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Background: Helicobacter pylori (H. pylori) infection is a major global health 
concern, linked to gastric cancer and metabolic disorders. Despite its widespread 
prevalence, accurate risk stratification remains challenging. This study aims to 
develop a machine learning (ML)-based risk prediction model using 6-year 
longitudinal Urea Breath Test (UBT) data to identify metabolic alterations 
associated with chronic H. pylori infection.

Methods: A retrospective cohort study was conducted using health examination 
data from 3,409 individuals between 2016 and 2021. Participants were stratified 
into H. pylori-positive and negative groups based on longitudinal UBT results. 
Key metabolic markers, including HbA1c, LDL-C, BMI, and WBC, were analyzed. 
Three predictive models—logistic regression, random forest, and XGBoost—
were compared to assess their predictive performance.

Results: Among the cohort, 20.5% exhibited chronic H. pylori infection. Infected 
individuals had significantly higher HbA1c (+1.2%, p  < 0.01), LDL-C (+15 mg/
dL, p  < 0.05), and WBC levels, alongside lower albumin (−0.8 g/dL, p  < 0.01). 
The XGBoost model outperformed others (AUC = 0.6809, Accuracy = 81.13%) 
in predicting infection risk. A subgroup of 4.0% was identified as high-risk, 
highlighting the potential for early intervention.

Conclusion: This study underscores the interplay between chronic H. pylori 
infection and metabolic dysfunction, offering new perspectives on risk 
prediction using machine learning. The XGBoost model demonstrated reliable 
performance in stratifying infection risk based on accessible clinical markers. 
Its integration into routine screening protocols could enhance early detection 
and personalized intervention strategies. Further studies should validate these 
findings across broader populations and incorporate additional risk factors.
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Introduction

Gastric cancer remains a major public health burden in China, 
where incidence and mortality rates are among the highest globally. 
In Xiamen alone, age-standardized rates reached 16.74 and 12.30 per 
100,000 between 2011 and 2020 (1). Given that East Asia accounts for 
more than half of global gastric cancer cases, a focused investigation 
within the Chinese population holds significant value for targeted 
prevention strategies (2).

Helicobacter pylori (H. pylori), designated by the WHO as a 
Group 1 carcinogen, is a leading contributor to peptic ulcer disease 
and gastric malignancy (3). Its persistent colonization has also been 
linked to systemic conditions including anemia, cardiovascular 
disorders, and autoimmune diseases (4, 5). Eradication therapy, when 
administered early, effectively reduces gastric cancer risk, yet untreated 
infections may persist for decades (6).

Beyond gastrointestinal complications, emerging evidence 
suggests a role for H. pylori in metabolic syndrome (MetS), a cluster 
of conditions encompassing obesity, hyperglycemia, hypertension, 
and dyslipidemia (7). Cross-sectional and animal studies indicate that 
H. pylori infection disrupts glucose and lipid metabolism (8), 
potentially exacerbating metabolic disorders. Intervention studies 
further support that bacterial eradication can improve glycemic and 
lipid parameters (9).

Machine learning (ML), a branch of artificial intelligence, 
leverages algorithms to identify complex patterns in large datasets and 
generate predictive models without explicit programming (10). In 
biomedical research, techniques such as support vector machines, 
random forests, and deep neural networks have been successfully 
applied to diagnostic classification, risk stratification, and outcome 
prediction. Notably, convolutional neural network–based AI systems 
have demonstrated high sensitivity and specificity in analyzing 
endoscopic images to detect H. pylori–related mucosal changes, 
enabling real-time, noninvasive diagnosis and improved lesion 
characterization (8).

Among various machine learning algorithms, XGBoost has 
gained wide recognition for its superior accuracy, scalability, and 
ability to model complex nonlinear relationships. It employs gradient 
boosting framework and regularization techniques that reduce 
overfitting and enhance generalization, making it especially suitable 
for biomedical risk prediction involving heterogeneous clinical data. 
Its proven performance in infection risk modeling and early disease 
detection has established it as a preferred model in recent translational 
studies (11).

