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COVID-19 patients—Machine
learning models for clinical
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Pharmacy, First Affiliated Hospital of Army Medical University, Chongging, China

Objective: To develop and validate a real-world evidence-driven early warning
system for the risk-stratified prediction of coronavirus disease 2019 (COVID-19)-
associated hepatic dysfunction in hospitalized patients, leveraging interpretable
machine learning models to provide clinically actionable decision support for
timely intervention.

Methods: A retrospective single-center cohort study was conducted utilizing
high-resolution electronic health records (EHRs) from 983 hospitalized COVID-
19 patients. Clinical features (e.g., laboratory results, medication exposures,
and disease progression markers) were systematically analyzed. To mitigate
class imbalance, we employed the Synthetic Minority Oversampling TEchnique
(SMOTE) prior to model development. Thirteen distinct machine learning
(ML) algorithms were trained and benchmarked to construct an optimal risk
stratification framework. Model performance was rigorously evaluated using
metrics, including accuracy, precision, recall, Fl1-score, and area under the
receiver operating characteristic curve (AUC). SHapley Additive exPlanations
(SHAP) analysis was employed to enhance clinical interpretability and provide
transparent insights for decision-making.

Results: The SMOTE-edited nearest neighbors (ENN) technique (SMOTE-
ENN) resampling strategy, combined with random forest (RF) and extra trees
(ET) models, demonstrated superior predictive performance, achieving AUC
values of 0.998 4+ 0.002 (RF) and 0.997 + 0.002 (ET), respectively. The SHAP-
based interpretability analysis identified glutathione administration and hepatic
enzymes (e.g., gamma-glutamyltransferase [GGT] and alanine aminotransferase
[ALT]) as the most influential predictors. The online prediction platforms were
developed for liver injury early warning risk stratification (low- and high-risk)
based on predicted probabilities classification.

Conclusion: This research successfully established a machine learning-powered
early warning system capable of real-time risk stratification for COVID-19-
associated liver injury through dynamic integration of clinical data. The ensemble
RF/ET-based models demonstrated significant clinical utility as decision support
tools, particularly through their ability to identify high-risk patients requiring
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intensified monitoring and optimize hepatoprotective. By emphasizing drug-
induced injury markers and disease progression process, ML models establish
a personalized monitoring framework that could potentially transform clinical
management for target patients.
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1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused
by severe acute respiratory syndrome coronavirus disease 2
(SARS-CoV-2) virus, has profoundly serious impacted on public
health and resulted in a significant loss in economy all over
the world (1-3). The COVID-19 pandemic continues due to
the ongoing mutations of the SARS-CoV-2 virus (4). Earlier
studies demonstrated that SARS-CoV-2 infection not only impacts
the respiratory system but also affects other organs, leading to
multiple organ failure and a subsequent increase in the all-cause
mortality rate (5, 6). Emerging evidence suggests that hepatic
dysfunction is involved in up to 50% of COVID-19 cases, with
liver injury significantly contributing to the elevated mortality rates
observed (6-8). Additionally, it may require specific therapeutic
interventions (7, 9, 10). Consequently, COVID-19 combined
with liver injury has emerged as a significant clinical challenge;
vigilant monitoring of liver function is essential among hospitalized
COVID-19 patients (61).

Artificial intelligence (AI) is a broad term that encompasses
the use of computers to develop intelligent models capable
of performing specified functions, with a significant impact
on research in the natural and social sciences (11, 12). Due
to the availability of large datasets worldwide and the recent
advancements, such as object recognition and decision-making
systems, there has been a significant increase in Al applications
(13, 14). Machine learning (ML) is a series of computer algorithms
employed by Al to generate predictive models, which have been
proven more efficient than traditional methods for corporations
with large datasets (15). Many studies have applied ML techniques
to facilitate disease progression prediction in medicine, making
ML-based models valuable for implementation in clinical practice
(16). This demonstrates that AI studies showed a meaningful
impact on clinical practice and are worth taking seriously due to
their potential benefits in the real world.

