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Change in lifestyle and mental 
health in young adults: an 
exploratory study with hybrid 
machine learning
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Various mental disorders are becoming increasingly prevalent worldwide. Young 
adults are particularly vulnerable to mental health issues amid rapid lifestyle changes 
and socioeconomic pressures. This study adopted hybrid machine learning methods, 
combining existing statistical analysis and machine learning, to determine which 
factors affect young adults’ mental health, considering recent changes. We used 
4-year data (2019–2022) derived from the Community Health Survey, and the final 
study sample included 141,322 young people aged 19–34. We selected variables 
based on a literature review and feature selection and performed complex sample 
logistic regression analysis. New variables that had not previously been discussed 
(unmet medical needs, chewing difficulty, and accident/addiction experiences) 
were derived and found to significantly impact depression and subjective stress. 
These factors’ impact on mental health was generally greater than that of the 
theoretical background variables. In conclusion, this study emphasizes the need 
to consistently monitor various factors in today’s rapidly changing environment 
when devising policies aimed at managing young adults’ mental health.
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1 Introduction

Various mental disorders are continuously becoming increasingly prevalent worldwide 
(1), with young adults among society’s most vulnerable to mental health disturbances, and the 
general health loss associated with these issues peaks among people aged 25–35 (2, 3). Young 
adults transitioning from adolescence to adulthood are also considered particularly vulnerable 
to depression and stress (4). Mental health exhibits different patterns according age (5), and 
the incidence of chronic problems, including anxiety disorders and depression, increases 
during young adulthood (6). Mental health problems developed in adolescence often persist 
in young adults (7), and these problems may be exacerbated by comorbid mental disorders, 
such as functional impairment as a consequence of depression (8).

It is crucial to appreciate the factors that can cause mental health to deteriorate 
differentially for each age group. Young adults are widely exposed to psycho-emotional 
difficulties associated with life changes and pressures from academic study, employment, 
marriage, childbirth, and financial independence (9). Compared to other age groups, young 
adults who experience poor mental health are more likely to suffer from long-term mental 
disorders (10). While children and adolescents are typically supported and guided by parents 
and school systems (11) and relatively stable social safety nets are in place for those in middle 
and old age (12, 13), young adults are highly susceptible to mental health difficulties owing to 
the pressures of newfound independence and social instability.
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The factors that affect young adults’ mental health may 
be  personal, socioeconomic, environmental, or cultural. Previous 
studies have examined the influences of lifestyle (14), physical activity 
(15), employment (16), academic study (17), family environment (18), 
housing type (19), and stigma (20). These factors are major risk factors 
in young adults’ adverse mental health (21, 22). However, 
socioeconomic and cultural environments have recently changed at 
an unprecedentedly rapid pace, including changes in educational 
environments and occupational structure (23) and improved access to 
digital environments (24), significantly influencing the lifestyles and 
structures of young adults (25). To reflect these rapid environmental 
changes, it is important to continuously monitor the risk factors for 
mental health disturbances within wider theoretical considerations.

Recently, there have been attempts to use artificial intelligence (AI), 
such as machine learning (ML) and deep learning, to study this topic 
(26–28). To reflect the changing environment, it is necessary to 
accumulate quantitative and qualitative results for each life stage using 
the latest data. ML techniques are practical for handling vast amounts of 
unstructured data (29), which makes it useful for identifying risk factors 
that are difficult to detect with traditional statistical methods. However, 
ML has limitations with respect to interpreting relationships between 
variables (30). One effective means of addressing these limitations is to 
combine ML techniques with traditional statistical analysis methods.

This study explored the factors affecting the mental health of young 
adults using a hybrid machine learning/traditional statistics technique. 
Specifically, we confirmed theoretical variables based on a literature 
review, selected variables via ML, compared and evaluated models, and 
confirmed the associations between the new variables selected by 
ML. Our method can flexibly explore the factors that influence young 
adults’ mental health in response to environmental changes.

