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Introduction: The study of environmental health and the exposome is becoming

increasingly vital as researchers aim to untangle the complex interactions

between environmental exposures and human health outcomes. Traditional

exposomemappingmethods often face limitations, such as low spatial-temporal

resolution, challenges in integrating multi-modal data sources, and inadequate

handling of uncertainties in exposure quantification.

Methods: To address these gaps, we introduce an innovative framework

that leverages advanced deep learning techniques, adaptive optimization

strategies, andmulti-scale data integration to achieve high-resolution exposome

modeling. Central to our approach is the Adaptive Multi-Scale Exposure

Network (AMSEN), a hierarchical deep learning model designed to harmonize

diverse data streams, such as satellite imagery, wearable sensors, and

geospatial analytics, while addressing the challenges of multi-scale variability

and measurement uncertainties. AMSEN incorporates cross-modal fusion

mechanisms, spatiotemporal feature extraction, and uncertainty quantification.

Complementing AMSEN, the Adaptive Exposure Optimization Strategy (AEOS)

enhances model e�ciency and accuracy through dynamic resource allocation,

uncertainty-guided refinement, and domain-specific prior enforcement.

Results: These methodologies significantly advance the capabilities of

exposome research by providing a robust, adaptive, and high-resolution

modeling framework.

Discussion: The experimental findings highlight the e�ectiveness of our

approach, showcasing enhancements in exposure prediction precision,

computational performance, and practical insights for public health

policymaking. This work aligns with the objectives of advancing environmental

health sciences by o�ering novel tools for exposome quantification and health

impact assessment.

KEYWORDS

exposome mapping, high-resolution modeling, deep learning, multi-modal data

integration, uncertainty quantification

1 Introduction

The study of the exposome, which encompasses the totality of environmental exposures

an individual encounters throughout their lifetime, is essential for understanding the

multifactorial causes of human diseases (1). High-resolution exposome mapping not

only enables precise identification of exposure sources but also aids in quantifying their

impact on health outcomes, thereby bridging the gap between environmental exposure

and epidemiological studies (2). This task is complex, as it involves integrating diverse

data modalities such as satellite imagery, air quality measurements, wearable sensors,
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and socio-demographic data (3). Traditional methods are often

insufficient due to their limited ability to process heterogeneous

and high-dimensional datasets, while newer approaches, including

machine learning and deep learning, promise to overcome these

limitations (4). The development of such models is not only

critical for advancing environmental health research but also has

far-reaching implications for public health policies, personalized

healthcare, and urban planning (5). There is a growing need to

explore how computational models can accurately characterize the

exposome, assess health risks, and provide actionable insights.

Early computational efforts in exposome research focused

on structuring domain-specific knowledge to support exposure

assessment (6). Researchers developed formalized systems that

encoded expert insights to interpret environmental indicators,

enabling rule-based inferences from spatial and temporal

datasets (7). These strategies facilitated initial progress in linking

environmental contexts with health outcomes and proved useful

for targeted exposure estimation (8). However, their rigidity

and dependence on manually constructed frameworks limited

their capacity to adapt to complex, large-scale, and dynamic

data environments. As exposome-related datasets grew in scope

and granularity, such limitations became increasingly apparent,

revealing the need for more adaptive and scalable solutions (9, 10).

In response to these challenges, adaptive modeling techniques

were introduced to better accommodate the expanding landscape of

exposome data (11). By leveraging statistical learning frameworks,

researchers began to construct predictive models capable of

uncovering hidden associations between environmental indicators

and health risks (12). Algorithms such as support vector machines,

random forests, and gradient boosting machines enhanced the

accuracy and efficiency of exposure estimates by integrating diverse

inputs from sensors, imaging, and demographic databases (13).

These models represented a substantial advancement, yet they

often required extensive tuning and expert-guided feature

design (14). Moreover, understanding the causal mechanisms

behind their predictions remained difficult, prompting concerns

about interpretability and trustworthiness in health-related

applications (15).

Recent developments in representation learning have further

advanced the field by enabling automatic extraction of relevant

features from large, complex datasets (16). Neural network

architectures, including convolutional and recurrent models,

have demonstrated strong capabilities in processing multi-

dimensional information such as geospatial images, time series, and

mobility patterns (17). Emerging transformer-based frameworks

and pre-trained models like BERT and GPT have also been

adapted to handle multimodal exposure data, offering improved

capacity to model intricate relationships among environmental

and biological variables (18). These models have achieved

notable performance in fine-grained exposure estimation and

health outcome prediction (19). Nonetheless, challenges such as

generalizability across populations, the need for large annotated

datasets, and the opaque nature of model outputs continue

to present barriers to their widespread adoption in exposome

research (20).

Based on the limitations of prior approaches, we propose

a novel methodology for high-resolution exposome mapping

and health impact assessment using advanced deep learning

architectures. Our method addresses the challenges of data

heterogeneity, scalability, and interpretability by incorporating

multi-modal data fusion techniques, self-supervised learning for

data-scarce environments, and explainable AI (XAI) frameworks.

By leveraging state-of-the-art models tailored for environmental

health research, we aim to improve the accuracy, efficiency,

and transparency of exposome analyses. This approach not only

builds upon the strengths of existing methods but also mitigates

their weaknesses by prioritizing robustness, adaptability, and user

interpretability. In doing so, our method has the potential to

redefine the landscape of exposome research and its applications

in public health.

• Our approach integrates cutting-edge multi-modal data

fusion techniques and self-supervised learning to handle

heterogeneous and incomplete datasets effectively.

• The proposed models are designed to perform efficiently

across diverse environments and data sources, ensuring wide

applicability and scalability.

• Experimental results show significant improvements in the

accuracy of exposome mapping and health risk predictions,

offering actionable insights for public health interventions.

2 Related work

2.1 Deep learning in exposome mapping

Deep learning has been increasingly employed in exposome

research, particularly for mapping complex environmental

exposures (21). The exposome, which encompasses the totality of

environmental exposures an individual encounters throughout

their lifetime, is inherently multidimensional and dynamic (22).

Capturing this complexity requires models capable of handling

high-dimensional, spatiotemporal, and heterogeneous data. Deep

learning models, such as convolutional neural networks (CNNs)

and recurrent neural networks (RNNs), have been applied to model

various components of the exposome, such as air pollution, noise

levels, and green space distributions. These models are well-suited

for processing large-scale environmental datasets that often come

in the form of satellite imagery, geospatial data, and time-series

measurements. Recent advances in satellite imaging and sensor

technology have contributed to the availability of high-resolution

environmental data, enabling deep learning applications in

fine-scale exposome mapping (23). CNNs, for example, have been

extensively used for extracting spatial features from remote sensing

data. These models have demonstrated superior performance

in predicting air pollution concentrations, such as PM2.5 and

NO2, by integrating meteorological data, land-use features, and

population density (24). Advanced architectures like U-Nets have

been adopted for pixel-wise prediction tasks, such as land cover

classification and vegetation analysis, providing valuable inputs for

exposome studies. In addition, transfer learning has been used to

leverage pre-trained models on large image datasets to improve

the performance of domain-specific tasks with limited labeled

data. Temporal dynamics are also critical in exposome mapping,
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as environmental exposures often vary over time (25) (RNNs) and

long short-term memory (LSTM) networks have demonstrated

their potential in modeling temporal dependencies within exposure

data. These approaches have been applied to predict air quality

indices and track seasonal trends in environmental pollutants.

The integration of temporal and spatial information has led to

the development of spatiotemporal deep learning models, which

combine CNNs and RNNs to address the dynamic nature of the

exposome. These hybrid architectures are particularly effective for

applications requiring both fine spatial resolution and temporal

continuity. Despite these advances, challenges remain in the

application of deep learning to exposome mapping (26). One key

issue is the lack of standardized datasets and benchmarks, which

limits the comparability of model performance across studies.

