMI, DM, hypertension, CKD, asthma, MET, drinking status, ALT, AST, hemoglobin, and HbA1c, dietary 
calcium intake, vitamin D levels. Q1 ≤ 22.65; 22.65 < Q2 ≤ 32.7; 32.7 < Q3 ≤ 92.77; Q4 > 92.77.
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TABLE 3 Association between HbEO and TBMD in subgroups.

Variable Q1 Q2 p Q3 p Q4 p p for trend 
(character2integer)

P for 
interaction

Age(years) 0.009

  10–17 ref 0.019(−0.019, 0.057) 0.283 −0.003(−0.041, 0.035) 0.863 −0.029(−0.093, 0.035) 0.319 0.545

  18–29 ref 0.019(−0.005, 0.043) 0.116 0.008(−0.018, 0.034) 0.546 0.011(−0.018, 0.040) 0.429 0.533

  30–39 ref −0.026(−0.057, 0.006) 0.103 −0.039(−0.065,-0.013) 0.005 −0.049(−0.073,-0.025) <0.001 <0.001

  40–49 ref 0.002(−0.021, 0.025) 0.838 0.01(−0.015, 0.036) 0.403 −0.013(−0.038, 0.012) 0.284 0.4

  50–59 ref 0.028(−0.009, 0.064) 0.128 −0.014(−0.050, 0.023) 0.442 −0.04(−0.065,-0.014) 0.004 0.002

Race/ethnicity 0.139

  Black ref −0.009(−0.049, 0.031) 0.613 −0.011(−0.044, 0.022) 0.445 −0.005(−0.044, 0.033) 0.748 0.751

  Other ref −0.003(−0.018, 0.011) 0.626 −0.011(−0.028, 0.007) 0.212 0(−0.026, 0.026) 0.974 0.614

  White ref 0.014(−0.008, 0.035) 0.188 −0.012(−0.041, 0.017) 0.389 −0.03(−0.047,-0.013) 0.002 0.001

Sex 0.154

  Female ref 0.01(−0.010, 0.029) 0.309 −0.011(−0.035, 0.014) 0.372 −0.024(−0.045,-0.004) 0.024 0.024

  Male ref 0.002(−0.018, 0.022) 0.813 −0.008(−0.029, 0.012) 0.401 −0.016(−0.035, 0.003) 0.090 0.054

BMI 0.06

  <18.5 ref 0.038(−0.014, 0.089) 0.141 0.018(−0.029, 0.064) 0.431 0.044(−0.063, 0.151) 0.397 0.547

  18.5 ≤ BMI < 25 ref 0.031(−0.001, 0.063) 0.060 −0.008(−0.034, 0.019) 0.548 −0.008(−0.033, 0.016) 0.479 0.222

  25 ≤ BMI < 30 ref −0.003(−0.018, 0.011) 0.630 −0.013(−0.031, 0.005) 0.137 −0.029(−0.043,-0.015) <0.001 <0.001

Asthma 0.309

  No ref 0.009(−0.007, 0.024) 0.244 −0.011(−0.029, 0.007) 0.208 −0.015(−0.030,-0.001) 0.040 0.018

  Yes ref −0.006(−0.039, 0.027) 0.691 −0.015(−0.053, 0.022) 0.401 −0.044(−0.086,-0.001) 0.046 0.044

Hypertension 0.041

  No ref 0(−0.018, 0.019) 0.968 −0.012(−0.031, 0.007) 0.207 −0.012(−0.029, 0.004) 0.135 0.083

  Yes ref 0.026(−0.009, 0.062) 0.136 0(−0.024, 0.025) 0.968 −0.032(−0.057,-0.007) 0.016 0.005

CKD 0.117

  No ref 0.004(−0.010, 0.018) 0.537 −0.011(−0.028, 0.006) 0.198 −0.023(−0.037,−0.010) 0.002 0.002

  Yes ref 0.033(−0.016, 0.083) 0.165 0.003(−0.042, 0.048) 0.898 0.007(−0.036, 0.051) 0.713 0.952

Drinks (g/day) 0.807

  0 ref 0.008(−0.007, 0.023) 0.261 -0.01(−0.028, 0.008) 0.258 −0.021(−0.039,-0.003) 0.027 0.015

  0–500 ref 0.027(−0.024, 0.078) 0.269 0.007(−0.043, 0.057) 0.772 0(−0.042, 0.043) 0.981 0.936

  > = 500 ref −0.024(−0.075, 0.026) 0.317 −0.022(−0.075, 0.031) 0.387 −0.042(−0.082,-0.002) 0.042 0.051

