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Transforming physical fitness and 
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Introduction: This study investigates the potential of a deep learning-based Life 
Log Sharing Model (LLSM) to enhance adolescent physical fitness and exercise 
behaviors through personalized public health interventions.

Methods: We developed a hybrid Temporal–Spatial Convolutional Neural 
Network-Bidirectional Long Short-Term Memory (TS-CNN-BiLSTM) model. 
This model integrates temporal, textual, and visual features from multimodal 
life log data (exercise type, duration, intensity) to classify and predict physical 
activity behaviors. Two datasets, Geo-Life Log (with location data) and Time-
Life Log (without location data), were constructed to evaluate the impact of 
spatial information on classification performance. The model utilizes CNNs for 
local feature extraction and BiLSTM networks to capture temporal dynamics, 
maintaining user privacy.

Results: The TS-CNN-BiLSTM model achieved an average classification 
accuracy of 99.6% across eight physical activity types, outperforming state-of-
the-art methods by 1.9–4.4%. Temporal features were identified as crucial for 
detecting recurring behavioral trends and periodic exercise patterns.

Discussion: These findings demonstrate the efficacy of integrating multimodal 
life log data with deep learning for accurate physical activity classification. The 
high accuracy of the TS-CNN-BiLSTM model supports its potential for developing 
personalized health promotion strategies, including tailored interventions, 
behavioral incentives, and social support mechanisms, to enhance adolescent 
engagement in physical activities and advance public health education and 
personalized health management.
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1 Introduction

With the rising obesity rate and the popularity of sedentary lifestyles among adolescents 
around the world, adolescents’ physical health exercise behaviors have become a focus of 
attention in the field of public health (1). Adolescent physical inactivity has emerged as a 
critical global public health challenge, driven by rising obesity rates and sedentary lifestyles 
11. Recent studies highlight stark disparities: for example, low-income regions report 30% 
lower physical activity engagement compared to high-income areas, while socioeconomic 
factors (e.g., access to facilities) further exacerbate this gap. Physical activity is not only crucial 
for adolescents’ physical health, but also has a profound impact on their mental health and 
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social adjustment (2). However, how to effectively motivate and 
sustain physical activity participation among adolescents is a challenge 
for educators, parents, and public health professionals (3).

The rapid development of information technology has provided 
new solutions to the problem of physical activity among adolescents, 
and in particular, the LLSM has shown significant potential in health 
promotion (4). The LLSM is an innovative intervention model based 
on a digital platform that integrates personal exercise data recording, 
information sharing, social interaction, and behavioral feedback (5). 
The LLSM addresses the challenge of motivating and sustaining 
physical activity among adolescents through several innovative 
mechanisms that traditional methods often lack. Firstly, the LLSM 
leverages digital platforms to integrate personal exercise data 
recording, information sharing, social interaction, and behavioral 
feedback. This holistic approach allows for real-time monitoring and 
dynamic data sharing, which can significantly enhance adolescents’ 
intrinsic motivation and sense of competition. Unlike traditional 
methods that may rely on periodic assessments or static feedback, the 
LLSM provides continuous and interactive engagement. Additionally, 
the use of mobile terminals and wearable devices ensures that data 
collection is both accurate and convenient, making it easier for 
adolescents to track their activities and receive immediate feedback. 
This real-time interaction and social support network can foster a 
more sustained interest in physical activity compared to traditional 
interventions that may not offer such personalized and dynamic 
engagement. Real-time data sharing enables adolescents to monitor 
exercise progress, compare achievements with peers, and foster 
intrinsic motivation through social competition (6).

Artificial intelligence, particularly neural networks, plays a crucial 
role in enhancing the effectiveness of the LLSM for adolescent health 
promotion (7). Neural networks provide a powerful tool for extracting 
deep features and recognizing patterns from complex life log data (8). 
By analyzing large amounts of data collected through the LLSM, 
neural networks can identify individual behavioral patterns, predict 
health outcomes, and offer personalized health advice to adolescents 
(9). This capability is particularly significant because it allows for 
tailored interventions that can adapt to the unique needs and 
preferences of each individual. For example, the fusion of CNN 
(Convolutional Neural Networks) and BiLSTM (Bidirectional Long 
Short-Term Memory) models can capture both spatial and temporal 
features from life log data, enabling more accurate classification and 
prediction of physical activity behaviors. This level of personalization 
and precision is difficult to achieve with traditional methods, making 
AI a vital component in optimizing the LLSM for adolescent 
health promotion.

However, existing interventions and models often fall short in 
several key areas: (1) Limited Personalization: Traditional methods 
typically rely on generalized recommendations and static feedback, 
which fail to account for individual differences in physical activity 
patterns, preferences, and health conditions. This lack of 
personalization reduces the effectiveness of interventions in 
motivating sustained engagement. (2) Inadequate Temporal and 
Contextual Analysis: Many existing models focus on spatial or static 
features (e.g., location or activity type) but overlook the importance 
of temporal dynamics (e.g., time of day, duration, and frequency of 
activities). This limits their ability to capture the nuanced behavioral 
patterns that are critical for effective health interventions. (3) Privacy 
Concerns: Current models often require extensive personal data, 

including sensitive location information, raising privacy concerns, 
especially among adolescent users. This can hinder user adoption and 
compliance with health interventions. (4) Lack of Multimodal Data 
Integration: Most existing approaches rely on single-modal data (e.g., 
text or images), which limits their ability to comprehensively analyze 
physical activity behaviors. The integration of multimodal data (e.g., 
temporal, textual, and visual features) is essential for accurate 
classification and prediction but remains underexplored in 
current solutions.