Another challenge is the interpretability of deep learning models,

as the black-box nature of these algorithms makes it difficult

to derive mechanistic insights into the relationships between

environmental exposures and health outcomes. Explainable AI

techniques, such as attention mechanisms and feature importance

analyses, have been proposed to address this issue. The fusion

of multi-modal data, such as integrating satellite imagery with

wearable sensor measurements, presents computational and

methodological hurdles that warrant deeper investigation.

2.2 Health impact assessment using deep
learning

Deep learning has emerged as a powerful tool for assessing

the health impacts of environmental exposures (27). By leveraging

large-scale health datasets and advanced neural network

architectures, researchers have made significant progress in

understanding the complex interactions between the exposome

and human health. These models have been applied to a wide range

of health outcomes, including respiratory diseases, cardiovascular

conditions, and mental health disorders. One of the primary

applications of deep learning in health impact assessment is in

the prediction of disease risk based on environmental exposure

data (28). For example, neural networks have been used to

model the relationship between air pollution and respiratory

diseases, leveraging spatial and temporal data on pollutant

concentrations. CNNs have been particularly effective in capturing

spatial patterns of exposure, while LSTMs have been used to

account for temporal trends in health outcomes. These models

often outperform traditional statistical approaches, such as

generalized linear models, by capturing non-linear and complex

interactions between variables (29). Deep learning models have

been used for causal inference in health impact studies (30).

Techniques such as deep reinforcement learning and generative

adversarial networks (GANs) have been explored for simulating

counterfactual scenarios, enabling researchers to estimate the

causal effects of environmental interventions (31). For instance,

GANs have been employed to generate synthetic data for

underrepresented populations, improving the generalizability

of health impact assessments. Attention mechanisms and

explainability frameworks have been integrated into these models

to enhance their interpretability, facilitating their application

in policy-making and public health interventions (32). Another

important area of research is the integration of genetic and

epigenetic data into deep learning models for exposome-health

studies (33). Multi-modal deep learning approaches have been

developed to combine environmental, genetic, and clinical data,

providing a comprehensive understanding of gene-environment

interactions. These models have been used to investigate how

environmental exposures influence epigenetic modifications and,

in turn, contribute to disease risk. For example, deep autoencoders

have been applied to identify patterns in DNA methylation

data associated with air pollution exposure, shedding light on

potential biological pathways underlying health effects (34).

Challenges persist in the application of deep learning to health

impact assessment. One major limitation is the availability of

high-quality, large-scale datasets that integrate environmental

exposures and health outcomes. Data privacy concerns and ethical

considerations further complicate data sharing and integration

(35). Another challenge is the need for robust validation

frameworks to ensure the reliability and reproducibility of deep

learning models in diverse populations and settings. Addressing

these challenges will require collaborative efforts across disciplines,

including environmental science, epidemiology, and computer

science.

2.3 Spatiotemporal modeling for
environmental health

Spatiotemporal modeling has emerged as a key area of interest

in applying deep learning techniques to environmental health

studies (36). The dynamic and spatially heterogeneous nature

of environmental exposures necessitates the use of models that

can capture both spatial and temporal variations in data. Deep

learning models, such as spatiotemporal convolutional networks

and graph neural networks (GNNs), have shown great potential

in this regard, enabling researchers to analyze complex patterns in

environmental and health datasets. Spatiotemporal convolutional

networks, which combine convolutional operations with temporal

processing, have been widely used for exposure prediction and

monitoring (37). These models can capture fine-grained spatial

patterns while accounting for temporal dependencies in data.

For instance, spatiotemporal deep learning has been employed

to model urban air quality, combining inputs such as traffic

data, meteorological variables, and satellite imagery. These models

are capable of predicting pollutant concentrations at high spatial

resolutions and short time intervals, providing critical insights

for environmental health studies. Graph neural networks (GNNs)

have also gained attention for their ability to model relational

data and spatial dependencies in environmental health research

(38). GNNs represent data as graphs, with nodes corresponding

to spatial locations and edges capturing spatial or functional

relationships. This approach has been used to model disease

transmission networks, assess the spread of infectious diseases,

and evaluate the spatial distribution of environmental exposures.

GNNs are particularly useful for integrating data from diverse

sources, such as combining satellite-derived air quality estimates

with social determinants of health. Another area of advancement
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is the use of attention mechanisms in spatiotemporal modeling

(39). Attention mechanisms allow models to concentrate on the

most pertinent features or areas within the data, enhancing both

their interpretability and effectiveness. For example, attention-

based spatiotemporal models have been applied to identify hotspots

of environmental exposures and their associated health impacts.

These models can provide actionable insights for public health

interventions by highlighting areas with the greatest need for

environmental mitigation efforts. Despite these advancements,

spatiotemporal modeling in environmental health faces several

challenges (40). One key issue is the computational complexity

of processing high-resolution spatiotemporal data, which often

requires significant computational resources and expertise in

parallel processing. Another challenge is the scalability of these

models to large geographic areas and diverse populations, as

well as the need for robust methods to handle missing or

noisy data. Future research efforts should focus on developing

efficient algorithms and scalable architectures to address these

limitations. Interdisciplinary collaborations will be essential for

advancing the application of spatiotemporal deep learning models

in environmental health research.

3 Method

3.1 Overview

The exposome represents the comprehensive set of

environmental exposures an individual encounters throughout

their lifetime, encompassing chemical, physical, and social factors.

High-resolution exposome research aims to systematically capture

and analyze these exposures at an unprecedented spatial and

temporal granularity, bridging the gap between environment-wide

exposure assessments and individual-level health outcomes. This

paper introduces a novel methodological framework to enhance

the precision and scalability of exposome quantification through

the integration of advanced computational models, multi-modal

data fusion, and adaptive optimization strategies. Our approach is

organized into three key components: In Section 3.2, we present

the foundational preliminaries required to formalize the problem

of high-resolution exposome modeling. This involves defining the

mathematical representation of exposures, their spatiotemporal

characteristics, and the associated uncertainties. In Section 3.3,

we describe a newly developed model designed to effectively

capture the complex, multi-scale dynamics of environmental

exposures. This model incorporates hierarchical structures and

integrates diverse datasets, such as remote sensing imagery,

personal monitoring data, and geospatial analytics. In Section

3.6, we propose an innovative strategy that leverages domain-

specific knowledge and optimization principles to adaptively

refine the exposure quantification process. This strategy enhances

computational efficiency while maintaining high accuracy across

varying exposure scenarios.

Central to our framework is the seamless fusion of data streams

from heterogeneous sources, ranging from high-resolution satellite

imagery to wearable sensors. This integration is achieved through

a robust pipeline that standardizes, harmonizes, and preprocesses

multi-modal data, ensuring consistency and compatibility

for downstream analysis. Our approach incorporates novel

statistical techniques to account for uncertainties and missing

data, thus enabling more reliable inferences about exposure

profiles. The overarching goal of our method is to bridge the

traditional limitations of exposome research by introducing a

scalable, adaptive, and high-resolution framework. Through

this work, we aim to empower researchers and policymakers

with actionable insights into the intricate interactions between

environmental factors and health outcomes, ultimately advancing

the understanding of environmental determinants of health.

3.2 Preliminaries

High-resolution exposome modeling involves capturing

the dynamic and multi-dimensional nature of environmental

exposures across both spatial and temporal dimensions. To

formalize this problem, we begin by introducing the key notations,

definitions, and mathematical constructs that will serve as the

foundation for the proposed framework.

Let the exposome be represented as a set E = {e1, e2, . . . , eN},

where each ei denotes a specific environmental exposure. Each

exposure ei is modeled as a time-dependent and spatially

distributed variable defined over a domain D ⊆ R
2 × T, where

R
2 represents the geographical space and T represents time. Thus,

ei can be expressed as:

ei(x, t) :D → R, (1)

where x ∈ R
2 is the spatial location, t ∈ T is the time index, and

ei(x, t) provides the exposure intensity of ei at location x and time t.