In aspects of the COVID-19 pandemic, several AI models have
been applied to the disease’s diagnosis, prognosis, and outcome.
Seyed et al. compared a series of ML algorithms and indicated that
a random forest (RF) predictive model had the highest accuracy in
mortality prediction of COVID-19 patients, which could benefit
from appropriate care for the highest risk (17). To predict the
clinical outcomes of hospitalized COVID-19 patients treated with
remdesivir, Antonio et al. tested six supervised ML methods and
found that extreme gradient boost (XGB) achieved the highest
accuracy in mortality (95.45%) and hospital stay length (94.24%)
(18). Another cohort study, conducted by Ramon et al., also showed
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that the XGB method achieved the highest accuracy (93.16%)
among other ML methods in predicting the outcome of patients
associated with severe respiratory failure treated with tocilizumab
(19). These tools could help in making an effective and impactful
treatment strategy to optimize the management of COVID-19
patients. Nevertheless, there is a paucity of research on hepatic
injury, a significant complication among individuals afflicted with
COVID-19. Currently, the diagnosis of liver damage continues to
rely on conventional diagnostic modalities, and there is an urgent
need to develop expeditious and precise predictive methodologies.
This area requires further investigation and enhancement.

To address the critical clinical challenge, we developed an ML
model-based early warning system designed for risk-stratified liver
injury among hospitalized COVID-19 patients, utilizing real-world
data. The Synthetic Minority Oversampling TEchnique (SMOTE)
was applied to address the dataset imbalance. Subsequently, several
ML algorithms were trained and evaluated for their performance.
Finally, the SHapley Additive exPlanations (SHAP) algorithm was
used to interpret the optimized model. Additionally, we have
developed an effective and accurate online tool to help clinicians
manage COVID-19 patients with ease.

2 Methods
2.1 Study population and ethics approval

This single-center, retrospective cohort study included
hospitalized COVID-19 patients from December 2022 to June
2023 at the Renmin Hospital of Wuhan University, a leading
tertiary hospital with ~7,300 beds in China. This study has
received approval from the ethics committee of clinical research
(approval number: WDRY2024-K003), and the informed consent
requirement was waived.

2.2 Patient inclusion and exclusion criteria

An inpatient diagnosed with COVID-19 (the COVID-19
nucleic acid test was positive) receives antiviral and symptomatic
treatment as recommended by the guidelines included in this study
(20, 21). Individuals were excluded based on the following criteria:
(1) COVID-19 nucleic acid test result was negative; (2) insufficient
essential laboratory tests; and (3) severe liver injury at admission.
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2.3 Data collection and preprocessing

Electronic medical records of enrolled patients were
meticulously reviewed. Patients demographic characteristics,
duration of hospitalization, severity of COVID-19, comorbidities,
medications, liver function tests, routine blood tests, coagulation
parameters tests, and infection indicators were collected. To
maintain data integrity and accuracy, we implemented a rigorous
dual-entry verification process, where all data were independently
recorded and cross-validated by two separate researchers. Any
duplicate or anomalous values were systematically identified,
rigorously reviewed, and appropriately reconciled to ensure data
quality (22, 23). Then, all data were systematically extracted into
standardized forms. Categorical variables were dichotomized
(presence = 1, absence = 0), while continuous variables
underwent standardized unit conversion and normalization
to maintain dataset consistency (24, 25). Finally, to minimize
bias, variables with more than a 35% missing data threshold were
excluded. Subsequent missing values were imputed using Multiple
Imputation by Chained Equations (MICE), accounting for data

uncertainty through chained regression models (26, 27).

2.4 Definition of liver injury

Liver injury was defined as biochemical abnormalities in liver
function following hospital treatment. The criteria are based
on liver function indices exceeding the upper limit of normal
(ULN), with the reference thresholds as follows: (1) Alanine
aminotransferase (ALT) levels >40 U/L; (2) aspartate transaminase
(AST) levels higher than 35 U/L; (3) alkaline phosphatase (ALP)
levels higher than 135 U/L; (4) gamma-glutamyltransferase (GGT)
levels higher than 45 U/L; and (5) total bilirubin (TBIL) levels
higher than 23 pmol/L.

The severity of liver injury was stratified according to biological
criteria derived from the ULN for ALT, ALP, and GGT, adhering to
the Common Terminology Criteria for Adverse Events (CTCAE)
version 5.0 from the National Cancer Institute (NCI). The grading
system is as follows: (1) Grade 1 (mild liver injury): ALT levels are
elevated to 1 x ULN to <3 x ULN, or ALP and GGT levels are
elevated to >1 x ULN and <2.5 x ULN; (2) grade 2 (moderate
liver injury): ALT levels are elevated to >3 x ULN and <5 x ULN,
or ALP and GGT levels are elevated to >2.5 x ULN and <5 x ULN;
and (3) grades 3 and 4 (severe liver injury): ALT levels are elevated
to >5 x ULN, or ALP and GGT levels are elevated to >5 x ULN.

