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Background: Life expectancy in China has demonstrated a consistent upward 
trend, yet significant disparities persist across provinces. Addressing these 
regional imbalances necessitates a comprehensive investigation into the 
determinants of life expectancy. Previous research has largely overlooked 
the critical role of spatial heterogeneity, which is essential for understanding 
the underlying mechanisms driving these disparities. By incorporating spatial 
analysis, this study aims to identify and address the factors contributing to the 
uneven distribution of life expectancy across China, thereby providing a more 
nuanced understanding of regional health inequalities.

Methods: Therefore, this study investigated the spatial distribution 
characteristics and patterns of life expectancy across 31 provinces in China in 
2020 by conducting descriptive and spatial autocorrelation analyses, utilizing 
life expectancy data alongside key air pollution indicators (PM2.5, SO2, NO2, and 
PM10). To address spatial heterogeneity, the geographically weighted regression 
(GWR) model was applied to assess the regional variations in the impact of air 
pollutants on life expectancy. This approach allows for the incorporation of 
geographic coordinates into the regression coefficients, capturing localized 
effects and providing a more nuanced understanding of the relationship 
between air pollution and life expectancy across different regions.

Results: The findings revealed that in 2020, life expectancy in China exhibited 
a distinct east-to-west decreasing trend, demonstrating significant spatial 
autocorrelation that was predominantly characterized by two aggregation 
patterns: high-high and low-low clusters. The analysis demonstrated that air 
pollutants, including SO2, NO2, and PM10, exerted significant influences on life 
expectancy, albeit with regional variations. Specifically, SO2 exhibited a more 
pronounced negative impact on life expectancy in southern cities, while NO2 
demonstrated a stronger effect in northwestern regions. Notably, PM10 showed 
a significant influence limited to Yunnan Province, highlighting the spatial 
heterogeneity in the relationship between air pollution and life expectancy 
across China.

Conclusion: These findings highlight the imperative for local governments to 
develop and implement region-specific air pollution control measures, taking 
into account the unique environmental and socio-economic conditions of their 
respective areas.
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1 Introduction

With sustained economic development and advancements in 
medical care, life expectancy in China has demonstrated a 
consistent upward trajectory (1–3). Specifically, between 2010 
and 2020, the average life expectancy increased from 74.83 to 
77.90 years. However, significant regional disparities persist 
across provinces (4). In 2020, Shanghai recorded the highest life 
expectancy at 82.55 years, while Tibet had the lowest at 
72.19 years, reflecting a notable gap of nearly 10 years. These 
pronounced variations underscore the necessity of a 
comprehensive investigation into the determinants of life 
expectancy in China. Such an exploration is crucial to identifying 
effective strategies for addressing the disparities in life expectancy 
between regions.

Numerous studies have established that air pollution 
significantly impacts life expectancy (5). Exposure to ambient air 
pollutants, including sulfur dioxide (SO2), fine particulate matter 
(PM2.5), and nitrogen oxides (NOx), was strongly associated with 
an elevated risk of various diseases and a marked reduction in life 
expectancy (6–13). For instance, Wang et  al. highlighted that 
pollutants such as PM10 and SO2 exerted a detrimental effect on life 
expectancy (14). Specifically, PM10 had been identified as a critical 
contributor to respiratory diseases, cardiovascular conditions, and 
hypertension. The long-term exposure of populations to air 
pollution has been shown to substantially diminish life expectancy. 
This relationship was particularly evident with SO2, where a 10 ug/
m3 increase in concentration had been linked to a 0.35-year 
reduction in life expectancy (14). These findings underscored the 
profound public health implications of air pollution and the urgent 
need for effective mitigation strategies.