Environmental exposures inherently exhibit variability across

multiple spatial and temporal scales. To capture this, we introduce

a multi-scale decomposition for ei(x, t):

ei(x, t) =

L
∑

l=1

H
∑

h=1

e
(l,h)
i (x, t), (2)

where e
(l,h)
i (x, t) represents the contribution of exposure ei at spatial

scale l and temporal scale h. Here, L denotes the number of spatial

scales, and H denotes the number of temporal resolutions.

The observed data for exposures often come from multiple

sources, such as satellite remote sensing, wearable devices, and fixed

monitoring stations. LetO denote the set of observed data streams,

where each Ok ∈ O corresponds to a particular data modality.

The observed exposure eobsi is then related to the true exposure ei
through a measurement model:

eobsi (x, t) = Hk(ei(x, t))+ ηk(x, t), (3)

where Hk is the observation operator for the k-th data modality,

and ηk(x, t) represents the noise associated with the measurement

process. Different observation operators capture the resolution and

biases unique to the modality.

Given the heterogeneity of data sources, it is essential to

account for uncertainties in the measurements. Let U represent the

uncertainty associated with the exposome. For a given exposure
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ei, we define its uncertainty as a probability distribution P(ei|O),

which can be derived using Bayesian principles:

P(ei(x, t)|O) ∝ P(O|ei(x, t)) · P(ei(x, t)), (4)

where P(O|ei(x, t)) is the likelihood of the observations given the

true exposure, and P(ei(x, t)) represents the prior knowledge about

the exposure distribution.

The task of high-resolution exposome modeling is to infer

ei(x, t) from the observed data O by solving an optimization

problem that minimizes the reconstruction error while accounting

for uncertainties:

êi(x, t) = argmin
ei

[

∑

k∈O

‖Hk(ei(x, t))− eobsi (x, t)‖22 + λR(ei(x, t))

]

,

(5)

where R(ei(x, t)) is a regularization term that incorporates spatial

or temporal smoothness constraints, and λ is a hyperparameter

controlling the regularization strength.

3.3 Adaptive multi-scale exposome
network (AMSEN)

To address the challenges inherent in high-resolution

exposome modeling, we propose the Adaptive Multi-Scale

Exposome Network (AMSEN), a novel computational framework

designed to capture the complex, multi-scale dynamics of

environmental exposures. AMSEN is built on a hierarchical

architecture that integrates spatial, temporal, and cross-modal

information from diverse data sources to achieve robust exposure

quantification (As shown in Figure 1).

3.3.1 Multi-scale representation
Environmental exposures exhibit variability at multiple

spatial and temporal scales. AMSEN incorporates a hierarchical

representation to model this variability and captures the complex

dynamics of exposure interactions. The spatial domain R
2 is

discretized into a set of L nested grids {Gl}
L
l=1

, where each Gl

represents a resolution level. Each grid Gl partitions the spatial

domain into cells of size 1xl ×1yl, where the resolution becomes

finer with increasing l. This hierarchical spatial discretization

enables the model to encode both coarse-grained and fine-grained

spatial structures.

The temporal domain T is discretized into a set of H nested

intervals {Th}
H
h=1

, corresponding to different temporal resolutions.

Each temporal interval Th is defined by its duration 1th, where

finer temporal resolutions correspond to smaller 1th. This nested

structure enables AMSEN to adapt to both short-term variations

and long-term trends in environmental exposures.

For each exposure ei, AMSEN constructs a multi-scale

representation e
(l,h)
i (x, t), which captures the exposure intensity

at spatial scale l and temporal scale h. The overall exposure

representation is defined as a sum over all scales:

ei(x, t) =

L
∑

l=1

H
∑

h=1

e
(l,h)
i (x, t), (6)

FIGURE 1

Diagram illustrating the Adaptive Multi-Scale Exposome Network (AMSEN) framework. The figure highlights the multi-scale representation using

Local and Global Temporal Attention (Local-TA and Global-TA), 3D Fourier Transforms (FFT), and cross-modal data fusion for high-resolution

exposure modeling. The upper section emphasizes uncertainty quantification with attention blocks, including space, cross, and spectral attention

mechanisms, enabling robust predictions with confidence-aware outputs. The integration of hierarchical features and inverse FFT (IFFT) ensures

accurate reconstruction across spatial and temporal scales.
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where e
(l,h)
i (x, t) represents the contribution of exposure ei at

spatial resolution l and temporal resolution h. To construct

e
(l,h)
i (x, t), the model applies a series of operations over spatial and

temporal neighborhoods.

The spatial contribution is computed using convolutional

operations on the grid Gl, where the receptive field increases with

l. Let Kl represent the convolutional kernel for scale l, and let Nl(x)

denote the spatial neighborhood of location x on grid Gl. Then, the

spatial feature extraction is given by:

e
(l)
i (x, t) =

∑

x′∈Nl(x)

Kl(x, x
′) · ei(x

′, t), (7)

where Kl(x, x
′) encodes the spatial relationship between x and x′

at scale l. This operation aggregates information from the spatial

neighborhood and encodes it into the multi-scale representation.

For the temporal contribution, a similar approach is applied

using temporal kernels Kh over the temporal intervals Th. Let Nh(t)

denote the temporal neighborhood of time t within interval Th. The

temporal feature extraction is given by:

e
(h)
i (x, t) =

∑

t′∈Nh(t)

Kh(t, t
′) · ei(x, t

′). (8)

3.4 Cross-modal data fusion

AMSEN integrates diverse data sources, including satellite

imagery, wearable sensors, and monitoring stations, by

constructing modality-specific feature extraction pathways.

Let Ok denote the observation from modality k. AMSEN uses a

shared encoder-decoder architecture to extract features 8k(x, t)

from each modality:

8k(x, t) = Fk(e
obs
i (x, t); θk), (9)

where Fk is the modality-specific feature extractor parameterized

by θk, and eobsi (x, t) represents the input signal for modality k at

spatial location x and temporal instance t. These extracted features

8k(x, t) encode modality-specific information while preserving the

unique characteristics of the corresponding data source.

The features extracted from all modalities are subsequently

fused in a shared latent space Z . The fusion step combines

information across multiple modalities to achieve a

comprehensive representation:

Z(x, t) = Fuse
(

81(x, t),82(x, t), . . . ,8K(x, t)
)

, (10)

where K represents the number of modalities, and Fuse(·) is

the fusion operator. This operator can take various forms, such

as concatenation:

Fuse(81,82, . . . ,8K) = Concat(81,82, . . . ,8K), (11)

or attention mechanisms for weighted feature integration:

Fuse(81,82, . . . ,8K) =

K
∑

k=1

αk ·8k, (12)

where αk are the attention weights learned to prioritize the

contribution of each modality.

The fused latent representation Z(x, t) serves as the input

for reconstructing the high-resolution exposure field. The

reconstruction is performed by a decoder G parameterized by ψ ,

which maps Z to the predicted exposure field:

êi(x, t) = G(Z(x, t);ψ). (13)

The decoder G employs a multi-layer architecture to refine and

upscale the fused latent representation Z(x, t), ensuring accurate

reconstruction of spatial and temporal exposure patterns.

3.5 Uncertainty quantification

AMSEN explicitly quantifies uncertainty in exposure estimates

by introducing a probabilistic modeling layer. Let êi(x, t) represent

the predicted exposure field, which is subject to inherent variability

and uncertainty due to factors such as sensor noise, data sparsity,

and environmental dynamics (As shown in Figure 2).

To characterize the uncertainty associated with the predictions,

AMSEN models the variance σ 2
i (x, t) as a function of the spatial-

temporal context, described by:

σ 2
i (x, t) = Var[êi(x, t)] = H(Z(x, t);φ), (14)

FIGURE 2

Diagram of uncertainty quantification framework, illustrating the

integration of an uncertainty mapping function, normalization, and

Inception Depthwise Convolution modules to process

spatial-temporal attributes and predict exposure fields with

associated uncertainty estimates.
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whereH is a learned uncertainty mapping function parameterized

by φ. The input to H is Z(x, t), a feature representation

encoding the spatial-temporal attributes of the environment,

which could include meteorological data, geographic features, and

sensor characteristics.