2.5 Definition of the risk-stratified liver
injury

Current clinical practice guidelines recommend serial
monitoring of hepatic biochemical markers, including ALT,
AST, ALP, and TBL, within 48-72h intervals for COVID-19
patients exhibiting moderate-to-severe liver injury to assess
biochemical persistence and disease progression. The high-
risk cohort was operationally defined as patients exhibiting

moderate-to-severe hepatic dysfunction (ALT > 3 x ULN,
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AST > 3 x ULN or TBIL > 2 x ULN), whereas the low-
risk cohort comprised individuals with either normal hepatic
function or only mild impairment (ALT < 3 x ULN, AST <
3 x ULN or TBIL < 2 x ULN). The primary objective of the
current research was to develop and validate ML models for the
prospective identification of COVID-19 hospitalized patients at
elevated risk for progression to moderate or severe liver injury,
thereby providing real-time risk stratification for informed
clinical decision-making.

2.6 Overview of ML models

In our study, we utilized several ML models (28-30), which
are detailed as follows: (1) Logistic regression (LR), widely
applied in classification tasks, especially for binary classification
problems, an effective and simple model owing to its outputs
can be interpreted as probabilities; (2) decision trees (DT), one
of the predictive modeling techniques used for classification and
regression which adopts a tree-like model of decisions and their
possible consequences, can handle non-linear relationships without
feature scaling and easily visualized; (3) random forest (RF),
an ensemble learning method for classification and regression
that constructs a multitude of decision trees at training time
and outputs the class that is the mode of the individual trees
(classification) or the mean prediction of the trees (regression);
(4) gradient boosting (GBoost), an ML technique involving a
sequence of weak models (like decision trees) in a specific order
to minimize a given loss function, which builds the models
iteratively; (5) adaptive boosting (AdaBoost), an ensemble meta-
algorithm that focuses on misclassified cases, fitting the model
iteratively by adjusting the weights of misclassified instances; (6)
eXtreme gradient boosting (XGBoost), an optimized distributed
gradient boosting library designed to be highly efficient, flexible,
and portable, providing a parallel tree boosting algorithm that
solves problems quickly and accurately; (7) Naive bayes (NB),
a probabilistic algorithm based on Bayes theorem, assuming
feature independence, is particularly effective for text classification
tasks and high-dimensional data; (8) Support Vector Machine
(SVM) with RBF kernel, a classification algorithm that finds
a hyperplane maximizing margin, mapping data into higher
dimensions to handle non-linear relationships through the
use of kernel functions; (9) light gradient boosting machine
(LightGBM), a gradient boosting framework using tree-based
learning algorithms, designed for high efficiency and scalability,
handling large datasets and categorical features effectively with
a leaf-wise growth strategy; (10) CatBoost, a gradient boosting
library optimized for categorical features, employs ordered
boosting to prevent overfitting, offering robust performance
on tabular data; (11) K-nearest neighbors (KNN) classifier, a
simple and instance-based learning algorithm that classifies a data
point based on the majority vote of its neighbors, where the
distance metric significantly impacts performance and requires
normalization for consistent results; (12) extra trees (ET), an
ensemble method creating multiple decision trees by randomizing
both feature splits and dataset sampling, reducing variance and
improving model robustness; and (13) voting classifier (VC),
an ensemble approach combining predictions from multiple
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classifiers, outputting the majority vote (classification) or average
(regression) for improved accuracy.

2.7 Model evaluation

To address the challenge of dataset imbalance, SMOTE was
utilized (31, 32). This method is specifically tailored to balance
class distributions, ensuring equitable representation of both classes
during model training. A 5-fold cross-validation (5-CV) approach,
combined with an independent validation, was implemented to
minimize the risk of overfitting (33, 34). Final performance metrics
were computed as the average results across all 5-folds.