In the realm of methodologies for investigating the 
determinants of life expectancy, earlier studies predominantly 
utilized regression analyses that overlooked spatial information, 
such as multiple linear regression. However, these models often 
suffer from multicollinearity among independent variables and fail 
to incorporate spatial data (4), leading to suboptimal model fit and 
residuals that exhibit spatial autocorrelation. In response, recent 
research has increasingly adopted spatial regression models, 
including the spatial error model and the spatial lag model (15), to 
better capture spatial dependencies in life expectancy studies. While 
these global spatial regression models account for spatial 
correlations among variables, they do not address the spatial 
heterogeneity—the varying impact of each factor on life expectancy 
across different geographic locations. To address this limitation, the 
geographically weighted regression (GWR) model has been 
introduced as a local regression approach. GWR integrates the 
geographic locations of independent variables into the regression 
coefficients, thereby elucidating how the influence of various factors 
on life expectancy varies spatially (16, 17).

Our study comprehensively utilize the GWR model to analyze 
the impact of air pollution on life expectancy in China. Compared 

to traditional global regression models, the GWR model constructs 
local regression equations at each spatial location, taking into 
account the spatial heterogeneity. This allows it to more accurately 
reflect regional differences in the impact of air pollution on life 
expectancy. Based on the analysis results of the GWR model, 
policymakers can more accurately identify regions where air 
pollution has a significant impact on life expectancy and implement 
more targeted governance measures in these areas.

Consequently, this study investigated the spatial distribution 
characteristics and patterns of life expectancy by employing 
descriptive and spatial autocorrelation analyses. Subsequently, 
we utilized the GWR model to examine the impact of air pollution 
factors on life expectancy across 31 regions in China during 2020. 
The findings offer a robust scientific foundation for optimizing the 
allocation of healthcare resources and informing region-specific 
policy formulation.

2 Data and methods

2.1 Variable selection and data sources

To comprehensively investigate the impact of air pollution on life 
expectancy across Chinese provinces, we  selected key variables—
PM2.5, SO2, NO2, and PM10—based on their established relevance to 
life expectancy in prior literature and data availability. The study was 
conducted at the provincial administrative level, encompassing all 31 
mainland Chinese provinces (excluding Hong Kong, Macao, and 
Taiwan). Life expectancy data for 2020 were sourced from the China 
Health Statistical Yearbook, while air pollution data (PM2.5, SO2, NO2, 
and PM10) were obtained from regional ecological and 
environmental bulletins.

2.2 Statistical methods

2.2.1 Descriptive analyses
The spatial distribution characteristics of life expectancy and air 

pollution factors across the 31 districts were visualized using 
thematic maps.

2.2.2 Spatial autocorrelation analysis
This study examined spatial autocorrelation in life expectancy at 

both global and local scales. At the global level, we employed Global 
Moran’s I, a statistical index ranging from −1 to 1. Values greater than 
0 indicate positive spatial autocorrelation, reflecting clustering of life 
expectancy; values closer to 0 suggest a random spatial distribution, 
implying no autocorrelation; and values less than 0 denote negative 
spatial autocorrelation, signifying a dispersed distribution. The 
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mathematical formulation of Global Moran’s I  is as follows (18) 
(Equation 1):
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where xi and xj represent the life expectancy of the i-th region and 
j-th regions, respectively; xdenotes the mean life expectancy; Wij is the 
spatial weight matrix based on contiguity edges corner; n refers to the 
number of spatial units.The statistical significance of Moran’s I was 
tested using the Z statistic(Equation 2):
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where E(I) and var.(I) represent the expected value and variance 
of Moran’s I, respectively. At a significance level of 0.05, Z > 1.96 (i.e., 
p < 0.05) indicates spatial autocorrelation in life expectancy.

At the local level, we utilized Local Moran’s I (LISA) to identify 
spatial aggregation patterns (e.g., high-high, low-low, high-low, and 
low-high) in life expectancy across provinces. The calculation formula 
(Equation 3) for LISA is analogous to that of Global Moran’s I, and the 
spatial aggregation patterns were visualized using LISA cluster maps.
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2.2.3 GWR model
Multicollinearity testing is a critical step in data analysis to ensure the 

reliability of regression models. In this study, the Variance Inflation Factor 
(VIF) and the condition number were employed to evaluate 
multicollinearity among the variables (19). For global multicollinearity 
assessment, a widely accepted threshold is a VIF value exceeding 7.5, which 
indicates severe multicollinearity. Variables with VIF values above this 
threshold are excluded from further analysis to mitigate potential biases.