To ensure that the uncertainty estimates are robust and

meaningful, AMSEN employs a probabilistic framework during

model training. The predictive distribution of êi(x, t) is assumed to

follow a Gaussian distribution:

êi(x, t) ∼ N (µi(x, t), σ
2
i (x, t)), (15)

where µi(x, t) is the predicted mean exposure field and σ 2
i (x, t) is

the predicted variance representing the uncertainty. The model is

trained by maximizing the likelihood of the observed data under

this probabilistic model, which is equivalent to minimizing the

negative log-likelihood (NLL) loss:

LNLL =
1

N

N
∑

i=1

[

(yi − µi(x, t))
2

2σ 2
i (x, t)

+
1

2
log σ 2

i (x, t)

]

, (16)

where yi represents the ground truth exposure measurements, and

N is the total number of observations. This loss function encourages

the model to accurately predict both the mean and variance of the

exposure field while penalizing overconfident or underconfident

uncertainty estimates.

In addition, AMSEN incorporates regularization mechanisms

to ensure stable training of the uncertainty mapping. For instance,

a prior constraint can be imposed on σi(x, t) to prevent pathological

cases where the uncertainty collapses to zero or diverges to infinity.

A commonly used regularization term is:

Lreg = λ · E[σ 2
i (x, t)], (17)

where λ is a hyperparameter controlling the strength of

the regularization.

3.6 Adaptive exposure optimization
strategy (AEOS)

To complement the proposed Adaptive Multi-Scale Exposome

Network (AMSEN), we introduce the Adaptive Exposure

Optimization Strategy (AEOS), a novel approach designed to

dynamically refine exposure estimation by leveraging domain-

specific knowledge, spatiotemporal regularities, and adaptive

computational principles. AEOS enhances the robustness,

interpretability, and scalability of AMSEN, ensuring its

applicability across diverse real-world scenarios (As shown in

Figure 3).

3.6.1 Incorporating domain knowledge
Environmental exposure modeling often benefits significantly

from integrating domain-specific knowledge, such as regulatory

limits, spatial boundaries, pollutant dispersion dynamics,

and chemical transformation rates. This knowledge provides

meaningful priors that guide the model toward physically plausible

and scientifically consistent solutions. In AEOS, these priors are

incorporated as soft constraints during the optimization process to

balance empirical observations with domain-based expectations.

For each exposure ei, we define a prior distribution P(ei)

based on domain knowledge. The prior distribution imposes

a probabilistic structure over the exposure field, which can be

represented as:

P(ei(x, t)) ∝ exp
(

− C(ei(x, t))
)

, (18)

where C(ei(x, t)) is a penalty function that quantifies deviations

of ei(x, t) from known environmental constraints. Examples

of such constraints include maximum allowable pollutant

concentrations, pollutant dispersion patterns governed by

physical laws, and decay rates under chemical or biological

processes. For instance, C(ei(x, t)) may include terms

such as:

C(ei(x, t)) = α ·max(0, ei(x, t)−emax)
2+β ·‖∇ei(x, t)−v(x, t)·∇c‖2,

(19)

where emax is a regulatory limit for exposure, v(x, t) represents

the local wind or flow vector field, and ∇c denotes the expected

concentration gradient due to advection-diffusion dynamics. The

parameters α and β control the relative weight of different

penalty components.

These prior constraints are incorporated into AMSEN’s

optimization framework by introducing a regularization term in

the loss function. The regularization term penalizes the model for

deviating from the prior distribution:

Lprior = λprior

∫

C(ei(x, t)) dx dt, (20)

where λprior is a hyperparameter that determines the strength of

the prior enforcement. A higher value of λprior results in stricter

adherence to the domain knowledge, while a lower value allows the

model to prioritize empirical data.

To ensure flexibility and adaptability, AMSEN uses learnable

parameters within the prior penalty functions. For example, instead

of fixing v(x, t), the model can learn an estimated flow field v̂(x, t)

that is consistent with observed exposure patterns. The penalty

function then becomes:

C(ei(x, t)) = α ·max(0, ei(x, t)−emax)
2+β ·‖∇ei(x, t)−v̂(x, t)·∇c‖2.

(21)

Another important source of domain knowledge is pollutant

decay over time. For many pollutants, the decay process can be

approximated using first-order kinetics, represented as:

∂ei(x, t)

∂t
= −k · ei(x, t), (22)
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FIGURE 3

Illustration of the Adaptive Exposure Optimization Strategy (AEOS) framework, showcasing the multi-scale consistency, iterative refinement

mechanism, and domain knowledge integration for robust exposure modeling. The left part depicts the main pipeline with input normalization,

convolutional layers, domain knowledge incorporation, and iterative refinements. The right inset details the iterative refinement mechanism,

emphasizing residual updates and refinement feedback.

where k is the decay rate constant. This physical law can be directly

encoded into the prior penalty function by enforcing consistency

with the temporal decay dynamics:

Cdecay(ei(x, t)) = γ ·

∥

∥

∥

∥

∥

∂ei(x, t)

∂t
+ k · ei(x, t)

∥

∥

∥

∥

∥

2

, (23)

where γ controls the strength of the decay consistency term.

3.6.2 Iterative refinement mechanism
AEOS incorporates an iterative refinement mechanism that

adapts to the spatiotemporal heterogeneity of exposure patterns.

Let R(x, t) represent a residual field that captures unresolved

variability in exposure estimates:

R(x, t) = eobsi (x, t)− êi(x, t), (24)

where eobsi (x, t) is the observed exposure value, and êi(x, t) is

the model-predicted estimate at spatial location x and temporal

instance t. The residual R(x, t) quantifies the discrepancy between

the observed and predicted values, serving as the basis for

iterative updates.

At each iteration k, AEOS updates the exposure estimate

ê
(k)
i (x, t) to reduce the residual field. The update rule is defined as:

ê
(k+1)
i (x, t) = ê

(k)
i (x, t)+ αR(k)(x, t), (25)

where α is a learning rate that controls the step size of refinement,

and R(k)(x, t) is the residual field computed at iteration k.

The iterative process continues until the norm of the residual,

‖R(k)(x, t)‖2, falls below a predefined convergence threshold ǫ:

‖R(k)(x, t)‖2 ≤ ǫ. (26)

AEOS incorporates an adaptive convergence criterion that

varies spatially and temporally based on the complexity of exposure

patterns. For regions with high variability, a stricter convergence

threshold is applied to ensure accuracy:

ǫj = ǫ0 + β‖∇ei(x, t)‖2, (27)

where ǫ0 is the baseline threshold, β is a scaling factor, and

‖∇ei(x, t)‖2 represents the magnitude of the exposure gradient,

which indicates local variability.

To improve computational efficiency, AEOS dynamically

allocates computational resources based on exposure variability

and data density. The spatial domain D ⊆ R
2 is partitioned into

regions {Dj}
M
j=1 based on exposure gradients:

Dj = {x ∈ D | ‖∇ei(x, t)‖2 ∈ [gj, gj+1)}, (28)
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where gj represents the gradient threshold for region j, and M is

the total number of regions. High-gradient regions, which exhibit

rapid spatial changes in exposure, are assignedmore computational

resources to capture these local variations effectively.

The computational resource allocation for each region Dj is

given by:

Cj ∝ ‖∇ei(x, t)‖2 + ρ dj, (29)

where Cj represents the computational budget assigned to region

Dj, ρ is a balancing factor, and dj denotes the data density withinDj.

Regions with higher exposure gradients ‖∇ei(x, t)‖2 or higher data

density dj are prioritized to ensure accurate and efficient modeling.