The present study aims to develop and validate an XGBoost-based 
model to predict chronic H. pylori infection and stratify gastric cancer 
risk using a 6-year longitudinal dataset from a Chinese cohort, 
integrating both infection status and metabolic profiles.

Methods

Study population

This retrospective cohort study was conducted at The First 
Affiliated Hospital of Zhejiang Chinese Medical University in 
Hangzhou, Zhejiang Province, China. We included individuals aged 
≥18 years who underwent annual physical examinations and 

completed both 13C-UBT and 14C-UBT between January 2016 and 
December 2021. Patients with prior H. pylori eradication therapy 
before the initial UBT, malignancy, severe cardiovascular disease, 
gastrointestinal surgery, or incomplete UBT data were excluded. 
Follow-up UBTs were performed annually to assess chronic 
infection status.

The 13C-UBT was performed using the HCBT-01 device, and the 
14C-UBT using the HUBT-01 device, both manufactured by Anhui 
Yanghe Medical Equipment Co., Ltd. under commission from 
Shenzhen Zhonghe Haidewei Biotechnology Co., Ltd. While both 
tests are based on the principle that Helicobacter pylori produces 
urease to hydrolyze urea into ammonia and carbon dioxide, 13C is a 
non-radioactive stable isotope, whereas 14C is a radioactive isotope. 
Patients chose between the two tests based on personal preference. All 
UBT results were recorded as quantitative values.

A positive UBT result was determined as follows: a 14C-UBT test 
exceeding 100 dpm or a 13C-UBT test surpassing 4DOB. Whenever 
the UBT value approached the defined threshold, a repeat test was 
administered to confirm the outcome. Subsequently, the study 
population was stratified into two distinct groups based on their UBT 
results. The negative group comprised participants who consistently 
tested negative, while the positive group included individuals who 
maintained consistently positive UBT results throughout a 6-year 
period, thus categorizing them as the H. pylori chronic infection group.

Each participant underwent comprehensive anthropometric and 
laboratory assessments encompassing 18 key indicators, including 
body mass index (BMI), systolic and diastolic blood pressure, serum 
total protein, serum globulin, serum albumin, alanine 
aminotransferase, aspartate aminotransferase, serum total cholesterol, 
triglycerides, HDL and LDL cholesterol levels, blood urea nitrogen, 
creatinine, uric acid, HbA1c, hemoglobin, and white blood cell 
count (WBC).

BMI was computed as the ratio of body weight in kilograms to the 
square of height in meters (kg/m2). Blood pressure measurements 
were taken three times with the subject in a seated position, and the 
average of the last two measurements was recorded. Blood analyses 
were conducted using a fully automated biochemical analyzer 
(Rochecobas 8,000), with all measurements performed by skilled 
medical professionals.

Data preprocessing and model 
development

Continuous variables were standardized using Z-score 
standardization. The dataset was divided into a training set (70%) and 
a test set (30%). In the model development phase, we  built three 
prediction models: a regular logistic regression model, a random 
forest model, and an XGBoost algorithm model. Model development 
followed a structured approach. Initially, significant variables were 
identified using backward stepwise selection through chi-square tests, 
applying an inclusion criterion of p < 0.05. Three predictive models 
were evaluated for clinical utility, with XGBoost demonstrating 
optimal performance. Key metabolic biomarkers (e.g., HbA1c, 
LDL-C) were prioritized using interpretability frameworks.

For the XGBoost model, we utilized the gradient boosting decision-
tree framework implemented in the XGBoost library. Key 
hyperparameters were configured as follows: learning rate (eta) = 0.1, 
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maximum tree depth = 6, subsample ratio = 0.8, and colsample 
bytree = 0.8. The model was trained for up to 100 boosting rounds with 
early stopping set to 10 rounds based on log-loss evaluation on a held-out 
validation set to prevent overfitting. We specified the objective function 
as binary:logistic and used log-loss as the primary evaluation metric.

Assessment indicators and risk 
stratification

The predictive performance of the three models was compared 
using Receiver Operating Characteristic (ROC) curves and accuracy 
on the test dataset. Prediction of infection probability using XGBoost 
model. Individuals were classified as: Low risk: probability < 30%. 
Medium risk: 30% ≤ probability ≤ 70%. High risk: probability > 70%.