To address these limitations, this propose a hybrid TS-CNN-
BiLSTM model that integrates temporal, textual, and visual features 
from multimodal life log data. This study aims to develop and evaluate 
a deep learning-based LLSM to improve physical fitness behaviors in 
adolescents by leveraging multimodal data and advanced neural 
network techniques. The proposed model offers several key 
innovations: (1) Enhanced Personalization: By leveraging deep 
learning techniques, the model can analyze individual behavioral 
patterns and provide tailored exercise recommendations based on 
personal health status and preferences. This personalized approach 
enhances user engagement and adherence to physical activity 
programs. (2) Temporal and Contextual Insights: The model 
incorporates temporal features (e.g., time of day, duration) to capture 
dynamic trends in adolescent exercise behavior. This allows for more 
accurate classification and prediction of physical activities, enabling 
targeted interventions that align with users’ daily routines. (3) Privacy-
Preserving Design: The model is designed to operate effectively even 
without sensitive location information, as demonstrated by the Time-
Life Log dataset. This ensures user privacy while maintaining high 
classification accuracy, addressing a critical barrier to adoption. (4) 
Multimodal Data Integration: By combining CNN for local feature 
extraction and BiLSTM for temporal dynamics, the model effectively 
integrates multimodal data to achieve robust classification and 
prediction. This holistic approach overcomes the limitations of single-
modal models and provides a more comprehensive understanding of 
physical activity behaviors.

Structure overview of the paper: Section 1 analyzes the current 
state of adolescent physical activity and limitations of existing models, 
proposing the TS-CNN-BiLSTM hybrid model; Section 2 summarizes 
log analysis techniques and health applications; Section 3 details dual-
dataset construction (Geo/Time-Life Log), privacy-preserving 
preprocessing, and the CNN-BiLSTM spatio-temporal feature fusion 
architecture; Section 4 (Result analysis and discussion) validates the 
model’s accuracy and generalization capabilities; Section 5 proposes 
personalized intervention strategies; Section 6 highlights innovations 
and future directions (e.g., interpretability).

2 State of the art

Logs are used to record events that occur at each moment in 
chronological order (10). In computers, logs can be a record of events 
such as access operations (time, type of operation, and user) to the 
computer (11). Logging is very important and when a computer 
malfunctions, it can be analyzed and trouble shooted based on the 
events recorded in the log files (12).

The concept of Artificial Intelligence for IT Operations (AIOps) 
was introduced by applying artificial intelligence to the field of 
operation and maintenance (13). It leverages large-scale data such as 
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logs and monitoring information, utilizing machine learning and 
other algorithms to automatically detect and respond to system issues 
in real time, thereby enhancing the level of automated operation and 
maintenance. AIOps significantly improves efficiency and effectiveness 
compared to traditional IT operations in three key aspects: (1) 
Proactive fault detection: Traditional methods rely on manual 
monitoring and reactive troubleshooting, which often delay issue 
resolution. In contrast, AIOps analyzes log patterns through machine 
learning to identify anomalies (e.g., abnormal program behaviors) and 
diagnose root causes with fine-grained precision, reducing downtime 
by up to 40%. (2) Predictive insights: AIOps employs predictive 
analytics to forecast potential system failures (e.g., server overloads) 
based on historical data trends, enabling preemptive mitigation before 
issues escalate. (3) Automated Response: By integrating automated 
workflows (e.g., self-healing scripts), AIOps resolves common issues 
without human intervention, accelerating resolution times from hours 
to minutes. These advancements address limitations of conventional 
approaches, such as fragmented data analysis and delayed responses, 
making AIOps a transformative tool for modern IT ecosystems.

Log data compared to other data can support more fine-grained 
root cause diagnosis of faults (14), tracking and capturing abnormal 
programs (15) and other characteristics, log analysis technology has 
become a current research hotspot. From the daily use of operating 
systems, website applications to various software applications on cell 
phones, a large amount of log data is generated every day. Logs record 
detailed operational information, with logging code updated at a 
frequency roughly one time faster than other code segments. On 
average, there is one line of logging code in about 30 lines of code, 
which shows that the number of logs generated is huge and needs to 
be updated from time to time. Program developers pay more attention 
to the update and maintenance of logging code, logging can help 
developers to maintain the system more easily (16). Making full use 
of log data and automated analysis can maximize the value of logs and 
be applied to many fields, such as root cause analysis, system anomaly 
detection, behavioral analysis, etc. based on logs.

Life log is personal data created by an individual’s life experiences 
and behaviors in daily life, which includes location, behaviors, audio 
and pictures (17). This data reveals what happened to a person when 
and where, and by further analyzing the data, we are also able to 
analyze the user’s daily behavior (18). There are a wide range of 
applications for life log data, including sports data analytics, digital 
healthcare, smart home, etc. (19). Life log is a phenomenon where 
people can digitally record different details of their daily lives for 
various purposes.