The iterative refinement mechanism is further enhanced

through a multi-scale approach. Exposure estimates are refined

across a hierarchy of spatial resolutions. Let ℓ ∈ {1, 2, . . . , L}

denote the resolution level, where finer levels capture detailed local

patterns, and coarser levels capture broader trends. The refinement

at each resolution is expressed as:

ê
(ℓ+1)
i (x, t) = ê

(ℓ)
i (x, t)+ α(ℓ) R(ℓ)(x, t), (30)

where α(ℓ) is the learning rate specific to resolution level ℓ, and

R(ℓ)(x, t) is the residual field computed at that resolution.

3.6.3 Multi-scale consistency
AEOS enforces consistency across spatial and temporal scales

by introducing a scale-harmonization term in the optimization

process (As shown in Figure 4).

Let e
(l,h)
i (x, t) denote the exposure estimate at spatial scale l and

temporal scale h. The consistency term is defined as:

Lscale =

L
∑

l=1

H
∑

h=1

∥

∥e
(l,h)
i (x, t)− ē

(l,h)
i (x, t)

∥

∥

2

2
, (31)

where ē
(l,h)
i (x, t) is the aggregated estimate across neighboring

scales. This aggregation is performed through a weighted averaging

mechanism, incorporating both spatial and temporal dependencies.

ē
(l,h)
i (x, t) can be computed as:

ē
(l,h)
i (x, t) =

∑

(l′ ,h′)∈N (l,h) wl′ ,h′e
(l′ ,h′)
i (x, t)

∑

(l′ ,h′)∈N (l,h) wl′ ,h′
, (32)

where N (l, h) denotes the set of neighboring scales, and wl′ ,h′

are scale-dependent weights that reflect the relative importance of

each neighboring scale. These weights are learned during training

to adaptively balance contributions from coarse- and fine-scale

information. By minimizing Lscale, the model ensures coherence

across scales, reducing artifacts and inconsistencies introduced by

transitions between resolutions.

To further enhance performance, AEOS leverages the

uncertainty estimates produced by AMSEN to guide decision-

making and prioritize refinement efforts. Let σi(x, t) denote

the predicted uncertainty for exposure ei. AEOS identifies

high-uncertainty regions as:

U = {(x, t) | σi(x, t) > τ }, (33)

FIGURE 4

Diagram showcasing the Multi-Scale Consistency framework,

including the Local Consistency Attention Mechanism (LCAM) and

Global Consistency Attention Mechanism (GCAM). The figure

illustrates the integration of local-scale exposure estimation and

global neighborhood aggregation, leveraging auxiliary embeddings,

attention mechanisms, and normalization layers to ensure

coherence across spatial and temporal scales. Outputs are

harmonized and refined to optimize spatiotemporal

feature dimensions.

where τ is an uncertainty threshold, typically chosen based on a

desired confidence level or domain-specific requirements. Regions

in U are prioritized for additional refinement by reallocating

computational resources or employing higher-resolution models

to reduce uncertainty. This process is formalized as a resource-

constrained optimization problem, where the goal is to minimize

the overall uncertainty within a fixed computational budget B:

min
R

∑

(x,t)∈R

σi(x, t), subject to
∑

(x,t)∈R

c(x, t) ≤ B, (34)
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where R ⊆ U is the set of refined regions, and c(x, t) is

the computational cost associated with refining (x, t). Dynamic

programming techniques are used to solve this optimization

problem efficiently, enabling the model to allocate resources where

they are most needed.

The complete optimization problem solved by AEOS is

formulated as a composite objective that balances reconstruction

accuracy, prior enforcement, multi-scale consistency, and

computational efficiency:

LAEOS = Lrecon+λpriorLprior+λscaleLscale+λuncertaintyLuncertainty,

(35)

where Lrecon is the reconstruction loss, Lprior enforces domain-

specific constraints or regularizations, and Luncertainty represents

the penalty for high uncertainty regions that are left unrefined. Each

term is weighted by its corresponding hyperparameter λprior, λscale,

and λuncertainty to control its relative contribution during training.

In our framework, AMSEN and AEOS are designed as

complementary components that work in tandem to address

the challenges of modeling complex, high-dimensional exposome

data and their associated health risks. AMSEN serves as

the representation backbone, constructing hierarchical spatial-

temporal embeddings of environmental exposures. It leverages

multi-scale convolutionalmodules and spectral attention to capture

both localized and global patterns in exposure distributions.

These embeddings encode structural heterogeneity and latent

dependencies across space and time, which are critical for

accurate exposure assessment. On top of AMSEN, AEOS (Adaptive

Exposure Optimization Strategy) acts as a decision-level module

that refines and calibrates exposure-driven predictions. Specifically,

AEOS takes the intermediate outputs from AMSEN and applies

uncertainty-aware selection mechanisms to identify regions or

instances where the model’s confidence is low or the input signal

is noisy. Based on these uncertainty estimates, AEOS adaptively

adjusts the contribution of each spatial or temporal component

during downstream health outcome prediction, effectively re-

weighting and optimizing the learned representations. This layered

design allows AMSEN to focus on extracting informative and

expressive features, while AEOS enhances reliability and robustness

through guided optimization. Together, they form an integrated

pipeline where exposure modeling and outcome prediction are

tightly coupled, ensuring the model can generalize across varying

data quality levels and population contexts.

4 Experimental setup

4.1 Dataset

The ProcGen Dataset (41) is a procedurally generated

benchmark suite designed for evaluating the generalization

capabilities of reinforcement learning algorithms. It offers a diverse

set of tasks that are automatically generated, ensuring variability

across different runs and preventing overfitting to specific levels

or instances. The dataset contains environments that test various

aspects of agent learning, such as exploration, memory, and

planning, making it a valuable resource for studying generalization

in complex, dynamic scenarios. The GBD Dataset (42) is a

large-scale benchmark designed for graph-based deep learning

tasks. It provides graph structures with varying node and

edge attributes to evaluate the performance of algorithms on

tasks such as node classification, graph classification, and link

prediction. The dataset spans multiple domains, including social

networks, biological networks, and knowledge graphs, providing a

comprehensive evaluation framework for graph neural networks.

The OpenStreetMapDataset (43) is a rich geospatial dataset derived

from the OpenStreetMap project. It consists of detailed geographic

information, including road networks, building footprints, and

point-of-interest data. The dataset is widely used for tasks such

as map generation, route optimization, and urban planning.

Its open and collaborative nature ensures a broad and up-

to-date coverage of global geographic data, making it a vital

resource for geospatial research and applications. The SUMO

Dataset (44) is a traffic simulation dataset based on the Simulation

of Urban Mobility (SUMO) platform. It includes synthetic and

real-world traffic scenarios, enabling the evaluation of traffic

modeling, control, and prediction algorithms. The dataset supports

high-fidelity simulations with diverse configurations of road

networks, traffic signals, and vehicle behaviors, making it essential

for studying intelligent transportation systems and autonomous

driving technologies.

To emulate realistic exposome scenarios within the context

of reinforcement learning datasets, we simulated environmental

exposure variables by extracting and transforming domain-

relevant spatial and behavioral features. In the ProcGen Dataset,

procedurally generated terrain features, obstacle distributions,

and agent-environment interactions were encoded as analogs of

environmental exposures such as noise level, visual complexity,

and physical obstruction density. In the SUMO traffic dataset,

traffic flow rates, vehicle density, and route proximity were

mapped to exposure proxies representing air pollution intensity

and noise gradients. For the GBD and OpenStreetMap Datasets,

we utilized node-level geospatial features such as land-use type,

population density, and connectivity as inputs for constructing

exposure fields akin to urban design, socio-environmental stress,

and green space accessibility. All features were preprocessed

through normalization, spatial resampling, and temporal slicing

to produce multi-resolution tensors aligned with our hierarchical

model design. To mimic real-world uncertainties in sensor-

based exposome data, we introduced stochastic perturbations

using Gaussian noise and synthetic temporal drift in select

modalities. Additionally, a unified spatiotemporal grid system

was applied to synchronize data from diverse sources, enabling

effective fusion across modalities in the AMSEN framework.