The model’s performance was optimized using accuracy,
precision, recall, and F1-score as key metrics. The calculations for
these metrics are outlined in the following formulas:

True Positives + True Negatives

Accuracy =
Y Total number of instances
. True Positives
Precision = — "
True Positives + False Positives
True Positives
Recall =

True Positives + False Negatives
Precision x Recall

Fl —Score=2Xx —————
Precision + Recall

Additionally, an area under the curve (AUC) analysis was
conducted to evaluate and compare the predictive performance of
different models.

2.8 Model explainability

To explain the model’s behavior, the SHAP algorithm was used
to analyze the feature importance and present the contribution
of each feature to the ML model’s predictions (35, 36). To
enhance model interpretability and trustworthiness, summary and
waterfall plots were obtained to understand the model’s decision-
making process.

2.9 Application of the online prediction
system

For clinical application, we developed an online warning
platform that incorporates the top 10 clinically significant
predictive features identified by the optimized ML models.

2.10 Statistical analysis

Statistical analyses were conducted using Statistical Package
for the Social Sciences (SPSS) software version 26.0 (IBM
Corp., Armonk, NY, USA). Continuous variables are recorded
as mean (standard deviation, SD) or median (interquartile
range, IQR), whereas categorical variables are expressed as n
and percentages (n%). For continuous variables, comparisons
were made using independent samples t-tests or the Mann-
Whitney U-tests, depending on the data distribution. Categorical
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variables were assessed using the chi-squared test or Fisher’s
exact test, as appropriate. This study used Python programming
software (version 3.12.0) (Python Software Foundation, Beaverton,
United States) for data processing and model evaluation. Statistical
significance was established at a p-value of <0.05.

3 Results

3.1 Patient screening process

From December 2022 to June 2023, 2,048 hospitalized COVID-
19 patients were identified through electronic medical records.
While 55 patients (2.7%) were excluded as negative COVID-19
nucleic acid tests, 988 (48.2%) lacked laboratory tests, and 22
(1.1%) had severe liver injury at admission. Ultimately, 983 patients
(48.0%) were eventually included in the analysis; the flowchart is
described in Figure 1.

3.2 Demographic characteristics

In the COVID-19 hospital-based registry database, we collected
137 features, which included patient demographics (11 features),
clinical characteristics (9 features), severity of COVID-19 (1
feature), treatment duration (1 feature), comorbidities (9 features),
medications (51 features), laboratory results (54 features), infection
indicators (1 feature), and an output variable (1 outcome),
with detailed information provided in Supplementary Table S1.
Key demographic variables include a predominance of male
patients (63.28%) with a median age of 70 years (range: 59-78
years). Clinical features at admission revealed common symptoms
were cough (71.82%) and fever (59.41%), while 40.49% of
patients presented with severe COVID-19. The median treatment
duration was 7.0 days (5.0-10.0). Prevalent comorbidities included
hypertension (40.08%), heart disease (23.70%), and diabetes
(19.02%). Medication use was diverse, with high frequencies
of azvudine (99.49%), methylprednisolone (62.36%), and low
molecular weight heparin (LMWH, 34.49%). Laboratory results
showed median values of 22.0 U/L for ALT, 27.0 U/L for AST, and
61.8 g/L for total protein. Indicators of infection and inflammation,
such as the percentage of neutrophils (75.3%, median) and lactate
dehydrogenase (255.5 U/L, median), were elevated in a notable
subset of the cohort. Additionally, 9.16% of patients experienced
moderate-to-severe liver injury. Collectively, these data capture the
substantial clinical and biochemical heterogeneity of hospitalized
COVID-19 patients, establishing an important framework for
understanding disease management strategies and outcomes in
contemporary practice.