2 Methods

2.1 Data resources and participants

We used data from the Community Health Survey (CHS) 
organized by the Korea Disease Control and Prevention Agency. The 
CHS is a nationwide and representative survey that has been conducted 
among adults aged 19 or older every year since 2008. The survey 

includes various health-related questions, covering health behaviors, 
mental health, unmet medical needs, and social and physical 
environments. The sampling process involves stratification by housing 
type (Dong/Eup/Myeon), followed by a two-stage sampling method. 
First, the sample regions are selected via probability proportional 
systematic extraction; then final households are selected through 
systematic extraction. The CHS operates a 4-year survey cycle, and 
we used data from the period 2019–2022. From among the survey’s 
919,395 participants, 141,322 young people aged 19–34 were ultimately 
selected after excluding missing data and incomplete responses. This 
study was granted exemption by the Institutional Review Board of 
Kongju National University in view of using raw data from the 
Community Health Survey in Korea (IRB number: 2023-102).

2.2 Study design

We used a hybrid machine learning approach that combines 
traditional statistical analysis with ML. Two main processes were used 
to select the factors influencing young adults’ mental health. First, 
we searched the literature, selecting 15 papers from PubMed published 
within the last 10 years. The following search string was used: (mental 
health OR depression OR depressive OR stress) AND (young adult 
OR young people). We also selected 15 Korean papers from Google 
Scholar because we used survey data from the Korean context. Next, 
variables were selected by feature selection on all variables in the data. 
Feature selection can reduce model complexity and improve 
performance by removing irrelevant variables to identify the optimal 
subset from a wide range of data (31). Following each process, 
we constructed Models 1 and 2 and performed logistic regression 
analysis to evaluate the impact of the selected variables on the mental 
health of young adults. Finally, we compared the impact of variables 
in an integrated model (Model 3) based on all selected variables. The 
overall flow of the study design is presented in Figure 1.

2.3 Variables

Mental health-related variables were defined as the experience 
of depression and subjective stress level. Depression experience 

FIGURE 1

Flow chart of the study.

https://doi.org/10.3389/fpubh.2025.1562280
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Park and Woo 10.3389/fpubh.2025.1562280

Frontiers in Public Health 03 frontiersin.org

was assessed using the CHS item, ‘During the past year, have 
you ever felt so sad or hopeless for two consecutive weeks or more 
that it disrupted your daily life?’ Respondents who answered ‘yes’ 
were classified as having experienced depression. Subjective stress 
level was measured by asking, ‘How much stress do you usually 
feel in your daily life?’ Those who answered ‘very much’ or ‘a lot’ 
were classified as experiencing a high level of subjective stress. For 
logistic regression analysis, demographic variables such as sex, 
age, education level, marital status, economic activity, and 
residential area were designated as basic adjustment variables. 
Detailed variables from the CHS used in the study, including 
demographic, behavioral, and health-related categories such as 
smoking, drinking, physical activity, and mental health items, are 
presented in Table 1.

2.4 Data analysis

We analyzed the data using R version 4.3.1 and IBM SPSS 
Statistics 25.0, with a significance level set at α = 0.05. Feature 
selection was conducted using lasso regression to identify factors 
influencing mental health. Lasso is an extension of generalized 
linear regression, which continuously performs shrinkage 
operations to reduce the possibility of model overfitting (32). It 
reduces the variance of regression coefficients and selects more 
relevant and interpretable variables from large sets of 
multicollinear variables (33). Considering that the CHS has a 
complex sample design, we performed complex sample logistic 
regression considering weights.

3 Results

3.1 Screening factors affecting mental 
health

Figure 2 presents the outcome of the literature review, including the 
screening steps and the distribution of mental health-related variables 

identified from both global and Korean studies. Subjective health level, 
smoking, drinking, breakfast consumption, sleep duration, and exercise 
were selected as theoretical background variables, excluding 
sociodemographic variables. As a result of feature selection for mental 
health variables, subjective health level, sex, sleep, and drinking were 
commonly selected among the theoretical background variables. 
Excluding variables overlapping with the theoretical background, 
unmet medical needs, chewing difficulty, the number of accidents and 
addiction experiences, and subjective oral health were selected. Figure 3 
presents the variables selected based on the literature review and feature 
selection. In this study, variables that selected only through feature 
selection were designated key factors, using the top 3–5% as a cutoff.