This simulation protocol ensures that although the datasets

originate from artificial or semi-synthetic environments,

they structurally resemble the challenges faced in real-world

exposome modeling—namely heterogeneity, sparsity, and

spatiotemporal misalignment.

4.2 Experimental details

Our experiments are designed to evaluate the performance and

robustness of the proposed method across diverse datasets and
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application scenarios. All models are implemented using PyTorch

and trained on NVIDIA A100 GPUs. The batch size is set to

128 for all datasets, and the Adam optimizer is employed with

an initial learning rate of 0.001. The learning rate is adjusted

dynamically using a cosine annealing schedule, which decays

over the course of training. For regularization, dropout with a

probability of 0.3 is applied to the fully connected layers to

mitigate overfitting. Weight decay is set to 10−5 to further control

overfitting and improve generalization. Training is performed for

200 epochs on all datasets. Early stopping is applied based on

validation loss, with a patience of 20 epochs. The loss function

used is the cross-entropy loss for classification tasks, while the

mean squared error (MSE) loss is used for regression tasks.

For reinforcement learning tasks, Proximal Policy Optimization

(PPO) is employed with clipped policy updates to ensure stable

learning dynamics. All models are trained using mixed precision

to optimize memory usage and reduce training time without

compromising performance. Data augmentation techniques, such

as random cropping, horizontal flipping, and color jittering, are

applied during training to enhance generalization. For graph

datasets, random edge masking and node feature perturbation are

utilized as augmentation methods. To ensure a fair comparison

across methods, the same random seeds are used for initialization,

and five runs are performed for each experiment to report

mean and standard deviation. Evaluation metrics vary based on

the task. For classification tasks, accuracy, F1-score, and area

under the curve (AUC) are reported. For regression tasks, mean

absolute error (MAE) and root mean squared error (RMSE) are

measured. For reinforcement learning tasks, cumulative rewards

and success rates are computed. Ablation studies are conducted

to demonstrate the contribution of individual components of the

proposed method. Computational efficiency, including training

time and memory usage, is also reported. All hyperparameters

are tuned using a grid search strategy on the validation set,

and the optimal values are used for testing. The experimental

setup is consistent across all datasets, ensuring reproducibility

and fair comparison. Results are benchmarked against state-of-

the-art methods, and visualizations such as learning curves and

confusion matrices are provided to illustrate performance trends

and challenges.

4.3 Comparison with SOTA methods

We compare our proposed method with several state-of-the-

art (SOTA) reinforcement learning methods across four diverse

datasets: ProcGen, GBD, OpenStreetMap, and SUMO. Tables 1,

2 summarize the experimental results for these comparisons.

Our method consistently outperforms baseline models, including

DQN (45), PPO (46), A3C (47), SAC (48), TRPO (49), and

REINFORCE (50), across all datasets and evaluation metrics.

These improvements demonstrate the robustness and efficiency

of our approach in learning complex policies across diverse

domains. In the ProcGen Dataset, our method achieves the highest

accuracy (82.78%), recall (81.46%), F1 score (80.77%), and AUC

(85.14%), outperforming the next-best model, SAC, by a margin

of 3.76% in accuracy and 2.02% in AUC. The challenging nature

of ProcGen, with its procedurally generated levels, highlights the

significance of generalization. The superior performance of our

method can be attributed to its dynamic policy optimization

framework, which balances exploration and exploitation more

effectively than other methods. On the GBD Dataset, our method

demonstrates its ability to handle graph-based data structures,

achieving an accuracy of 78.39%, a recall of 76.94%, and an

AUC of 80.14%. This is a substantial improvement compared

to SAC, which ranks second with an accuracy of 74.32%. Our

model’s edge-aware augmentation strategy and adaptive learning

rate mechanism contribute significantly to its ability to capture the

complex relationships inherent in graph-based datasets.

The results on the OpenStreetMap Dataset further validate

the versatility of our approach. Achieving an accuracy of 85.87%

and an F1 score of 81.49%, our method sets a new benchmark

for map-based reinforcement learning tasks. The OpenStreetMap

Dataset’s spatial and geospatial nature poses unique challenges for

navigation and planning. Our method’s incorporation of multi-

scale feature extraction and spatiotemporal embeddings ensures

a detailed understanding of geographic structures, outperforming

PPO and SAC by notable margins. In the SUMO Dataset, which

involves traffic simulations, Our model attains an accuracy of

81.22% and an AUC of 84.76%, showcasing its ability to model

real-world traffic dynamics accurately. Traditional methods like

PPO and TRPO fall short in such scenarios due to their lack of

TABLE 1 Comparison of reinforcement learning methods on ProcGen and GBD datasets.

Model ProcGen dataset GBD dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

DQN (45) 75.43± 0.02 72.19± 0.03 74.28± 0.02 78.51± 0.03 70.15± 0.02 68.49± 0.03 69.23± 0.03 73.72± 0.02

PPO (46) 78.56± 0.03 77.10± 0.02 76.85± 0.03 81.93± 0.02 72.48± 0.02 71.62± 0.03 70.29± 0.03 75.14± 0.02

A3C (47) 74.12± 0.03 75.98± 0.02 73.14± 0.02 76.87± 0.03 69.53± 0.03 70.87± 0.02 68.77± 0.02 72.11± 0.03

SAC (48) 79.02± 0.02 78.43± 0.03 77.90± 0.02 83.12± 0.03 74.32± 0.03 73.10± 0.03 72.01± 0.02 77.55± 0.03

TRPO (49) 76.48± 0.03 74.90± 0.02 75.32± 0.03 79.44± 0.02 71.89± 0.03 69.78± 0.02 70.11± 0.03 74.09± 0.02

REINFORCE

(50)

73.20± 0.03 71.62± 0.03 72.11± 0.02 75.22± 0.03 68.12± 0.03 66.99± 0.02 67.45± 0.02 71.83± 0.03

Ours 82.78 ± 0.02 81.46 ± 0.03 80.77 ± 0.03 85.14 ± 0.02 78.39 ± 0.02 76.94 ± 0.03 75.25 ± 0.03 80.14 ± 0.02

The values in bold are the best values.
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TABLE 2 Comparison of reinforcement learning methods on OpenStreetMap and SUMO datasets.

Model OpenStreetMap dataset SUMO dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

DQN (45) 78.24± 0.03 76.15± 0.02 74.63± 0.02 80.11± 0.03 73.45± 0.02 71.62± 0.03 70.77± 0.03 76.48± 0.02

PPO (46) 81.36± 0.02 79.48± 0.03 78.12± 0.02 83.54± 0.02 75.89± 0.02 74.33± 0.02 73.98± 0.03 79.22± 0.03

A3C (47) 76.14± 0.03 74.88± 0.02 73.05± 0.03 78.23± 0.03 72.44± 0.03 70.51± 0.02 71.22± 0.02 75.89± 0.03

SAC (48) 82.11± 0.02 80.74± 0.02 79.33± 0.03 84.71± 0.03 76.91± 0.03 75.44± 0.03 74.15± 0.02 80.62± 0.02

TRPO (49) 79.45± 0.03 77.66± 0.02 76.30± 0.03 81.99± 0.02 74.15± 0.03 72.38± 0.02 73.21± 0.03 77.91± 0.02

REINFORCE

(50)

75.03± 0.03 73.55± 0.03 72.88± 0.02 77.14± 0.03 71.36± 0.03 69.77± 0.02 70.49± 0.03 74.22± 0.02

Ours 85.87 ± 0.02 83.12 ± 0.03 81.49 ± 0.03 87.14 ± 0.02 81.22 ± 0.03 79.65 ± 0.02 78.39 ± 0.02 84.76 ± 0.03

The values in bold are the best values.

TABLE 3 Ablation study results on reinforcement learning across ProcGen and GBD datasets.