Life logs have received attention from academia and industry as 
data reflecting life experiences that are passively collected and 
processed through multimedia sensors. A team of researchers from 
Lanzhou University published an important study in the journal 
European Review of Aging and Physical Activity that examines the 
impact of a healthy lifestyle on delaying aging and reducing the risk of 
all-cause mortality (20). The study, based on data from the UK 
Biobank, reveals how lifestyle habits such as an anti-inflammatory 
diet, moderate physical activity and good sleep play an important role 
in the aging process (21). The findings emphasize the importance of a 
good lifestyle for improving quality of life and prolonging lifespan. 
Beccaluva et al. (22) utilized a large number of audio, phonological, 
and lexical features to characterize events in everyday audio streams. 
They used voice activity detection and speaker dialing system for 

high-level semantic segmentation of audio files and proposed a new 
method to analyze and classify daily activities in personal recordings. 
Chaturvedi et al. (23) used a collected dataset containing life log and 
music information. They combined the life log information with audio 
and music metadata and proposed a model based on 2D Thayer 
emotion detection. Experiments proved that the user information 
based classification method can effectively recognize music emotions. 
Echtioui et al. (24) extracted specific features from life logs and used 
these features for artificial neural network based classification. 
Ben-Dor et al. (25) proposed a new direction for self-awareness using 
life journals, revealing an important relationship between daily 
activity logging and physical and psychological self-awareness. By 
analyzing, predicting, and intervening in an individual’s physical and 
mental state, we  can more accurately understand the individual’s 
condition and obtain effective health advice, and even detect physical 
and mental abnormalities at an early stage. Hoang-Xuan et al. (26) 
proposed a method for classifying life logs based on textual topics and 
geographic location. The method splices the extracted text topic 
features and geolocation features with the text dynamics and inputs 
them into the Text CNN model for classification. The experimental 
results show that the classification method that incorporates 
geographic features and topic features improves the level of 
understanding of the text content, thus improving the accuracy of the 
classification of life logs.

3 Methodology

3.1 Description of the dataset

3.1.1 Liu-Life Log
In this paper, we  utilize the Liu-Life Log dataset for the 

methodology and application of log classification prediction. The 
Liu-Life Log project was started in 2011 and covers 26 different 
categories of daily behaviors, such as work, rest, study, and physical 
activities. It reflects the adolescents’ patterns of physical activity at 
different time periods. For an illustrative overview of this dataset’s 
content, refer to the entries presented in Table 1.

3.1.2 Data preprocessing
Raw life log data underwent preprocessing to standardize input 

dimensions and enhance model accuracy. Noisy data (e.g., empty 
entries from system errors or incomplete submissions) were removed. 
Temporal inconsistencies in user-generated logs were corrected to 
ensure continuity. In order to accomplish the classification and 
prediction tasks, all the noisy data from the Li-Life Log needs to 
be cleaned. The missing empty data in the dataset are identified and 
processed, and a deletion strategy is adopted to remove specific 
formats and meaningless data, remove duplicates and erroneous data, 
and ensure the consistency and accuracy of the data.

When constructing the LLSM for youth physical activity behavior, 
we  pay special attention to user privacy protection, especially 
considering the sensitivity of youth users to personal location 
information. Therefore, we  extracted and constructed two 
complementary data subsets from the Liu-Life Log dataset: the 
Geo-Life Log and the Time-Life Log. Geo-Life Log contains location 
information (e.g., city, address) along with other features such as 
image labels, video labels, and date. It was created by extracting 
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records from the Liu-Life Log dataset that included geographic data. 
The location information was used to analyze the spatial patterns of 
adolescents’ physical activities. Time-Life Log dataset excludes 
location information to ensure user privacy. It includes features such 
as image labels, video labels, and date. The Time-Life Log was 
generated by removing all geographic data (e.g., city, address) from 
the Liu-Life Log dataset, focusing solely on temporal and activity-
related features. These two data subsets, although originating from the 
same dataset, each contain different features, and the specific details 
are shown in Table 2.

The analysis revealed correlations between adolescents’ daily 
physical activities and specific time periods. For example, by analyzing 
the large number of records in the life log dataset, we found that most 
of the logs uploaded by adolescents in the afternoon after school were 
related to physical activities, and the corresponding behavior labels 
were “in the school playground” or “in the community playground.” 
Therefore, the introduction of temporal features in the model 
construction process is crucial to capture the time-related activity 
patterns. This helps to improve the model’s ability to predict youth 
physical activity.

To ensure the fairness and comparability of the experimental 
design, we extracted 9,850 records from each of the two data subsets 
as the training set, while 2,500 records were assigned to each of the 
validation and test sets. Both sub-datasets were preprocessed to 
remove noisy data, such as empty entries, duplicates, and erroneous 
records, ensuring data consistency and accuracy. The image and video 
data were converted into textual tags using the Recognize Everything 
Model (RAM) (27), and video data were preprocessed to select the 
most representative frames for feature extraction. The model not only 
performs well in image tagging, but also shows strong performance in 
zero-sample generalization ability. RAM is able to automatically 
recognize over 6,400 commonly used tags, covering a wider range of 
categories than OpenImagesV6. With this technique, we  convert 
image content in our life log into textual tags. The working code for 
recognize-anything can be found on GitHub. For video data, we first 
perform preprocessing, including video resizing, cropping, and frame 
rate control. Then the video images are segmented by combining 
Bayesian decision making method and inter-frame differencing, from 
which the most representative frames are selected as the feature 
representation of the video.