3.2 Complex sample logistic regression 
analysis

Tables 2, 3 present the results of a complex sample logistic regression 
analysis that adjusted for age, sex, education, marriage, economic activity, 
and region to investigate the impact of selected independent variables on 
mental health. All variables in Models 1 and 2 had a statistically significant 
impact on depression (p < 0.001). In the theoretical background variables, 
subjective health showed the strongest association, indicating that worse 
subjective health increased the likelihood of experiencing depression. For 
key factors, people experiencing unmet medical needs or discomfort 
when chewing showed a greater tendency to experience depression. A 
higher number of accident/addiction experiences also increased the 
likelihood of experiencing depression.

Regarding subjective stress levels, all variables had a significant 
impact (p < 0.001). Subjective health had the highest impact, whereby 
people with worse subjective health were more vulnerable to subjective 
stress. In the theoretical background variables, people who smoke or 
who sleep for less than 7 h at night were more likely to experience 
higher levels of subjective stress. Regarding the key factors, people 
experiencing unmet medical needs and chewing difficulty or more 
accident/addiction experiences tended to be  more susceptible to 
subjective stress. Comparison of Models 1 and 2 for both dependent 
variables revealed that the odds ratio (OR) values of key factors were 

TABLE 1 Categories and items of the Community Health Survey.

Category Survey item

Household Household type, Status as a recipient of basic livelihood support, Household income

Smoking Current smoking

Drinking Lifelong drinking

Safety sense Wearing seatbelts

Physical activity Intense to moderate physical activity, Walking, Metabolic equivalent of task

Dietary life Eating breakfast, Reading nutrition labels

Oral health Subjective oral health level, Chewing difficulty

Mental health Sleep, Stress, Depressive experience

Disease
Recognition of early symptoms of stroke/myocardial infarction,

Hypertension, Diabetes

Medical Use Unmet medical needs

Accident/Addiction Accident and addiction experience

Quality of life Subjective health level
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generally higher than those of theoretical background variables. 
Results of the complex sample logistic regression for all models are 
presented in Supplementary Tables 1, 2.

3.3 Key factors in the integrated model

We compared the impact of theoretical background variables and key 
factors on mental health by constructing an integrated model, Model 3. 
Figure 4 shows the OR values of the key factors associated with depression 
experience and subjective stress level. Both mental health variables 
showed a similar pattern, with the highest OR value for accidents/
addiction, followed by unmet medical needs and chewing difficulty.

4 Discussion

We explored the factors influencing the mental health of young 
adults, considering changes in socioeconomic and cultural 
environments. We integrated a review of the literature with statistical 
analysis and ML based on the most up-to-date data available to reflect 
recent changes. We  identified previously undiscussed variables 
affecting young adults’ mental health, such as unmet medical needs, 
chewing difficulty, and accident/addiction experiences; these 
significantly impacted depression and subjective stress.

Sex, subjective health level, sleep, and alcohol consumption are 
commonly related to depression and stress in young adults (34–37). 
Young adulthood is generally perceived as a healthy stage in the life 

FIGURE 2

Flow chart of the literature review.

FIGURE 3

Diagram of selected variables.

https://doi.org/10.3389/fpubh.2025.1562280
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Park and Woo 10.3389/fpubh.2025.1562280

Frontiers in Public Health 05 frontiersin.org

cycle, with low use of medical services. However, in Korea (38) and 
elsewhere (39, 40) young adults are in fact more likely than older adult 
to experience unmet medical needs, whereby the availability of certain 
services is compromised by lengthy waiting times in hospitals or the 
lack of medical resources in certain residential areas (41). Recently, the 
emergence and development of various digital health technologies, 
such as mobile-health and AI-based health platforms, have increased 
expectations regarding healthcare services among young people, who 
engage extensively with social media (42). Arguably, therefore, young 
adults are more likely today to complain about their unmet medical 
needs arising from temporal constraints (43) or lack of satisfaction 
with medical services (44). Unmet medical needs are significantly 
correlated with high levels of stress and depression (38) and strongly 
associated with depression in young adults (45).