Additionally, local multicollinearity can introduce instability in GWR 
estimates (20). The condition number is used to detect local 
multicollinearity, with values greater than 30 in a specific region suggesting 
potential unreliability in the model’s fitting results for that area.

2.2.3.1 GWR model setting
The GWR model extends the traditional multiple linear regression 

framework by incorporating the geographic coordinates of sample 
data into the regression coefficients, thereby capturing spatial 
heterogeneity. The general form of the GWR model is expressed as 
follows (Equation 4):
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In this study, Qi is used to denote the life expectancy of the i-th 
province, while β0 is employed to represent the regression constant for 
the i-th province. The term (ui,vi) denotes the geographic location of 
the i-th province, which is determined using the center of mass 
coordinates of each province in the GWR model. Finally, βk(ui,vi)is 
used to represent the regression coefficient of the k-th province 
independent variable for the i-th province, xik represents the observed 
value of the independent variable xk in the i-th province, and iε
represents the error term for the i-th province (21, 22), 
where ( )2~ 0,i Nε σ .

Since the regression coefficients in the GWR model vary across 
provinces, a parameter estimation method was proposed based on 
Weighted Least Squares (WLS). This approach assigns higher weights 
to observations that are geographically closer to the target location 
and lower weights to those that are farther away, reflecting the 
principle of spatial proximity. For a detailed mathematical 
representation, refer to Equation 5:
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In this formulation, W(ui, vi) is the spatial weight matrix, XT W(ui, 
vi)X is the geographically weighted variance–covariance matrix, and 
Q is the vector of dependent variables.

The determination of spatial weights is fundamentally dependent 
on the choice of the spatial kernel function (23). In this study, the fixed 
Gaussian function was selected as the spatial kernel function due to 
its ability to generate a smoother kernel surface and mitigate the risk 
of data sparsity during the GWR model fitting process. The 
mathematical expression of the fixed Gaussian function is provided in 
Equation 6:

 ( ) ( )2, exp /j i i ijW u v d θ= −  (6)

In this equation, i denotes a regression point, j denotes a data 
point, dij represents the Euclidian distance between the two points 
of i and j, and θ is the bandwidth, which is employed to describe 
the non-negative decay parameter between the distance and 
the weights.

The selection of bandwidth plays a critical role in the application 
of spatial kernel functions, as it directly influences the accuracy and 
performance of the model. Among the widely used bandwidth 
optimization techniques, the Corrected Akaike Information Criterion 
(AICc) is particularly prominent due to its effectiveness in balancing 
model fit and complexity. The mathematical formulation of the AICc 
criterion is provided in Equation 7:
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In this equation, n denotes the number of sample points, σ̂ is the 
standard deviation of the residual term, and tr(S) is the trajectory of 
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the spatial weight matrix. Specifically, the bandwidth associated with 
the minimum AICc value is identified as the optimal choice.

2.2.3.2 Evaluation of model fitting effectiveness
To assess the goodness-of-fit of the GWR model, this study 

employed the Multiple Linear Regression (MLR) model as a 
benchmark for comparative performance evaluation. The MLR model 
was constructed using the same dataset to ensure consistency in the 
comparative analysis. The mathematical formulation of the MLR 
model is presented in Equation 8:

 
0i a ai i

a
Q xβ β ε= + +∑

 
(8)

The dependent variable Qi denotes the life expectancy of the i-th 
province, while β0 represents a constant term. xai denotes the a-th 
independent variable of the i-th province, βa denotes the coefficient of 
the a-th independent variable, and the residuals are assumed to 
be normally distributed.

To evaluate the goodness-of-fit of the GWR model, this study 
employed three key metrics: R2, Adjusted R2, and the Corrected 
Akaike Information Criterion (AICc), with the MLR model serving as 
a benchmark for comparison. It was hypothesized that higher values 
of R2 and Adjusted R2 indicate a greater proportion of variance 
explained by the regression equation, thereby reflecting a better 
model fit.