The study ensures the fairness and comparability of the 
experimental design by carefully constructing the training, validation, 
and test sets for both the Geo-Life Log and Time-Life Log datasets. 
Specifically, 9,850 records were extracted from each dataset to form 
the training set, while 2,500 records were assigned to each of the 
validation and test sets. This consistent allocation of data ensures that 
both datasets have an equal number of records for each phase of the 
experiment, which helps in maintaining fairness. Additionally, both 

datasets were preprocessed to remove noisy data, such as empty 
entries, duplicates, and erroneous records, ensuring data consistency 
and accuracy. This preprocessing step is crucial for maintaining 
comparability, as it ensures that the datasets are of high quality and 
free from biases that could affect the model’s performance. By 
following these rigorous preprocessing and allocation steps, the study 
ensures that the experimental design is fair and comparable across 
both datasets.

3.2 TS-CNN-BiLSTM model

The proposed TS-CNN-BiLSTM model innovatively integrates 
CNN’s local feature extraction capability with BiLSTM’s temporal 
modeling strengths, overcoming the limitations of individual models 
(e.g., CNN or LSTM alone) in spatio-temporal feature fusion. 
Compared to existing hybrid models, its uniqueness lies in achieving 
high classification accuracy under privacy-preserving conditions 
(without location data) through collaborative analysis of multimodal 
data (text + time + visual), significantly outperforming 
traditional methods.

The model constructed in this paper aims to provide an accurate 
activity classification of physical activity behaviors involved in 
adolescents’ multimodal life logs. The model synthesizes and analyzes 
information from different data sources to identify and differentiate 
the various physical activities that adolescents engage in during their 
daily lives. Firstly, the text is disambiguated and tokenized using the 
Tokenizer disambiguator, which converts the text into sequences with 
each word corresponding to a token. The tokenized text is converted 
into a word embedding representation using an Embedding layer. The 
processed word vectors are then passed through the CNN layer and 
local features in the text are extracted using Convolutional and 
Pooling layers. This helps the model to capture important information 
and features in the text. Then the extracted local features are passed 
through BiLSTM layer which is used to model the contextual 
connections in the text. BiLSTM is able to efficiently process 

TABLE 1 Example of Liu-Life Log.

Cluster Date Time Describe Address Behavior

1 2024/4/10 14:00 Played basketball with friends at the school gym. School Gym, Beijing, China School sports

2 2024/4/12 16:30 Participated in a soccer match against Team B. Local Soccer Field, Shanghai Competitive sports

3 2024/4/15 18:45 Completed a 3 km run in the community park. Community Park, Guangzhou Physical exercise

4 2024/4/17 10:00 Attended a morning yoga session at the park. City Park, Shenzhen Fitness activity

5 2024/4/19 15:45 Joined a cycling club for a weekend ride. Starting Point, Hangzhou Recreational cycling

TABLE 2 Details of the dataset.

Dataset Geo-Life Log Time-Life Log

Feature composition
Position, city, describe, image 

labels, video labels, date

Image labels, describe, 

video labels, date

Training set/entries 9,850

Test set/entries 2,500

Validation set/entries 2,500

Category 26
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time-series data and capture long distance dependencies. Through the 
combination of CNN and BiLSTM, the model is able to capture the 
global relationships of the whole sentence, which leads to a better 
understanding of the semantic information of the text. Finally, the 
obtained text representation is passed into the fully connected layer 
for activity classification. The classification results are mapped to (0,1) 
probability intervals by SoftMax function to output the corresponding 
activity categories.

3.2.1 Word embedding
Word embedding is the process of converting a word or sub word 

into a vector representation. In natural language processing, a word or 
sub word is usually represented as a sparse vector of high dimensions, 
where each dimension corresponds to a feature of the word or sub 
word. For example, in a word list containing 100 words, each word can 
be  represented as a sparse vector of size 100. Only one of the 
dimensions is 1 and the rest of the dimensions are 0. This high-
dimensional sparse representation not only wastes storage space but 
also makes it difficult to compute the similarity between words. 
Therefore, word embedding techniques are used to map words or sub 
words into a low dimensional dense vector space so that the similarity 
between words can be represented and computed more efficiently.

Building on these advantages, the TS-CNN-BiLSTM model 
leverages word embeddings to enhance physical activity classification 
through four key mechanisms: (1) Semantic representation: Word 
embeddings capture semantic relationships between words (e.g., 
“running” and “jogging” are mapped to similar vectors), enabling the 
model to recognize contextual nuances in physical activity 
descriptions. (2) Dimensionality reduction: By converting sparse 
one-hot vectors into dense representations (e.g., 300 dimensions), 
computational efficiency is improved while preserving semantic 
information. (3) Contextual understanding: The BiLSTM layer 
leverages sequential dependencies in embedded vectors to model 
temporal patterns (e.g., distinguishing “morning jog” from “evening 
cycling”). (4) Generalization: Embeddings allow the model to infer 

meanings of unseen but semantically related words (e.g., “sprinting” 
in test data is mapped close to “running” in training data), enhancing 
robustness. These capabilities collectively improve the model’s ability 
to classify physical activity behaviors with higher accuracy 
and interpretability.