Statistical analysis

Normally distributed continuous variables were presented as mean 
± standard deviation (SD), and independent samples t-tests were 
employed for intergroup comparisons. Categorical variables were 
compared between groups using the chi-square test. To explore the 
association between variables and H. pylori infection, logistic 
regression analysis was carried out, yielding odds ratios (OR) and 95% 
confidence intervals (95% CI). All statistical analyses were performed 
using R version 4.2.1. Statistical significance was defined as a two-sided 
p < 0.05. Data visualization was performed using Python 3.13.1.

Ethical approval

This study received approval from the Ethics Committee of the 
First Affiliated Hospital of Zhejiang University of Chinese Medicine 
(Approval number: 2023-K-254-01). Informed consent was waived 
since the data collected in this study did not contain confidential 
participant information. Our ethics committee has duly approved the 
consent waiver.

Data preprocessing and model 
development

A visual summary of the study design, data processing steps, model 
development, evaluation, and risk stratification is presented in the 
following flowchart (Figure 1). This diagram helps clarify the overall 
analytical pipeline from patient selection to final statistical analysis.

Results

Study population characteristics

A total of 3,409 participants were included, comprising 1,979 
males (58.1%) and 1,430 females (41.9%) (Table 1).

Based on six consecutive years of UBT results, 2,711 individuals 
(79.5%) were classified as negative and 698 (20.5%) as positive, 
indicating chronic H. pylori infection.

Among the negative group, 1,563 were male (45.8% of total) and 
1,148 female (33.7%); in the positive group, 416 were male (12.2%) 
and 282 female (8.2%). There was no significant difference in gender 
distribution between groups (p > 0.05).

The mean age was 44.8 ± 15.94 years in the negative group and 
46.62 ± 15.59 years in the positive group, with the latter being slightly 
older (p < 0.05).

Metabolic and laboratory profiles

As shown in Table  1, the chronic infection group exhibited 
significant alterations in metabolic markers compared to the negative 
group (p < 0.05):

Elevated HbA1c: +1.2% (p < 0.01).
Higher LDL-C: +15 mg/dL (p < 0.05).
Lower serum albumin: −0.8 g/dL (p < 0.01).
These findings align with inflammation-mediated metabolic 

disruption in chronic H. pylori infection.

FIGURE 1

Flowchart of the study design and analysis process, including study 
population selection, exclusion criteria, data preprocessing, model 
construction and evaluation, risk stratification, and statistical analysis.
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Correlation analysis among variables

Independent Pearson correlation analyses revealed moderate 
associations (|r| > 0.3) between:

Age and systolic blood pressure (SBP).
SBP and diastolic blood pressure (DBP).
Serum total protein and albumin (and albumin/globulin ratio).
Alanine aminotransferase (ALT) and aspartate aminotransferase (AST).
Total cholesterol and triglycerides.
Total cholesterol and LDL-C.
Most other variable pairs showed weaker correlations (|r| < 0.3), 

informing feature selection for model development (Figure 2).

Model development and performance 
evaluation

Three predictive models were compared on the test dataset:

Logistic Regression: AUC = 0.6357, Accuracy = 79.86%.
Random Forest: AUC = 0.6790, Accuracy = 80.94%.
XGBoost: AUC = 0.6809, Accuracy = 81.13%.
The XGBoost model outperformed the others in both accuracy 

and AUC, demonstrating its robustness in capturing complex, 
non-linear relationships (Figures 3–5).

Infection probability distribution and risk 
stratification

Using the XGBoost–predicted infection probabilities, participants 
were stratified into three risk categories:

Low risk (< 30%): 884 individuals (86.4%).
Medium risk (30–70%): 98 individuals (9.6%).
High risk (> 70%): 41 individuals (4.0%).
The histogram of predicted probabilities (Figure 6) shows most 

participants in the low-risk category, while the pie chart (Figure 7) 
highlights the small but actionable high-risk subgroup warranting 
focused intervention.