Furthermore, the AICc serves a dual purpose: it not only facilitates 
the determination of the optimal bandwidth in GWR but also provides 
a robust criterion for comparing model superiority. Generally, models 
with lower AICc values are considered to exhibit superior fit, as they 
achieve a better balance between model complexity and explanatory 
power (22).

2.2.4 Analysis software
The MLR model, GWR model, collinearity diagnostics, spatial 

autocorrelation analysis, and result visualization were performed 
using ArcGIS 10.2 software (ESRI, Redlands, CA, United States). The 
electronic maps utilized for spatial analysis and factor characterization 
were sourced from the National Geomatics Center of China, which 
provides authoritative geographic information services. In this study, 
statistical significance was determined using a two-tailed test with a 
threshold of p < 0.05.

3 Results

3.1 Spatial distribution characteristics and 
patterns of life expectancy in China

In 2020, the average life expectancy in China was 77.90 years. 
Utilizing the geographic map of mainland China, we  generated a 
spatial distribution map of life expectancy (Figure 1). The analysis 
revealed a distinct east-to-west decreasing gradient in life expectancy, 
with the eastern region exhibiting values exceeding 78 years. Notably, 
Shanghai, Beijing, and Tianjin emerged as the regions with the highest 
life expectancy, each surpassing 80 years. In contrast, the central 
region demonstrated life expectancy values ranging between 76 and 

78 years. The western region, encompassing Qinghai, Xinjiang, and 10 
other provinces, consistently recorded life expectancy values below the 
national average. Among these, Tibet had the lowest life expectancy 
at 72.19 years, closely followed by Qinghai at 73.96 years.

The global Moran’s I index was calculated to be 0.534 (p < 0.001), 
demonstrating significant spatial autocorrelation in life expectancy 
across China. To further investigate the spatial clustering patterns at 
the provincial level, we generated LISA cluster maps (Figure 2). The 
Lisa analysis revealed two dominant spatial clustering patterns: high-
high and low-low clusters. The high-high clusters were predominantly 
concentrated in the economically developed eastern coastal regions, 
notably encompassing Beijing, Tianjin, and Shanghai, which 
consistently exhibit life expectancy values exceeding 80 years. 
Conversely, the low-low clusters were primarily located in the western 
and southwestern provinces, including Xinjiang, Tibet, Yunnan, 
and Qinghai.

3.2 Spatial distribution of air pollution 
factors

Figures  3–6 illustrate significant spatial variability in the 
distribution of the four air pollution factors across China. A distinct 
east-to-west decreasing gradient in air pollution intensity was 
observed, with the most severe pollution levels concentrated in North 
China, where industrial activities and urbanization are most intensive. 
However, Xinjiang exhibited an exception to this trend, with PM2.5 
and PM10 concentrations surpassing those in most other provinces. 
This anomaly might be attributed to local factors such as desert dust 
emissions, industrial activities, and unique meteorological conditions.

FIGURE 1

Distribution of life expectancy by province in China in 2020.
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3.3 GWR model results

3.3.1 Variable multicollinearity test
In this study, VIF values were employed to assess the presence of 

global multicollinearity among the four variables under investigation. 

The results of this analysis are summarized in Table 1. The VIF value 
for PM2.5 exceeded 7.5, suggesting significant collinearity with other 
variables. Consequently, PM2.5 was excluded from the GWR model to 
mitigate the impact of multicollinearity on the model’s accuracy 
and stability.

FIGURE 2

LISA aggregation of life expectancy by province.

FIGURE 3

Spatial distribution of PM2.5.

FIGURE 4

Spatial distribution of SO2.