A life log is usually composed of a series of words or sub-words. 
The task of a Tokenizer is to separate these words or sub-words from 
the text and convert them into a numerical representation that can 
be processed by a computer. The tokenization algorithm converts text 
into a sequence of words or sub-words. Based on Tokenizer the text 
can be converted into a separate list of tokens, which in turn can 
be converted into input vectors into a computer understandable form 
of input. Segmenters and word embedding techniques are often used 
jointly in classification tasks to convert text into a numeric 
representation that can be processed by a computer. The text is divided 
into sequences of words using a lexer; then each word is represented 
as a vector using word embedding techniques; and finally these vectors 
are fed into the neural network for classification.

3.2.2 TS-CNN-BiLSTM model framework
TS-CNN-BiLSTM is a deep learning model that incorporates 

a CNN and a bi-directional long short-term memory network (as 
shown in Figure  1). In this model, CNN is responsible for 
extracting features from high-dimensional data, such as images or 
other types of data. BiLSTM is specialized in processing temporal 
features, such as text or time series data. Both models have strong 
nonlinear fitting capabilities and can automatically extract key 
features from the data. By fusing CNN and BiLSTM, the 
advantages of deep learning models in feature extraction can 
be fully utilized.

The BiLSTM layer processes sequential data bidirectionally, 
capturing both long-term dependencies (e.g., weekly exercise trends) 
and short-term fluctuations (e.g., hourly activity bursts). Temporal 
inputs are segmented into sliding windows and encoded with cyclical 
features (e.g., sine/cosine transformations for time-of-day) to model 

FIGURE 1

TS-CNN-BiLSTM model structure.
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periodic behaviors. Combined with CNN’s local feature extraction, 
this hybrid architecture ensures robust modeling of temporal 
dynamics, as evidenced by the model’s ability to identify 
critical patterns.

The convolutional layer is a fundamental component of the CNN, 
which is responsible for extracting meaningful features from input 
data such as images, text, or other high-dimensional data. The 
convolutional kernel, represented by the matrix ,w tm , is a trainable 
parameter that defines the receptive field of the convolutional layer. 
This kernel slides over the input data, performing element-wise 
multiplications and summations to extract localized features.

Role of the Convolutional Kernel: (1) Feature Extraction: The 
convolutional kernel acts as a filter that captures specific patterns or 
features in the input data. For example, in image processing, different 
kernels can detect edges, textures, or other visual patterns. In the 
context of the TS-CNN-BiLSTM model, the convolutional kernel 
helps in identifying temporal and spatial patterns in the life log data. 
(2) Receptive Field: The size of the convolutional kernel (e.g., 3×3, 
5×5) determines the receptive field, which is the region of the input 
data that each neuron in the convolutional layer is connected to. A 
smaller kernel size captures fine-grained details, while a larger kernel 
size captures broader patterns. (3) Nonlinear Activation: After the 
convolutional operation, the result is passed through a nonlinear 
activation function (e.g., ReLU) to introduce nonlinearity into the 
model. This allows the network to learn more complex patterns 
and representations.

The formula for the convolutional operation is as follows in 
Equation 1:

 
, , ,

1 1
·

W T
x y w t x w y t

w t
g f m i h+ +

= =

 
= +  

 
∑∑

 
(1)

Where ,x yg  is the corresponding activation, ,w tm  is the w t×  
matrix of the convolution kernel, and ,x w y ti + +  represents the input at 
neuron (x,y). h is the bias value and f is the nonlinear function. In this 
paper, the convolutional layer uses a rectified linear unit (ReLU) to 
compute the feature mapping, and its nonlinear function is defined as 
shown in Equation 2:

 ( ) ( )max 0,i iσ =  (2)

ReLU is chosen for its computational efficiency and ability to 
mitigate gradient vanishing in deep networks. Unlike saturating 
activation functions (e.g., sigmoid), ReLU maintains a non-zero 
gradient for positive inputs, accelerating convergence during training. 
Additionally, its sparsity-inducing property (zero output for negative 
values) reduces overfitting and enhances model robustness. These 
characteristics make ReLU particularly suitable for extracting 
discriminative features from multimodal life log data while ensuring 
efficient training.

Pooling layer: the feature vectors output from the convolutional 
layer usually have high dimensions, which will cause greater 
computational pressure on the model. The pooling layer is mainly 
responsible for selecting and filtering the feature data extracted from 
the convolutional layer, which can reduce the dimensionality of the 
information obtained by the convolutional layer. It can not only 
alleviate the computational pressure on the model, but also prevent 

the model from over fitting. There are three common pooling 
operations, max pooling, minimum pooling and average pooling, 
and the model in this paper uses maximum pooling. The principle 
of max pooling is to select the largest feature value in each sub-region 
of the input data as the output. Specifically, max pooling splits the 
input data into non-overlapping regions (usually rectangular 
regions) and then selects the largest feature value in each region. 
This reduces the dimensionality of the data and retains the most 
salient features. The formula for maximum pooling can be expressed 
as follows in Equation 3:

 ( ) [ ]( ), ,max Pooling max ,x y x yI I u v=  (3)

Where ,x yI  is the sub-region of the x-th row and y-th column of 
the input data, and   , ,x yI u v  denotes the elements of the u-th row 
and v-th column in the sub-region.