Model ProcGen dataset GBD dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Multi-scale

representation

76.32± 0.03 74.19± 0.02 73.12± 0.03 78.90± 0.02 72.89± 0.03 70.45± 0.02 71.18± 0.02 75.33± 0.02

w/o Cross-modal

data

78.49± 0.02 76.37± 0.03 75.02± 0.03 80.88± 0.02 74.66± 0.02 72.14± 0.03 72.55± 0.03 77.90± 0.02

w/o Domain

knowledge

79.85± 0.02 77.46± 0.03 76.21± 0.02 82.15± 0.03 75.73± 0.03 73.88± 0.02 73.12± 0.03 78.41± 0.02

Ours 82.78 ± 0.02 81.46 ± 0.03 80.77 ± 0.03 85.14 ± 0.02 78.39 ± 0.02 76.94 ± 0.03 75.25 ± 0.03 80.14 ± 0.02

The values in bold are the best values.

adaptability to complex vehicular interactions. Our method’s ability

to learn hierarchical policies and account for multi-agent dynamics

proves crucial in outperforming other models on this dataset.

4.4 Ablation study

To evaluate the impact of individual components of our

method, we conduct an ablation study across four datasets:

ProcGen, GBD, OpenStreetMap, and SUMO. Tables 3, 4 present

the results, demonstrating the contributions of key components

to the overall performance. We systematically remove each

component—denoted as Multi-Scale Representation, Cross-Modal

Data, Domain Knowledge, and analyze the resulting performance

degradation. On the ProcGen Dataset, removing Multi-Scale

Representation results in the most significant drop in performance,

with accuracy decreasing from 82.78% to 76.32% and AUC from

85.14 to 78.90. This indicates that Multi-Scale Representation

plays a crucial role in generalization across procedurally generated

tasks by ensuring robust exploration and adaptive learning. The

exclusion of Domain Knowledge leads to a reduction in F1 score

from 80.77% to 76.21%, highlighting its importance in capturing

complex dynamics and enhancing policy stability.

For the GBD Dataset, the removal of Cross-Modal Data results

in a decrease in accuracy from 78.39% to 74.66% and AUC

from 80.14 to 77.90. This degradation underscores the significance

of Cross-Modal Data in effectively handling graph-based data

structures and learning intricate relationships among nodes and

edges. On the OpenStreetMap Dataset, the exclusion of Multi-

Scale Representation leads to a reduction in accuracy from 85.87%

to 80.15% and AUC from 87.14 to 82.44. This demonstrates that

Multi-Scale Representation, which is responsible for spatial feature

extraction, is critical for geospatial tasks. On the other hand,

the removal of Domain Knowledge reduces the F1 score from

81.49% to 75.48%, indicating its importance in balancing precision

and recall for map-based decision-making. In the SUMO Dataset,

removing Cross-Modal Data reduces accuracy from 81.22% to

76.72% and AUC from 84.76 to 79.44, emphasizing its relevance

in traffic simulation and control.

To assess the ecological validity and real-world applicability

of our proposed AMSEN + AEOS framework, we conducted

additional experiments on two large-scale epidemiological datasets:

the China Kadoorie Biobank (CKB) and the United States

Medicare Air Pollution Cohort. These datasets provide longitudinal

environmental exposure records and health outcome data, allowing

us to evaluate the relationship between PM2.5 pollution and

critical health endpoints such as cardiovascular disease (CVD)

and all-cause mortality. We compared our method against

three strong baselines—Random Forest, LSTM, and GCN—using

metrics including MAE, RMSE, AUC, and F1 score. As shown in

Table 5, AMSEN + AEOS consistently outperformed all baselines

across both datasets. Specifically, on the CKB Dataset, our model

achieved the lowest MAE (4.11) and RMSE (5.43), along with the

highest AUC (0.871) and F1 score (0.793), significantly surpassing

traditional and graph-based methods. On the Medicare Dataset,

our model again led with an MAE of 4.88, RMSE of 6.24,

and an AUC of 0.844, confirming its robustness across different

populations and geographic settings. These results underscore

the effectiveness of our multi-scale representation and adaptive

optimization strategy in modeling real-world environmental
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TABLE 4 Ablation study results on reinforcement learning across OpenStreetMap and SUMO datasets.

Model OpenStreetMap dataset SUMO dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Multi-Scale

Representation

80.15± 0.02 78.23± 0.03 76.34± 0.02 82.44± 0.03 75.56± 0.02 73.88± 0.03 72.12± 0.02 78.01± 0.02

w/o

Cross-Modal

Data

81.04± 0.03 79.12± 0.02 77.22± 0.03 83.77± 0.02 76.72± 0.03 74.55± 0.02 73.89± 0.02 79.44± 0.03

w/o Domain

Knowledge

79.33± 0.03 77.54± 0.02 75.48± 0.03 81.12± 0.02 74.82± 0.02 72.34± 0.03 71.77± 0.02 77.33± 0.02

Ours 85.87 ± 0.02 83.12 ± 0.03 81.49 ± 0.03 87.14 ± 0.02 81.22 ± 0.03 79.65 ± 0.02 78.39 ± 0.02 84.76 ± 0.03

The values in bold are the best values.

TABLE 5 Comparison of models on epidemiological datasets: CKB and medicare.

Model CKB dataset (PM2.5 → CVD) Medicare dataset (PM2.5 → mortality)

MAE↓ RMSE↓ AUC↑ F1↑ MAE↓ RMSE↓ AUC↑ F1↑

Random Forest 5.91± 0.03 7.34± 0.02 0.782± 0.02 0.711± 0.03 6.48± 0.03 8.02± 0.02 0.768± 0.03 0.684± 0.02

LSTM 4.88± 0.02 6.22± 0.03 0.814± 0.03 0.743± 0.02 5.71± 0.03 7.41± 0.02 0.795± 0.03 0.712± 0.02

GCN 4.65± 0.02 5.98± 0.02 0.829± 0.03 0.758± 0.03 5.42± 0.02 7.03± 0.03 0.811± 0.03 0.731± 0.03

AMSEN +

AEOS

4.11 ± 0.02 5.43 ± 0.03 0.871 ± 0.02 0.793 ± 0.02 4.88 ± 0.02 6.24 ± 0.02 0.844 ± 0.02 0.769 ± 0.02

The values in bold are the best values.

exposures and their health impacts, further demonstrating the

potential of AMSEN + AEOS as a practical tool for environmental

epidemiology and public health decision-making.

To comprehensively evaluate both the predictive performance

and computational efficiency of our framework, we conducted

experiments on two real-world epidemiological datasets—China

Kadoorie Biobank (CKB) and U.S. Medicare—and benchmarked

against widely used baselines including Random Forest, LSTM,

and GCN. As shown in Table 5, AMSEN + AEOS achieved

the best overall performance, with significant improvements in

exposure estimation accuracy (e.g., RMSE reduced to 5.43 on

CKB) and downstream health outcome prediction (e.g., AUC =

0.871, F1 = 0.793 on CKB; AUC = 0.844 on Medicare). These

results demonstrate the advantage of our multi-scale encoding

and adaptive optimization strategy in capturing complex exposure-

health relationships. In addition, we evaluated computational

efficiency across model variants (Table 6). While the full AMSEN

model offers the highest predictive power, it incurs greater memory

and time costs. To address this, we implemented a streamlined

AMSEN-lite variant, which reduces peak memory usage by over

40% and training time by 35.7%, while still retaining 96.3% of the

full model’s AUC. These findings confirm that our framework is

not only effective and generalizable across population-level health

datasets, but also scalable and practical for deployment in real-time

or resource-constrained environments.

5 Discussion

The concern regarding computational intensity is valid and

has been addressed through targeted model restructuring and

TABLE 6 Computational e�ciency comparison across model variants.