Among the 983 hospitalized COVID-19 patients, 90 (9.16%)
exhibited moderate-to-severe liver injury after treatment, whereas
893(90.84%) had normal or mild results (shown in Table 1).
Upon data analysis, 28 variables showed statistically significant
differences between the two groups (p < 0.05). Patients with
moderate-to-severe liver injury were more likely to be male (74.44%
vs. 62.15%, p = 0.028) and to present with severe COVID-
19 (55.56% vs. 38.97%, p = 0.003). Treatment duration was
shorter in the liver injury group (median: 6.0 vs. 7.0 days, p
< 0.001), and these patients received specific medications more
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Inpatients of COVID-19 from ::> ):$
Dec 2022 to Jun 2023
(n=2048)
Exclusion: r LR | |svm |
1.COVID-19 nucleic
acid test negative (n=55);
2.Insufficient essential | DT | | LightGBM |
laboratory examinations Borderline-
(n=988); 1 SMOTE 5-fold cross- Features
3.Severe liver injury at validation performance
admission (n=22); | RF | | CatBoost |
SMOTEENN | —> | GBoost | | KNN | — SHapley Additive
Inpatients enrolled in liver exPlanation
injury study
(n=983) [(AdaBoost | | Ex |
[ avasty | allation” ol
ADASYN 5 s
idati Lainabil
| XGBoost | | Ve | validation explainability
Data collection and
preprocessing
Data preparation and standardization ML models development and validation ML models explainability
FIGURE 1
The flowchart of the developed and validated ML model-based early warning system designed for risk-stratified liver injury in hospitalized COVID-19
patients. ML, machine learning; COVID-19, coronavirus disease 2019; SMOTE, synthetic minority over-sampling technique; LR, logistic regression; DT,
decision trees; RF, random forest; GBoost, gradient boosting; AdaBoost, adaptive boosting; XGBoost, eXtreme gradient boosting; NB, Naive Bayes;
SVM, support vector machine; LightGBM, light gradient boosting machine; KNN, K-nearest neighbors classifier; ET, extra trees; VC, voting classifier.

frequently, such as doxofylline, glycyrrhizin, and glutathione (p
< 0.05 for all). Laboratory examination revealed significantly
elevated liver enzymes (e.g., ALT, AST, and GGT), bilirubin levels,
and markers of inflammation (e.g., lactate dehydrogenase and
neutrophil percentage) in the liver injury group (p < 0.01 for
most), alongside decreased lymphocyte and monocyte percentages.
Hematological parameters such as hemoglobin and red blood
cell (RBC) were also slightly higher in this group (p < 0.05).
It suggested that moderate-to-severe liver injury in COVID-19
was associated with greater disease severity, specific medication
use, and significant changes in liver function and inflammatory
markers, highlighting the need for close monitoring in such
cases. Ultimately, these variables were subsequently utilized for the
development and validation of ML models in our study.

3.3 SMOTE techniques performance

To address the class imbalance in the dataset, the diagnostic
performance of five ML models (LR, DT, RE, GBoost, and KNN)
was assessed using different SMOTE techniques, including
Borderline-SMOTE, SMOTE-ENN, and adaptive synthetic
sampling (ADASYN). The models were evaluated based on AUC,
accuracy, precision, recall, and F1-score, using 5-CV (Table 2) and
independent validation (Table 3).

As present in Table2, five ML models showed moderate
performance under the Borderline-SMOTE approach, with AUC
values ranging from 0.642 + 0.073 (DT) to 0.870 =+ 0.022
(LR), but struggled with recall, as seen in models like RF
(0.099 £ 0.073), KNN (0.124 =+ 0.048), which achieved high
accuracy but low recall, indicating challenges in handling
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imbalanced data. In contrast, the SMOTE-ENN resampling
strategy significantly improved model performance, with RE
GBoost, and KNN achieving AUC over 0.995 and balanced
metrics, such as recall beyond 0.98 and Fl-scores exceeding
0.97, while even simpler models like LR and DT showed
marked improvements in recall and Fl-scores, showcasing
the robustness of this technique in managing imbalanced
datasets. ADASYN similarly improved performance compared to
Borderline-SMOTE, but was slightly less effective than SMOTE-
ENN, with RE GBoost, and KNN, maintaining high AUC
(0.958-0.990) and balanced metrics, while simpler models showed
moderate gains.