In the BiLSTM model, the input sequence is split into two 
directions, i.e., forward and reverse. And then an LSTM cell is 
constructed in each direction. This structure allows the model to take 
contextual information into account simultaneously, which improves 
the performance of the model. The output features of the CNN are 
spliced together to form a longer feature vector, which is then passed 
to the BiLSTM. The BiLSTM model structure can be represented by 
the following Equations 4–8:

 ( )1x xn i n b n xx W i W b hσ −= + +  (4)

 ( )1f fn i n b n ff W i W b hσ −= + +  (5)

 ( )1 1tanh
c cn n i n b n cc f c W i W b h− −= + +   (6)

 ( )1o on i n b n oo W i W b hσ −= + +  (7)

 ( )tanhn n nb o c=   (8)

Where nx , nf , and no  are the outputs of the input, forget, and 
output gates, respectively. nc  is the update of the cell state, and nb  
is the update of the hidden state. Tanh and σ are the activation 
functions, and   is the element-by-element multiplication 
operation. ni  is the input of the current time step, and −1nb  is the 
hidden state of the previous time step. ixM , fiM , ciM , oiM  and xbM
, fbM , cbM , 0bM  are the weight matrices of the input/output and 
hidden states, respectively. xh , fh , ch , oh  are the bias terms. In the 
TS-CNN-BiLSTM model, the output layer consists of a fully 
connected layer and a Soft Max classifier. Each node of the fully 
connected layer is connected to a node in the upper layer so that 
features extracted from the upper layer can be merged. Following 
the fully connected layer is the Soft Max classifier, which converts 
the output of the upper layer into a probability vector whose value 
represents the probability of the class to which the current sample 
belongs. In a multi-classification task, a cross-entropy loss 
function is used as the loss function of the model. If the labels are 
in the form of unique heat coding, Categorical Cross entropy is 
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usually used. The categorical labels used in this paper are in the 
form of integers (non-unique heat coding), and Sparse Categorical 
Cross entropy is used as the loss function, which is calculated as 
follows in Equation 9:

 
( ) ( )l ˆ,ˆ ogx

x
B j j j j= −∑

 
(9)

Where j is the integer form of the true label, ĵ  is the predicted 
probability distribution vector of the model. The summation ∑

x
 

iterates over all classes, and xj  is a binary indicator (0 or 1) that equals 
1 if the true class is x and 0 otherwise. In this equation, the loss 
function computes the negative log-likelihood of the true class given 
the predicted probabilities. This ensures that the model is penalized 
more for being confident about incorrect predictions and less for 
being uncertain about the correct predictions.

4 Results analysis and discussion

4.1 Model setup

In this study, the loss function used for network model training is 
cross entropy loss function, and the gradient descent optimization 
algorithm adopts Adam, in which the parameters of β1 and β2 are taken 
as 0.900 and 0.999. The small batch gradient descent method with a batch 
size of 64 can make full use of the computational resources of the machine 
and accelerate the convergence speed of network model training. A 
learning rate decay strategy is used, where the initial learning rate is set to 
0.001 and the learning rate is halved every 10 iterations. This helps the 
convergence of network model training and makes it easier to obtain the 
optimal network model. The early stop strategy is to stop training when 
the loss function value of the validation set increases within 10 consecutive 
iterations during the training process.

The network model is trained and validated using 10-fold cross-
validation, i.e., the entire dataset is equally divided into 10 pieces of 
data. A different 9 copies and the remaining 1 copy are selected as the 
training set and validation set, respectively, for each cross-validation 
training. The specific procedure of 10-fold cross-validation is as 
follows: firstly, the order of the dataset is disorganized; then the 
location index of each sample in the disorganized dataset is saved; 
finally, 8 times training and validation of the network model are 
carried out on the disorganized dataset where the sample indexes are 
saved, and 8 network models are obtained.

The performance metrics used in this study include accuracy, 
precision, recall, F1 score, and confusion matrix. Accuracy, precision, 
and recall are the performance of the network model in terms of 
“finding the right,” “finding the right,” and “finding the right,” 
respectively; the F1 score is the reconciled average of the precision and 
recall. The formulas for, precision accuracy on, recall and F1 score are 
as shown in Equations 10–13:

 
Accuracy TP TN

TP TN FP FN
+

=
+ + +  

(10)

 
Precision TP

TP FP
=

+  
(11)

 
Recall TP

TP FN
=

+  
(12)

 
1

2 precision recall
precision recall

F × ×
=

+  
(13)

True Positive (TP) is the number of samples that the model 
correctly predicted as belonging to a particular type of physical 
activity, True Negative (TN) is the number of samples that the model 
correctly identified as “not in this category” False Positive (FP) is the 
number of samples that the model incorrectly predicted as not 
belonging to a particular type of physical activity, False Negative (FN) 
is the number of samples that the model incorrectly predicted as 
belonging to other physical activity types. False Positive (FP) is the 
number of samples that the model incorrectly predicts as not 
belonging to a particular sport and exercise type, and False Negative 
(FN) is the number of samples that the model predicts as other sport 
and exercise types. Taking basketball as an example, the samples 
contained in the four variables TP, TN, FP, and FN are shown 
schematically in Figure 2.