Young adulthood is associated with a high frequency of trauma 
and accidents (46), with a rate that is higher than those of other age 
groups (47, 48). Young adults’ use of digital devices has rapidly 
increased in recent years, and as the digital environment continues 
to change, the possibility of new threats, such as cyberbullying or 

cyberstalking, is also increasing (49). These can lead to symptoms 
of post-traumatic stress disorder (PTSD) and contribute to other 
mental health problems, such as depression, anxiety, and suicidal 
thoughts (50–52). Previous studies have also demonstrated that 
young adults who experience trauma are more likely to develop 
extensive mental health problems, including PTSD (53). PTSD is 
not a temporary condition but can degrade an individual’s daily life 
and social function in the long term. Therefore, early intervention 
to mediate traumatic experiences during young adulthood 
is crucial.

Furthermore, young adults often engage in substance use (54). 
Substance addiction has become a serious problem (55) as a result 
of recent trends such as the increasing use of e-cigarettes and 
synthetic drugs (56), and increased exposure to these substances via 
social media and online (57). Addiction to substances is associated 
with mental disorders in young adults and may even be  a 
contributing factor (58). Use of multiple substances, in particular, 
may be  an important predictor of increased depression. Recent 
studies have demonstrated that the concurrent use of both alcohol 

TABLE 2 Complex sample logistic regression results (depression experience).

Variables Depression experience (ref: no)

Model 1 Model 2

OR(p) 95% CI OR(p) 95% CI

Literature review Subjective health level Good 1.00 1.00

General 2.11* (2.07–2.14) 1.96* (1.93–1.99)

Bad 6.22* (6.01–6.36) 5.00* (4.88–5.12)

Smoking No 1.00

Yes 1.71* (1.68–1.75)

Drinking No 1.00

Yes 1.19* (1.16–1.22)

Having Yes 1.00

Breakfast No 0.98* (0.97–0.99)

Sleep ≥7 h 1.00

<7 h 1.36* (1.34–1.38)

MET <600 1.00

≥600 1.26* (1.24–1.28)

Feature selection

Unmet medical needs

No 1.00

Yes 2.43* (2.37–2.50)

Never needed 0.89* (0.87–0.91)

Chewing difficulty

No 1.00

General 1.55* (1.51–1.58)

Yes 2.01* (1.95–2.06)

Accident and addiction 

experience

No 1.00

1–2 1.85* (1.79–1.90)

More than 3 3.15* (2.79–3.56)

Cox and Snell R2 0.036 0.041

Nagelkerke R2 0.098 0.110

Adjusted for age, sex, education, marriage, economic activity, and region.
Model 1: theoretical background variables identified in a literature review; Model 2: variables identified via ML feature selection.
OR, odds ratio; CI, confidence interval; MET, metabolic equivalent of task; ML, machine learning, *p < 0.001.
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and cannabis may be associated with depressive symptoms in young 
adults (59). Stress in young adults is associated with addiction (60), 
and stressful life events can lead to substance abuse (61). Therefore, 
future research that considers the interaction between substance 
use, addiction, and mental health in young adults is warranted.

Young adults often have cavities and periodontal diseases 
stemming from childhood and may need to have several teeth 
extracted (62). According to the 2017 National Health Statistics, the 
prevalence of periodontal disease in young adults aged 19–29 years 
has shown a continuous annual increase (63). Research into Korean 
adults’ oral health also indicates a higher proportion of teeth 
requiring treatment or extraction with a decrease in age (64). 
Moreover, young adults are increasingly seeking orthodontic 
treatment to address malocclusion or aesthetic concerns (65). 
Cavities, periodontal disease, tooth loss, and malocclusion can all 
affect oral health and cause chewing difficulties. Chewing difficulties 
are also associated with emotions and can diminish individuals’ 
willingness to participate in various activities (66), leading to 
depression and stress (67, 68). Notably, individuals experiencing 

chewing problems have been shown to exhibit a progressively 
higher risk of depressive symptoms, indicating that such difficulties 
may have a stronger association with moderate to severe depression 
than with mild symptoms (69). Given that most oral health projects 
are focused on the older adult or children, policies aimed specifically 
at improving young adults’ oral health are required.