Compared to the ML model’s performance metrics between 5-
CV and independent validation, the Borderline-SMOTE techniques
showed a minimal difference between 5-fold cross-validation (5-
CV) and independent validation, but the overall results were
suboptimal. In RF using Borderline-SMOTE, the AUC was 0.835
+ 0.045 in 5-CV and dropped slightly to 0.772 £ 0.017 in
independent validation, while the F1-score remained consistently
low, at 0.160 4 0.112 in 5-CV and 0.246 4 0.162 in validation,
respectively. This stability suggested that the models did not
overfit; however, they failed to adequately handle class imbalance,
resulting in poor generalization and low predictive performance.
Meanwhile, ADASYN showed significant performance differences
between 5-CV and independent validation, highlighting a tendency
toward overfitting. For instance, RF achieved an AUC of
0.989 + 0.004 and an Fl-score of 0.949 £ 0.021 in 5-CV
but dropped sharply to an AUC of 0.772 £ 0.017 and an
Fl-score of 0.246 £ 0.162 in validation, respectively. Similar
gaps were observed for GBoost (Fl-score: 0.951 + 0.018 in
5-CV wvs. 0326 £ 0.097 in validation). These discrepancies
suggest that while ADASYN improved model performance during
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TABLE 1 Primary features registered in the COVID-19 hospital-based registry database.

Non-moderate-to-
severe liver injury

Variables Total Moderate-to-severe p-value

liver injury

(n =983,

100%) (n = 893, 90.84%) (n =90, 9.16%)
Demographics
Male, 1 (%) 622 (63.28) 555 (62.15) 67 (74.44) ‘ 0.028*
Severity of COVID-19 at admission
Severe, 1 (%) 398 (40.49) 348 (38.97) 50 (55.56) ‘ 0.003"*
Treatment duration
Treatment duration, day, median (range) 7.0 (5.0-10.0) 7.0 (6.0-10.0) 6.0 (4.0-7.8) ‘ <0.001%**
Medication
Doxofylline, (%) 137 (13.94) 116 (12.99) 21 (23.33) 0.011*
Low molecular weight heparin, 1 (%) 339 (34.49) 297 (33.26) 42 (46.67) 0.014*
Diclofenac, n (%) 98 (9.97) 80 (8.96) 18 (20.00) 0.001"*
Glycyrrhizin, n (%) 156 (15.87) 125 (14.00) 31 (34.44) <0.001***
Glutathione, 1 (%) 199 (20.24) 154 (17.25) 45 (50.00) <0.001***
Polyunsaturated phosphatidylcholine, n %) 30 (3.05) 15 (1.68) 15 (16.67) <0.001***
Laboratory results
Alanine aminotransferase, U/L, median (range) 22.0 (14.0-35.0) 21.0 (13.0-32.0) 40.5 (24.0-70.5) <0.001***
Aspartate aminotransferase, U/L, median (range) 27.0 (19.5-39.0) 27.0 (19.0-37.0) 43.0 (28.0-70.8) <0.001***
Alkaline phosphatase, U/L, median (range) 65.0 (53.0-81.0) 64.0 (52.0-78.3) 77.0 (64.0-114.0) <0.001%**
Gamma-glutamyl transferase, U/L, median (range) 29.0 (18.0-52.0) 27.0 (19.0-37.0) 73.0 (38.5-125.5) <0.001***
Total protein, g/L, median (range) 61.8 (56.6-66.0) 61.7 (56.5-66.0) 63.2 (58.4-65.9) 0.047*
Albumin/Globulin ratio, median (range) 1.38 (1.21-1.59) 1.39 (1.22-1.60) 1.34 (1.19-1.52) 0.028*
Total bilirubin, mol/L, median (range) 9.5 (7.0-13.6) 9.40 (9.90-13.40) 11.20 (8.47-16.47) 0.003"*
Direct bilirubin, pmol/L, median (range) 3.9 (2.7-5.6) 3.80 (2.70-5.40) 4.95 (3.40-6.72) 0.006**
Creatinine, U/L, median (range) 71.0 (56.0-93.0) 71.0 (56.0-93.0) 77.0 (62.3-101.0) 0.034*
Urea/Creatinine ratio, median (range) 13.6 (10.5-17.4) 13.5(10.2-17.2) 15.3 (11.9-19.8) 0.014*
Lactate dehydrogenase, U/L, median (range) 255.5 (205.0-326.0) 253.0 (203.8-319.0) 312.5(220.5-398.3) 0.004**
Neutrophil percentage, %, median (range) 75.3 (63.9-84.6) 74.8 (63.4-84.3) 81.6 (71.6-86.7) 0.006**
Lymphocyte percentage, %, median (range) 13.6 (7.4-21.9) 14.0 (7.5-22.1) 10.7 (6.6-16.3) 0.010*
Monocyte percentage, %, median (range) 7.75 (4.90-11.17) 7.90 (5.00-11.30) 6.30 (3.70-8.90) 0.005**
Basophil percentage, %, median (range) 0.20 (0.10-0.40) 0.20 (0.10-0.40) 0.20 (0.10-0.30) 0.029*
Neutrophil count, x10°/L, median (range) 4.30 (2.74-6.35) 4.26 (2.71-6.26) 5.03 (3.35-8.07) 0.025*
Eosinophil count, x10°/L, median (range) 0.02 (0.00-0.10) 0.02 (0.00-0.10) 0.00 (0.00-0.04) 0.012*
Red Blood cell count, x 10'>/L, median (range) 3.98 (3.51-4.40) 3.96 (3.49-4.39) 4.16 (3.73-4.46) 0.015*
Hemoglobin, g/L, median (range) 121.0 (104.0-133.0) 121.0 (102.0-133.0) 127.0 (116.0-136.0) 0.019*