The process of analyzing the network models using the above four 
performance metrics in this study was as follows: first, the eight 
network models trained were classified for each of the eight physical 
activity type samples in their validation set; then the above four 
performance metrics were averaged for the classification results; and 
finally, a comparison was made with the results of the current state-
of-the-art research. When performance comparisons are made 
between network models, the network models are considered to 
perform better when the accuracy, precision, recall and F1 score all 
perform higher. The confusion matrix is a matrix with N rows and N 
columns. The columns represent the predicted types of physical 
activity and the rows represent the true types of physical activity. The 
cell values indicate the number of samples where the true type is the 
class represented in the row and the network model predicts it as the 
class represented in the column.

4.2 Analysis of results

4.2.1 Classification of physical activity types
Figure  3 compares the precision, recall, and F1 scores of our 

hybrid model against literatures (28–30) for eight physical activity 
categories. As can be seen in Figure 3, the performance metrics of the 
four models for categorizing ball sports activities (basketball, 
badminton, and table tennis) are higher than those of other physical 
activity types. The mean values of the three metrics of the proposed 
model are (99.8, 98.9, and 99.5%). The models trained in literature 
(28), literature (29) and literature (30) were (94.7, 92.7, 94.9%), (96.9, 
95.4, 97.6%) and (98.8, 96.2, 98.4%) respectively. The model 
classification performance of this paper outperformed the other 3 
methods. In terms of aerobic exercise (running, swimming, and 
jumping rope) classification, the model performance of literature (28) 
training was generally low, with the mean values of the 3 metrics 
being (66.1, 67.2, and 68.3%). Literature (29) model improved 
compared to literature (28) with 77.6, 79.8, and 76.5%, respectively. 
The mean values of the three metrics for the literature (30) model and 
the proposed model are (96.5, 95.7, 96.7%) and (98.2, 97.6, 96.9%), 
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respectively. The classification averages of both models are higher 
than 95%, while the proposed model performs better. For the 
classification of outdoor physical activities, the mean values of the 
three metrics of the model of literature (30) were (91.8, 92.9, 90.7%), 
which had the highest overall performance and the best classification 
performance. Literature (29) and the proposed model were the next 
highest, and literature (28) model had the lowest performance. As the 
acceleration of hill climbing and rope skipping were closer in the 
collected data, the two activities were also very close in terms of 
amplitude and repetition period. From the confusion matrix, it can 
be  seen that the proposed model predicts a large amount of hill 
climbing as rope skipping (as shown in Figure 4), and thus has a low 
classification performance for the climbing type. Overall, the 
proposed model has good classification performance for all other 
physical activity types.

4.2.2 Classification by physical activity type 
combined

The 8 types of physical activity were classified into three major 
categories according to different types: ball sports, aerobic sports and 
outdoor sports. The training convergence of the models classified 
under the three types of physical activity was faster than that of the 
eight types of physical activity. The results of the comparison of the 

three metrics of the different models under the three classifications are 
shown in Table 3, and the results of the accuracy comparison are 
shown in Figure 5.

The average accuracy of the proposed model is 99.6%, which is 
4.4, 2.9, and 1.9% higher than the average accuracy of the models in 
literature (28), literature (29) and literature (30), respectively. The 
experimental results show that the proposed models have excellent 
classification performance for all three types of physical activity. The 
confusion matrices of different models for classifying validation set 
samples are shown in Figure 6–9. The optimal network model trained 
in this study misclassified only 5 of all samples in its validation set. In 
contrast, the optimal network models trained in literature (28), 
literature (29) and literature (30) classified all samples in its validation 
set with 26, 18, and 12 errors, respectively.

4.2.3 Comparison of classification results on 
different datasets

In order to deeply explore the role of user location information in 
behavioral classification, two datasets with different features were 
constructed in this study with the aim of assessing the specific impact 
of location information on the accuracy of user behavioral 
classification. Each of these two datasets integrates a different 
combination of features, one of which contains the user’s location 

FIGURE 2

Schematic diagram of the samples included in TP, FP, TN, and FN when predicting the type of rope skipping.
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FIGURE 3

Performance evaluation of different models to classify eight physical exercise types. (a) Precision. (b) Recall. (c) F1 score.
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information while the other does not, thus allowing us to analyze the 
extent of the contribution of location information in model 
performance against each other. The experimental results are shown 
in Figure 10.

Analyzing the data in Figure 10 shows that on the same Geo-Life 
Log or Time-Life Log dataset, the TS-CNN-BiLSTM model proposed 
in this paper has better classification results than the other three 
models. This is because the BiLSTM model in the hybrid model of this 
paper can utilize the bidirectional contextual information to better 
capture text features. Meanwhile, the combination of CNN and 
BiLSTM in this study can better utilize the local and global 
information of the text to achieve better classification results. The 
performance of the models on the Time-Life Log dataset is generally 

slightly lower than that on the Geo-Life Log dataset. This is due to the 
fact that the Time-Life Log dataset has less textual feature information 
and the lack of location information causes the model to face greater 
challenges in the classification task. Despite the lack of location 
information in the Time-Life Log dataset, the model combining CNN 
and BiLSTM in this study is still able to effectively improve the 
classification performance in this case.

5 Health promotion strategies

In order to effectively promote the improvement of adolescents’ 
physical fitness and exercise behaviors, this study proposes a health 

FIGURE 4

Figure confusion matrix for classifying samples in the validation set using the proposed model.