In this study, we proposed a hybrid ML approach to address the 
limitations of other statistical analysis methods. Traditional 
methods identify important variables for analyzing risk factors of 
specific diseases based on medical knowledge, theoretical 
background, and literature reviews. However, the process of variable 
selection based on theoretical grounds cannot wholly exclude 
subjectivity (70). As an alternative, ML-based feature selection 
methods have been suggested (71) and used in several recent 
studies (72, 73). ML-based methods efficiently extract the most 
relevant features when analyzing various variables from a large 
dataset (74) but tend to be more complex and less interpretable than 
more traditional approaches (75). While they are useful for 
evaluating variables that are not predicted by traditional modeling, 

TABLE 3 Complex sample logistic regression results (subjective stress level).

Variables Subjective Stress level (ref: lower)

Model 1 Model 2

OR(p) 95% CI OR(p) 95% CI

Literature review Subjective health level Good 1.00 1.00

General 2.01* (2.00–2.03) 1.95* (1.93–1.97)

Bad 5.06* (4.98–5.15) 4.48* (4.41–4.56)

Smoking No 1.00

Yes 1.43* (1.42–1.45)

Drinking No 1.00

Yes 1.20* (1.18–1.21)

Having Yes 1.00

Breakfast No 1.19* (1.18–1.20)

Sleep ≥7 h 1.00 1.00

<7 h 1.62* (1.60–1.63) 1.59* (1.57–1.60)

MET <600 1.00 1.00

≥600 1.10* (1.08–1.10) 1.08* (1.07–1.09)

Feature selection Unmet medical needs No 1.00

Yes 1.97* (1.94–2.00)

Never needed 0.91* (0.90–0.92)

Chewing difficulty No 1.00

General 1.37* (1.35–1.39)

Yes 1.56* (1.53–1.59)

Accident and addiction 

experience

No 1.00

1–2 1.36* (1.33–1.38)

More than 3 2.36* (2.21–2.52)

Cox and Snell R2 0.075 0.079

Nagelkerke R2 0.108 0.114

Adjusted for age, sex, education, marriage, economic activity, and region.
Model 1: theoretical background variables identified in a literature review; Model 2: variables identified via ML feature selection.
OR, odds ratio; CI, confidence interval; MET, metabolic equivalent of task; ML, machine learning, *p < 0.001.
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their ability to show the direction of association is limited (76). 
Using a combination of both methods can facilitate the exploration 
of influencing factors and effectively analyze their impact. Russel 
et  al. (77) found that feature selection complemented logistic 
regression and identified new variables, demonstrating its value 
when used with traditional statistical methods. In this study, 
we compared models based on a literature review and ML feature 
selection to identify factors not previously considered in 
the literature.

4.1 Limitations

This study is significant in that it applied exploratory analysis to a 
nationwide representative sample to identify the factors affecting 
young adults’ mental health across a wide range of categories. 
Nevertheless, there are limitations to mention. First, as a cross-
sectional study that used data from the CHS, it is difficult to identify 
the causal relationship between the selected variables and mental 
health. Second, self-reported mental health status and other variables 
(health behaviors, etc.) are susceptible to recall and social biases and 
thus may not provide accurate information. Finally, the findings 
should be interpreted with caution, as the data are derived from a 
specific sociocultural setting, limiting their generalizability to other 
populations with different cultural backgrounds.

5 Conclusion

We applied a hybrid ML/traditional statistics methodology to 
identify and explore the factors influencing young adults’ mental health 
in light of recent environmental and lifestyle changes. Unmet medical 
needs, chewing difficulties, and the number of accidents and addiction 
experiences were newly derived key factors. We confirmed the effects of 
these factors that have previously largely been overlooked. This work 
emphasizes the need to establish policies aimed at managing young 
adults’ mental health by continuously monitoring the influencing 
factors in a rapidly changing environment.
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