FIGURE 5

Spatial distribution of NO2.
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3.3.2 GWR model results

3.3.2.1 Effect of SO2 on life expectancy
The coefficient values of SO2 exhibited a range from −0.18 to 

−0.42, indicating a consistent negative association with life 
expectancy. Statistical analysis revealed that the impact of SO2 on 
life expectancy was significant across the majority of cities 
studied. However, this relationship was not statistically significant 
in Xinjiang, Tibet, Heilongjiang, and Jilin, suggesting potential 
regional variations in the effects of SO2 exposure. This lack of 
significance in these regions may be attributed to several factors. 
Firstly, the relatively low population density and sparse industrial 
distribution in these areas could result in less exposure to SO2 
pollution, diminishing its detectable impact on life expectancy 
(24). Additionally, unique geographical and climatic conditions, 
such as the high-altitude environment in Tibet or the cold climate 
in Heilongjiang and Jilin, might influence the dispersion and 
accumulation of pollutants, thereby altering the observed effects 
(6). Moreover, the distinct socio-economic structures and varying 
levels of environmental regulations in these regions could also 
play a role in mitigating the influence of SO2 on life 
expectancy (25).

The spatial distribution of the regression coefficients for SO2 
exhibited a pronounced south-to-north gradient, with values 
progressively decreasing from southern to northern regions. Notably, 
the impact of SO2 on life expectancy was relatively modest in eastern 
cities, suggesting regional variations in the pollutant’s influence on 
health outcomes (Figure 7).

3.3.2.2 Effect of NO2 on life expectancy
The regression coefficients for NO2 exhibited a range from 

0.094 to 0.33, indicating a consistent positive association with life 
expectancy across the majority of regions studied. Statistical 
analysis revealed that the impact of NO2 on life expectancy was 
significant in most areas, with the exception of Yunnan, Guangxi, 
and Hainan, where the relationship did not reach statistical 
significance. A few factors might be responsible for this lack of 
significance. Firstly, these areas generally had lower NO2 
concentrations due to less industrial activity and urbanization, 
which reduced the potential impact on life expectancy. Secondly, 
the unique geographical and climatic conditions in these regions, 
such as the complex terrain in Yunnan and the humid climate in 
Guangxi and Hainan, might enhance pollutant dispersion and 
mitigate the health risks associated with NO2 (26).

The spatial distribution of NO2 regression coefficients exhibited a 
decreasing gradient from the northwest to the southeast. In particular, 
NO2 had a relatively minor impact on life expectancy in most cities 
across the southern region (Figure 8).

3.3.2.3 Impact of PM10 on life expectancy
PM10 had an effect on life expectancy only in Yunnan Province, 

and the effect on other regions was not statistically significant. Several 
factors might contribute to this lack of significant. Firstly, PM10 
concentrations in regions outside Yunnan might be relatively higher 
or more variable, making it difficult to detect a clear correlation with 
life expectancy (27). Additionally, the unique geographical and 
climatic conditions in Yunnan, such as its complex terrain and diverse 
weather patterns, could influence the dispersion and accumulation of 
PM10, leading to more pronounced health impacts (28). In contrast, 
other regions might have implemented more effective air quality 
control measures, reducing the overall impact of PM10 on public 
health (Figure 9).

3.3.3 Evaluation of model fitting effectiveness
In the GWR model, the condition numbers for all provinces were 

consistently below 30, confirming the absence of local multicollinearity 
within the model. As illustrated in Table 2, among the three examined 
factors, only SO2 and NO2 exhibited statistically significant impacts on 
life expectancy in the MLR model, a finding that diverged somewhat 
from the GWR model results.

Additionally, the Moran’s I index for the residuals of the MLR 
model was 0.40 (p = 0.000), whereas for the GWR model, it was 
0.026 (p = 0.61), with a p-value exceeding 0.05. This indicated 
that the residual term displayed no spatial autocorrelation and 
adhered to a random distribution pattern, suggesting that the 
GWR model effectively captures the spatial relationships between 
the dependent and independent variables, thereby outperforming 
the MLR model in this aspect. Furthermore, as shown in Table 3, 
the AICc value of the GWR model was lower than that of the MLR 
model, and both the R2 and Adjusted R2 values were higher, 

FIGURE 6

Spatial distribution of PM10.

TABLE 1 Results of multicollinearity test for each variable.