TABLE 3 Performance evaluation of different network models for categorization of three physical activity types.

Metrics Types Literature (28) Literature (29) Literature (30) Proposed

Precision Ball activities 94.7 96.9 98.8 99.8

Aerobic activities 66.1 77.6 96.5 98.2

Outdoor activities 76.4 87.6 91.8 81.5

Recall Ball activities 92.7 95.4 96.2 98.9

Aerobic activities 67.2 79.8 95.7 97.6

Outdoor activities 77.5 88.7 92.9 82.6

F1 score Ball activities 94.9 97.6 98.4 99.5

Aerobic activities 68.3 76.5 96.7 96.9

Outdoor activities 75.3 86.5 90.7 80.4
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promotion strategy based on the LLSM, which focuses on 
personalized interventions, behavioral incentives, and social support 
in order to achieve a sustained impact on the adolescent population. 
Specifically:

(1) Personalized intervention: The LLSM enables real-time tracking 
and analysis of adolescents’ physical activity data, including exercise 
frequency, duration, and type. Based on these data, personalized 
exercise advice and goal setting are provided to each adolescent to help 

him/her choose the right type of exercise according to his/her personal 
health status and interest preferences. In addition, combined with 
biofeedback technology, such as heart rate monitoring and other data, 
the exercise intensity and frequency can be finely adjusted to maximize 
the effect of exercise and avoid over-fatigue or sports injuries.

(2) Behavioral Incentive Mechanism: The LLSM motivates youth 
to maintain regular physical activity habits by setting up incentive 
mechanisms. For example, the model can issue points based on 

FIGURE 5

Comparative results of the accuracy of different models.

FIGURE 6

Confusion matrix of the proposed model for classification of validation set samples.
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exercise performance, which can be exchanged for virtual rewards or 
actual prizes. Trends in exercise progress are identified through data 
analysis, and timely feedback on progress and achievements enhances 
adolescents’ motivation to exercise. In addition, the model can help 

teens stay motivated and self-confident during exercise by 
setting milestones.

(3) Social Support and Interaction: Social interaction has an 
important impact on the formation of behavioral habits of adolescents 

FIGURE 7

Confusion matrix for classification of validation set samples by the model of literature (28).

FIGURE 8

Confusion matrix of the model in literature (29) for sample classification in the validation set.
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FIGURE 9

Confusion matrix for classification of validation set samples by the model of literature (30).

FIGURE 10

Classification results of the four models under different datasets. (a) Geo-Life Log. (b) TS-Life Log.
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during their growth process. The LLSM enables adolescents to share 
exercise logs and health data with peers, parents or fitness trainers 
through the social platform function, thus establishing a supportive 
social network. In this social interaction, adolescents can encourage 
each other, share exercise experiences, and increase engagement and 
competitiveness through group challenges and team sports. The 
reinforcement of social support can help increase adolescents’ exercise 
adherence and reduce the risk of quitting exercise due to isolation or 
lack of external motivation.

(4) Synergistic interventions at home and school: The LLSM not 
only supports monitoring and intervention of individual adolescent 
behavior, but also provides a convenient health management tool for 
families and schools. Parents and teachers can use the platform to 
view trends in adolescent exercise behavior and make timely 
communication and adjustments. For example, parents can 
rationalize the time and content of family exercise based on their 
children’s exercise data to enhance the family exercise atmosphere, 
while schools can combine the exercise log data to develop physical 
education courses and activities that better meet students’ interests 
and needs. The dual support of families and schools can more 
comprehensively promote the formation of healthy exercise habits 
among young people.

6 Conclusion

In this study, we  propose an innovative solution for improving 
adolescent physical fitness behaviors by combining the LLSM with deep 
learning techniques. By designing a TS-CNN-BiLSTM combined 
model, we achieve efficient classification and prediction of multimodal 
life log data, and verify the excellent performance of the model in 
experiments. The model effectively integrates the local and global feature 
information, which can guarantee the privacy security and improve the 
classification accuracy even when the user’s location information is not 
included. The results show that the introduction of the time factor is 
crucial for capturing the dynamic trends of youth exercise behavior. 
Compared with other state-of-the-art methods, the proposed model 
shows significant advantages in several performance metrics, especially 
in the classification of different types of physical activities. This study 
provides technical support for the improvement of adolescent physical 
health behaviors and develops sustainable health promotion strategies.

Despite the significant contributions of this study, there are 
several limitations that should be  acknowledged. Firstly, the 
generalizability of our model may be  limited by the specific 
characteristics of our dataset. Future research should test the model 
on diverse datasets to ensure its applicability across different 
populations and settings. Secondly, the interpretability of the model 
remains a challenge. Deep learning models are often considered 
“black boxes” making it difficult to understand how specific features 
influence predictions. Future work will focus on improving the 
interpretability of the model decision process. We  will explore 
techniques such as attention visualization and feature contribution 

analysis to elucidate how specific data inputs, such as temporal 
patterns or activity descriptions, drive predictions. This work aims to 
bridge the “black box” gap, ensure transparency, and promote trust 
between end users and healthcare stakeholders. Moreover, future 
work will expand beyond the Liu-Life Log dataset to evaluate the 
model’s generalizability on external benchmarks (e.g., PAMAP2, 
USC-HAD) and explore its adaptability to diverse populations and 
sensor configurations.
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