(Continued)
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≤ 2.5 μ  m in the air, is one of the core indicators of air quality 
monitoring, including acids, water droplets, elemental carbon, organic 
carbon, polycyclic aromatic hydrocarbons (PAHs), metal dust, 
mineral dust, etc. (31). Adami et  al. (32) found that chronic 
inflammation caused by PM2.5 exposure may lead to the imbalance 
of bone resorption by osteoclasts and bone formation by osteoblasts. 
Tian et al. (33) found that PM2.5 exposure leads to ROS production 
and oxidative stress. These free radicals can cause cell damage, 
including bone cells. Endocrine disruptors such as bisphenol A (BPA), 
phthalates, and per-and polyfluoroalkyl substances (PFAS) 
compounds will Imitate or interfere with natural hormones like 
estrogen, which play a role in bone health (34). This disruption 
interferes with bone remodeling—the process of bone formation and 
resorption—thereby leading to reduced BMD (35).

EO, a reactive epoxide, is widely recognized as a significant threat 
to health and has been declared a human carcinogen by United States 
Environmental Protection Agency (36). The link between EO and 
malignancy remains a subject of ongoing debate. A recent study 
indicated an increased risk of mortality in lympho-hematopoietic 
cancers (37) although this was not confirmed by a meta-analysis (38). 
In terms of non-malignant diseases, research is relatively limited, 
although elevated risks of diabetes, HTN, and dyslipidemia have been 
described (39, 40). Wang et al. (41) found a substantial relationship 
between EO exposure and depression. Further, findings from a case–
control study suggest that prolonged, low-dose EO exposure may 
adversely impact cognitive activity (42). Furthermore, previous 
research has demonstrated that prolonged exposure to EO adversely 
affects cognitive abilities and may contribute to the development of 
anxiety (43). The association between HbEO and BMD remains 
poorly understood. An animal experiment investigated the effect of 
ethylene oxide on the bone morphogenetic protein (BMP) bone 
induction ability in male mice, and found that ethylene oxide reduced 
BMP bone formation activity by about one-third (44). In addition, 
we  did not find any previous records specifically examining an 
association between EO and BMD.

The precise biological processes responsible for the EO-BMD 
association are not clear. Inflammation and OS are hypothesized to 
affect the correlation between EO exposure and BMD. Bone is a 
metabolically active tissue that undergoes continuous remodeling, a 
tightly regulated physiological process involving the osteoclast 
resorption of aged bone and osteoblast-mediated formation of new 
bone (45). Disruption of this balance, characterized by increased 
osteoclast activity and insufficient osteoblast-mediated bone 
formation, may lead to progressive bone loss, increased fragility, and 
elevated fracture risk (46).

Previous research has demonstrated that both OS and 
inflammation contribute to the pathogenesis of osteoporosis by 
enhancing osteoclastic activity and inhibiting osteoblastic function 
(47–49). Growing evidence suggests that exposure to EO may elevate 
OS and inflammation. Experimental preclinical studies have reported 
that EO exposure is correlated with a reduction in the levels of 
glutathione and increased peroxidation of hepatic lipids, which are 
both implicated in the induction of OS (50, 51). Huang et al. (15) 
reported that higher blood EO levels showed an increased risk of 
COPD, which is mediated by inflammation and OS. Furthermore, a 
cross-sectional study observed that EO may elevate the risk of asthma, 
a condition potentially mediated by systemic inflammation (13). 
There have been few investigations into the relationship between EO T
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and bone health. Further studies are required to elucidate the 
responsible mechanisms.

The present study has some constraints. First, due to its cross-
sectional nature, the potential presence of unmeasured confounders 
cannot be  excluded, and causal relationships cannot be  inferred. 
Secondly, only one HbEO measurement was utilized to assess chronic 
exposure to EO, which may have led to exposure misclassification, as 
fluctuations in blood EO levels over time were not estimated. Thirdly, 
relying on self-generated data in the NHANES dataset may have 
resulted in bias, specifically, in terms of recall and reporting. Finally, 
DXA scans were only performed on individuals aged 8 to 59 years, 
excluding older ones, which limits the generalizability of the results. 
Further prospective cohort investigations are needed to address these 
limitations and verify the findings.

Conclusion

In conclusion, the exposure to EO and the total BMD were found 
to be  significantly negatively correlated, which the total BMD of 
participants with the highest quartile HbEO level was 0.01944 g/cm2 
lower than that of participants with the lowest quartile HbEO level. 
However, further randomized controlled trials are necessary to 
determine a causal link between EO and BMD. These results could 
have considerable implications for stratifying the possibility of 
osteoporosis in the normal population.
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