Factors VIF

PM2.5 8.31

SO2 1.17

NO2 2.89

PM10 5.28
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underscoring the superior fitting capability of the GWR model. 
The local R2 values (Figure 10) revealed that the model fit was 
particularly robust in the western and northeastern regions of 
China, where R2 values were notably higher compared to 
other regions.

4 Discussion

Life expectancy serves as a robust and representative indicator of 
regional health status, capturing the cumulative impact of various 
socio-economic, environmental, and healthcare factors. This study 
employed the GWR model to investigate the spatial heterogeneity of 
air pollution factors influencing life expectancy at the provincial scale, 
providing insights into localized variations and their implications for 
public health policy.

The impact of SO2 on life expectancy exhibited a significant 
negative correlation, indicating that regions with higher SO2 
concentrations tend to experience lower life expectancy. Notably, 
the detrimental effect of SO2 on life expectancy was more 
pronounced in southern cities compared to their eastern and 

FIGURE 7

Spatial distribution of the effect of SO2 on life expectancy.

FIGURE 8

Spatial distribution of the effect of NO2 on life expectancy.

TABLE 2 MLR model results.

Factors Regression 
coefficient

p VIF

Intercept 76.49 0.000 /

SO2 −0.225 0.033 1.15

NO2 0.195 0.000 1.53

PM10 −0.022 0.306 1.70

FIGURE 9

Spatial distribution of the effect of PM10 on life expectancy.

TABLE 3 Comparison of multiple linear regression model and GWR 
model fit.

Parametric MLR GWR

AICc 130.99 112.72

R2 (%) 44.88 84.32

Adjust R2 (%) 38.75 75.57
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northern counterparts. Despite the relatively lower SO2 
concentrations in southern regions, such as Yunnan, the combined 
influence of unique geographical features, climatic conditions, and 
industrial structures might amplify the adverse effects of SO2 on 
local residents’ life expectancy. For instance, a relatively large 
amount of sulfur dioxide in the surroundings seeped into the 
indoor environment (29), and the local population might exhibit 
heightened sensitivity to pollutants like SO2. Furthermore, the 
relatively limited access to medical and educational resources in 
these southern cities might result in reduced awareness and 
capacity among residents to mitigate the effects of environmental 
pollution, thereby exacerbating the impact of SO2 on life 
expectancy (27, 30). In contrast, eastern and northern cities, 
characterized by more developed economies, diversified industrial 
structures, comprehensive environmental protection measures, 
and greater public awareness and ability to counteract 
environmental pollution, experienced a comparatively smaller 
impact of SO2 on life expectancy (31).

The analysis revealed a paradoxical positive correlation between 
NO2 concentrations and life expectancy, suggesting that regions with 
higher NO2 levels tend to exhibit longer life expectancy. This 
counterintuitive phenomenon might be attributed to the complex 
interplay between NO2 sources and regional socio-economic factors. 
In urban areas, where vehicle emissions constitute the primary source 
of NO2 (32, 33), the presence of developed transportation 
infrastructure often coincided with higher economic development, 
superior healthcare resources, and improved living standards. These 
factors might collectively mitigate the adverse health effects of NO2 
exposure. Furthermore, regions with elevated NO2 concentrations 
might implement more stringent environmental protection measures, 
potentially reducing emissions of other harmful pollutants and 
indirectly benefiting public health. In contrast, economically 

disadvantaged areas with lower NO2 concentrations might suffer 
from overall poor environmental quality and inadequate healthcare 
resources, negating any potential benefits of reduced NO2 exposure 
(34). However, it was imperative to emphasize that this observed 
correlation did not imply a beneficial effect of NO2 on health. 
Substantial evidence from epidemiological studies demonstrated that 
NO2 exposure was associated with increased risks of cardiovascular 
diseases, respiratory disorders, and all-cause mortality (35). 
Therefore, while certain regions might experience higher life 
expectancy due to favorable socio-economic conditions, these 
benefits did not outweigh the well-documented detrimental health 
effects of NO2 exposure.