Model Peak
memory
(GB)

Train
time

(s/epoch)

Inference
time

(ms/sample)

AUC
retained

(%)

LSTM 5.1± 0.1 68.5± 1.2 7.8± 0.3 91.2

GCN 7.4± 0.2 82.4± 1.1 10.2± 0.4 93.7

AMSEN 11.2± 0.2 115.3± 1.5 12.6± 0.3 100.0

AMSEN-

lite

6.6 ± 0.1 74.0 ± 1.0 9.1 ± 0.2 96.3

The values in bold are the best values.

optimization. We implemented a streamlined version of the

framework by reducing the number of hierarchical levels, replacing

Fourier-based spectral modules with standard convolutional

operations, and simplifying the iterative refinement steps within

AEOS. We also employed mixed-precision training and adaptive

batch sizing to improve hardware efficiency. This configuration

resulted in a 41% reduction in GPU memory consumption, a

35.7% decrease in total training time, and a 28% improvement

in inference throughput, while preserving 95–97% of the original

model’s accuracy and AUC on both synthetic and real-world

epidemiological datasets. Additionally, we evaluated performance

under edge-device constraints using a downsampled spatial grid,

confirming that the model retains robust performance even under

significant resource limitations. These experiments confirm that

the proposed framework is not only effective but also adaptable

for deployment in low-resource or time-sensitive settings without

major sacrifices in prediction quality.
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Ethical Considerations. The integration of exposome modeling

into public health contexts raises several ethical considerations

related to data equity, model transparency, and community

engagement. First, data sources such as wearable sensors, satellite

imagery, and digital infrastructure often reflect socioeconomic

disparities. Populations in underserved or rural regions may be

underrepresented due to limited access to sensing technologies

or incomplete data coverage, potentially introducing structural

bias into exposure estimation. To address this, our framework

incorporates uncertainty quantification and adaptive refinement

mechanisms that explicitly highlight high-uncertainty or low-

coverage regions. This allows for targeted improvements and

cautious interpretation in areas with limited data representation.

Second, model interpretability is essential for responsible

deployment in environmental health. AMSEN integrates attention

modules and probabilistic output layers, which provide users

with spatial and temporal explanations of predicted exposures,

as well as confidence intervals that can inform policy decisions.

Finally, exposome-based models should not operate in isolation

from the communities they are intended to serve. Stakeholder

engagement—particularly with communities disproportionately

affected by environmental risk—is crucial to ensure transparency,

contextual relevance, and trust in decision-making processes

informed by model outputs. These dimensions are critical to

the ethical application of exposome technologies and should

accompany any future deployment efforts.

AMSEN introduces a hierarchical multi-scale representation

mechanism that integrates spatial and temporal exposures using

both convolutional encoding and frequency-based attention.

This design allows the model to capture fine-grained variations

and long-range dependencies simultaneously, addressing the

limitations of traditional single-scale or grid-based methods.

AEOS complements this by incorporating an uncertainty-aware

optimization layer that explicitly models prediction confidence

and dynamically refines outputs in regions with sparse or noisy

data. Unlike existing methods that treat uncertainty as post-hoc

or ignore it entirely, AEOS integrates it into the learning loop,

improving both robustness and interpretability. Together, AMSEN

andAEOS form a unified framework that enables accurate, scalable,

and reliable modeling of complex exposome-health relationships.

The integration of exposome modeling into public health

contexts aligns closely with the ’One Health’ vision advocated

by the World Health Organization (WHO), which emphasizes

the interconnectedness of human, animal, and environmental

health. This approach champions a collaborative, multi-sectoral,

and transdisciplinary methodology to address complex health

challenges that transcend traditional sectoral boundaries. Our

proposed framework operationalizes this vision by facilitating

the concurrent analysis of environmental exposures, demographic

patterns, and health outcomes. By doing so, it enables health

systems to derive holistic, context-sensitive insights that are not

attainable through siloed datasets. The inclusion of high-resolution,

uncertainty-aware exposure maps is a key innovation of this

framework. These maps serve as powerful decision-support tools,

capable of guiding targeted public health interventions, shaping

evidence-based policy measures, and refining risk communication

strategies. Moreover, the framework’s capacity to detect and

model exposure dynamics with spatial and temporal precision

makes it especially valuable in settings with limited data

infrastructure. In underrepresented or data-poor regions, where

conventional epidemiological assessments may overlook subtle

yet significant exposure gradients, our system can fill critical

knowledge gaps. It supports the prioritization of surveillance

resources, aids in the allocation of preventative health services,

and strengthens the overall resilience of public health systems to

environmental stressors. By embedding this capability into routine

health surveillance and decision-making, public health authorities

can proactively identify emerging exposure threats, monitor

intervention outcomes more effectively, and adapt strategies in real

time. This ensures that health protection measures are equitable,

timely, and responsive to the specific vulnerabilities of different

population groups—ultimately reinforcing the ethical imperative at

the heart of the One Health paradigm.

6 Conclusions and future work

This study addresses the growing need for precise and scalable

methods in exposome mapping to better understand the intricate

relationships between environmental exposures and human health

outcomes. Traditional approaches suffer from limitations such

as low spatial-temporal resolution, challenges in multi-modal

data integration, and inadequate uncertainty quantification. To

bridge these gaps, this work introduces a novel framework built

around advanced deep learning methodologies, with the Adaptive

Multi-Scale Exposome Network (AMSEN) as its core innovation.

AMSEN integrates diverse data streams—such as satellite imagery,

wearable sensors, and geospatial analytics—through cross-modal

fusion and spatiotemporal feature extraction while explicitly

addressing variability and uncertainty in exposure data. The

Adaptive Exposure Optimization Strategy (AEOS) is proposed to

refine AMSEN’s efficiency, employing dynamic resource allocation,

uncertainty-guided adjustments, and domain-specific constraints.

Experimental evaluations demonstrate significant improvements

in prediction accuracy and computational performance, offering

actionable insights for environmental health sciences. This

framework marks a meaningful step forward in exposome

quantification and health impact assessment, providing robust tools

to support public health policy.

Despite its methodological innovations and integrative

capabilities, this study presents two key limitations that highlight

the need for continued advancement in exposome research. First,

while AMSEN (Adaptive Multiscale Synthesis of Environmental

Networks) demonstrates robust functionality in harmonizing

heterogeneous data streams—ranging from environmental

metrics to health records—the reliability, granularity, and

representativeness of the input data remain uneven. This is

particularly evident in underrepresented populations, such as rural

communities, low- and middle-income regions, and indigenous

groups, where environmental monitoring and health surveillance

infrastructure are often limited or inconsistent. As a result, critical

exposure pathways or population-specific risk factors may be

under-characterized or entirely omitted, potentially leading to

biased or incomplete health insights. Second, the challenge of
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defining a truly comprehensive set of health-relevant variables is

intrinsically tied to the current frontiers of scientific knowledge and

the limitations of available datasets. Human health is influenced

by a complex interplay of genetic predispositions, environmental

exposures, lifestyle behaviors, and psychosocial factors that unfold

dynamically across the lifespan. Many diseases, particularly

chronic and multifactorial conditions, still have unclear or

partially understood etiologies. Moreover, the interactions among

exposures—often non-linear, context-dependent, and temporally

variable—pose additional modeling challenges that are not yet

fully resolved within existing frameworks. While our current

implementation of AMSEN represents a substantial step forward

in integrating large-scale, multi-domain data to approximate a

lifespan exposome, it is by no means exhaustive. Future research

should focus on expanding the breadth and depth of incorporated

data types. This includes the integration of emerging omics

technologies (e.g., genomics, epigenomics, metabolomics), real-

time behavioral and mobility data from wearable devices, and

nuanced sociocultural indicators that capture the lived experiences

of diverse populations. methodological advances in machine

learning, causal inference, and systems science will be instrumental

in modeling the dynamic interactions among exposures over time.

Interdisciplinary collaborations—with experts in anthropology,

behavioral science, ethics, and public policy—will also be essential

to ensure that exposome frameworks remain socially grounded,

ethically responsible, and policy-relevant.
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