Discussion

H. pylori remains a highly prevalent infection in China (12), 
affecting nearly half of the population (13). Due to its often silent 
progression, many cases are diagnosed late, when gastric mucosal 
damage is already advanced (14, 15). Our findings affirm the systemic 
impact of chronic infection, linking it to elevated BMI, HbA1c, 
LDL-C, and inflammatory markers. These associations support the 
hypothesis that H. pylori contributes to metabolic dysregulation 
through inflammatory and endocrine mechanisms (16–19).

Serum albumin reduction in infected individuals likely reflects a 
hepatic acute-phase response rather than primary protein-losing 
conditions (20). In a large retrospective Chinese cohort (n = 29,154), 
serum albumin was inversely associated with acute H. pylori infection 
(p < 0.001), supporting its role as an independent marker of systemic 
inflammation in this setting (16). Elevated WBC and inflammatory 
albumin derivatives further reinforce this systemic response (21).

Evidence suggests a bidirectional link between H. pylori 
infection and BMI. A meta-analysis of 34 studies (n = 175,575) 
found H. pylori–positive individuals had slightly higher BMI than 
uninfected ones (22). NAFLD patients—often with high BMI—also 
showed greater infection rates, implying mutual metabolic effects. 
However, NHANES data (n = 1,568) found no link between general 
obesity and infection, though central adiposity was associated with 
seropositivity in younger adults (23). These patterns point to a 
dynamic interplay between infection and metabolic regulation.

Our XGBoost model achieved robust performance, 
outperforming conventional algorithms in predicting infection risk. 
SHAP analysis highlighted the role of metabolic variables—
particularly HbA1c and albumin—in driving predictions. Model 
calibration and risk distribution plots demonstrated its utility for 
stratifying individuals into low-, moderate-, and high-risk categories.

Importantly, AI-based models should complement, not 
replace, clinical judgment. For high-risk individuals, confirmatory 
endoscopy remains essential, especially when symptoms or 
mucosal abnormalities are present (24). Our model aligns with 

TABLE 1 The laboratory parameters results and statistical results.

Parameter Negative group 
(Mean ± SD)

Positive group 
(Mean ± SD)

P-
value

Gender (n, %)

  Male 1,563 (45.8%) 416 (12.2%) 0.376

  Female 1,148 (33.7%) 282 (8.3%)

Age (years) 44.8 ± 15.94 46.62 ± 15.59 0.007*

BMI (kg/m²) 23.87 ± 3.38 24.23 ± 3.45 0.013*

SBP (mm Hg) 122.34 ± 17.99 122.97 ± 18.03 0.409

DBP (mm Hg) 72.45 ± 10.59 72.61 ± 10.70 0.711

Total protein (g/L) 73.17 ± 3.89 72.70 ± 3.88 0.005*

Globulin (g/L) 24.90 ± 3.48 24.91 ± 3.52 0.946

Albumin (g/L) 48.28 ± 4.48 47.85 ± 4.72 0.0249*

ALT (U/L) 22.97 ± 26.09 23.08 ± 18.91 0.911

AST (U/L) 20.16 ± 14.58 19.99 ± 8.30 0.774

Total cholesterol 

(mmol/L)
4.58 ± 0.87 4.71 ± 0.92 0.001*

Triglycerides 

(mmol/L)
1.55 ± 1.27 1.63 ± 1.28 0.123

HDL-C (mmol/L) 1.32 ± 0.32 1.32 ± 0.32 0.916

LDL-C (mmol/L) 2.47 ± 0.68 2.55 ± 0.72 0.007*

BUN (mmol/L) 4.59 ± 1.17 4.65 ± 1.18 0.221

Creatinine 

(µmol/L)
71.41 ± 16.27 72.22 ± 17.95 0.250

Uric acid 

(µmol/L)
352.71 ± 89.01 352.92 ± 91.87 0.957

HbA1c (%) 5.74 ± 0.56 5.93 ± 0.89 <0.001*

Hb (g/L) 143.99 ± 15.56 144.51 ± 15.61 0.429

WBC (×10⁹/L) 6.12 ± 1.65 6.42 ± 1.59 <0.001*

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; ALT, 
alanine aminotransferase; AST, aspartate aminotransferase; HDL-C, high-density lipoprotein; 
LDL-C, low-density lipoprotein; BUN, urea nitrogen; HbA1c, glycosylated hemoglobin; Hb, 
hemoglobin; WBC, white blood cell. *Indicates p < 0.05.
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FIGURE 2

Heatmap of the Pearson correlation coefficients among the selected clinical and metabolic variables. The color gradient represents the strength and 
direction of the correlation, ranging from negative (blue) to positive (red). Only numeric variables were included in the analysis.