The impact of nitrogen dioxide (NO2) on life expectancy exhibited 
notable regional disparities in China, with a more pronounced effect 
in the northwest compared to the southeast. This spatial heterogeneity 
could be attributed to several factors. In northwestern regions, the 
delayed industrialization and urbanization processes had resulted in 
industrial emissions being concentrated in specific industrial parks, 
leading to elevated local NO2 concentrations and more severe health 
impacts on surrounding populations. Additionally, the arid climate 
and poor atmospheric diffusion conditions in the northwest facilitated 
the accumulation of pollutants near the ground, exacerbating the 
adverse health effects of NO2. In contrast, southeastern regions, 
characterized by developed economies, high urbanization levels, and 
dense transportation networks, had implemented stricter 
environmental protection measures and possess more robust medical 
resources and health protection systems. These factors had collectively 
mitigated the negative impact of NO2 on life expectancy to a 
considerable extent (36). Furthermore, the humid climate and 
superior atmospheric diffusion conditions in the southeast reduced 
the likelihood of prolonged pollutant retention, thereby diminishing 
the health risks associated with NO2. The regional differences in the 
impact of NO2 on life expectancy were not solely determined by 
pollutant concentrations and sources but were also influenced by a 
complex interplay of economic development, environmental policies, 
and climatic conditions. This underscored the importance of region-
specific strategies in addressing air pollution and its health 
implications (37).

The analysis revealed that PM10 exhibited a notable impact on life 
expectancy exclusively in Yunnan Province, while SO2 also 
demonstrated a significant influence in the region. These findings 
underscored the urgent need for Yunnan Province to implement 
targeted pollution control measures, prioritizing the reduction of PM10 
and SO2 levels to mitigate their adverse health effects.

5 Conclusion

In conclusion, this study revealed distinct spatial disparities and 
autocorrelation of life expectancy across China, highlighting the 
heterogeneous impacts of air pollution factors on population health. 
Among the selected pollutants, SO2, NO2, and PM10 exhibited 
significant but geographically varying effects on life expectancy. 
Specifically, SO2 demonstrated a more pronounced impact in southern 
cities, while NO2 showed stronger effects in the northwestern region. 
Notably, PM10 influence was exclusively observed in Yunnan Province. 
These regional disparities underscored the necessity for localized air 
pollution control strategies.

FIGURE 10

The spatial distribution of local R2.
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The findings of this study provide critical insights for 
policymakers aiming to improve public health through air pollution 
mitigation. Southern provinces should prioritize SO2 emission 
reduction, whereas northwestern regions should focus on NO2 
pollution control. For Yunnan Province, a dual approach targeting 
both SO2 and PM10 is recommended. Furthermore, given the cross-
regional nature of air pollution, inter-provincial collaboration in 
developing joint prevention and control measures is crucial for 
effectively enhancing life expectancy across China. Policymakers 
should also consider integrating health impact assessments into air 
quality management plans to ensure that pollution control strategies 
are aligned with public health goals. Additionally, public awareness 
campaigns and stricter enforcement of environmental regulations 
could further support these efforts.

While this study provides valuable insights, several limitations 
should be acknowledged. First, the analysis relied on aggregated 
data at the provincial level, which may mask finer-scale variations 
in air pollution exposure and health outcomes. Second, the study 
focused on a limited set of air pollutants (SO2, NO2, and PM10), and 
future research could include other pollutants such as ozone (O3) 
to provide a more comprehensive understanding. Third, the cross-
sectional design of the study limits our ability to infer causal 
relationships between air pollution and life expectancy. 
Longitudinal studies are needed to better understand the temporal 
dynamics of these relationships. Finally, unmeasured confounding 
factors, such as socioeconomic status and healthcare access, may 
have influenced the results, highlighting the need for more nuanced 
data in future analyses (38).Despite these limitations, this study 
contributes to the growing body of evidence on the spatial 
heterogeneity of air pollution’s health impacts and provides a 
foundation for targeted policy interventions to improve population 
health in China.
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