FIGURE 3

The area under the receiver operating characteristic curve (AUC) values for the logistic regression, random forest, and XGBoost models are 0.6357, 
0.6790, and 0.6809, respectively.
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FIGURE 4

Comparison of the performance of different models on the test set. The blue bars represent model accuracy, while the orange bars indicate the AUC 
of the ROC curve. The XGBoost model demonstrated the best performance with an accuracy of 0.8113 and an AUC of 0.6809, highlighting its 
superiority in handling non-linear associations and complex interactions. The Random Forest model ranked second, while the Logistic Regression 
model exhibited stable performance in capturing linear relationships (Accuracy: 0.7986, AUC: 0.6357).

FIGURE 5

Shapley additive explanations (SHAP) values illustrate the contribution of each feature to the risk of H. pylori infection as predicted by the XGBoost 
model. The x-axis represents the SHAP value, indicating the impact of each feature on the model’s predictions: positive SHAP values increase infection 
risk, while negative values reduce it. The color of the points reflects feature values, with red indicating high values and blue indicating low values. For 
instance, HbA1c and Albumin exhibited significant non-linear effects on infection risk, with their impact varying across different value ranges. The 
model achieved an accuracy of 81.13% and an AUC of 68.09%, demonstrating its effectiveness in risk prediction.
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modern risk tools but benefits from its continuous scoring 
mechanism, unlike static models like the ABC method (25). 
However, our dataset lacked key behavioral and environmental 

risk factors—such as smoking, salt intake, and socioeconomic 
status—which may further improve predictive accuracy in 
future models.

While our findings are encouraging, limitations include a 
moderate AUC, cross-sectional design, and single-center cohort. 
Future work should expand sample size, integrate additional 
biomarkers, and validate performance across diverse  
populations.

Strengths and limitations

A major strength of this study is the 6-year longitudinal UBT 
dataset, allowing robust identification of chronic infection patterns. 
The integration of machine learning with traditional biostatistical 
methods provided both interpretability and predictive accuracy. 
However, the moderate AUC values suggest that additional predictors, 
such as microbiome or genetic data, may enhance model performance. 
Our single-center design may limit generalizability, and external 
validation in diverse populations is warranted.

Conclusion

This study underscores the interplay between chronic H. pylori 
infection and metabolic dysfunction, offering new perspectives on risk 
prediction using machine learning. The XGBoost model demonstrated 
reliable performance in stratifying infection risk based on accessible 
clinical markers. Its integration into routine screening protocols could 
enhance early detection and personalized intervention strategies. 
Further studies should validate these findings across broader 
populations and incorporate additional risk factors.
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FIGURE 6

This histogram depicts the distribution of predicted probabilities for 
H. pylori infection in the test set. The x-axis shows the predicted 
probability range (from 0 to 1), while the y-axis represents the 
number of individuals in each range. Most individuals had predicted 
probabilities concentrated in the lower range (<0.3), indicating that 
the majority of predictions fall into the low-risk category. Medium-
risk (0.3–0.7) and high-risk (>0.7) individuals were relatively fewer, 
aligning with the real-world distribution where healthy individuals 
constitute the majority.

FIGURE 7

This pie chart illustrates the distribution of risk categories among 
individuals in the test set as predicted by the model. The chart divides 
the population into three categories: low risk, medium risk, and high 
risk. The majority of individuals were classified as Low Risk, reflecting 
their lower predicted probability of H. pylori infection. High-risk 
individuals accounted for a small proportion, suggesting that these 
individuals warrant further attention and targeted screening. This 
classification provides a basis for personalized screening and risk 
management.
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