COVID-19, coronavirus disease 2019.
*p < 0.05; **p < 0.01; **p < 0.001.

cross-validation, it led to overfitting by relying too heavily on
synthetic samples, thereby reducing the model’s generalizability to
unseen data.

In  contrast, SMOTE-ENN  demonstrated consistent
performance across 5-CV and independent validation, highlighting
its robustness and ability to generalize effectively. For RF, the AUC
was 0.998 4 0.002 in 5-CV and 0.997 £ 0.002 in validation, with
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the Fl-score remaining high at 0.981 % 0.005 and 0.976 =+ 0.010,
respectively. Similar trends were observed with KNN, where the
AUC was 0.996 % 0.002 in 5-CV and 0.995 = 0.003 in validation,
with Fl-scores of 1.000 = 0.000 and 0.999 =+ 0.002, respectively.
This consistency demonstrated that SMOTE-ENN effectively
addressed class imbalance without introducing overfitting, making
it the most reliable resampling technique for this purpose. Based
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TABLE 2 The 5-fold cross-validation diagnostic performance of the machine learning models for moderate-to-severe liver injury using different SMOTE

techniques (mean + SD).

Model AUC Accuracy Precision Recall F1-score
Borderline-SMOTE

Logistic regression (LR) 0.870 £ 0.022 0.824 £ 0.024 0.313 £0.033 0.750 £ 0.036 0.441 £ 0.036
Decision tree (DT) 0.642 £ 0.073 0.761 £ 0.029 0.187 £ 0.047 0.485 £ 0.147 0.269 £ 0.069
Random forest (RF) 0.835 £ 0.045 0.910 £ 0.008 0.450 £ 0.245 0.099 £ 0.073 0.160 £ 0.112
Gradient boosting (GBoost) 0.833 £+ 0.071 0.914 £ 0.012 0.547 + 0.131 0.250 + 0.095 0.341 £0.113
K-Nearest neighbors classifier (KNN) 0.739 £+ 0.071 0.908 £ 0.007 0.550 + 0.245 0.124 + 0.048 0.196 £ 0.067
SMOTE-ENN

Logistic regression (LR) 0.973 £ 0.008 0.922 £ 0.017 0.929 £ 0.020 0.937 £0.012 0.933 £0.014
Decision tree (DT) 0.937 £0.011 0.909 £ 0.016 0.918 £0.017 0.924 £ 0.023 0.921 £0.014
Random forest (RF) 0.998 £ 0.002 0.977 £ 0.006 0.970 =+ 0.009 0.992 £ 0.007 0.981 £ 0.005
Gradient boosting (GBoost) 0.997 £ 0.002 0.967 & 0.015 0.958 £0.017 0.986 £ 0.010 0.972 £ 0.012
K-Nearest neighbors classifier (KNN) 0.996 £ 0.002 0.958 £+ 0.011 0.932 £0.017 1.000 £ 0.000 0.965 £ 0.009
ADASYN

Logistic regression (LR) 0.899 £ 0.032 0.835 £ 0.036 0.828 £ 0.040 0.843 £ 0.038 0.836 £ 0.037
Decision tree (DT) 0.885 £ 0.027 0.847 £ 0.022 0.813 £0.013 0.901 £ 0.041 0.854 £ 0.024
Random forest (RF) 0.989 £ 0.004 0.948 £ 0.021 0.929 + 0.027 0.970 £ 0.014 0.949 £ 0.021
Gradient boosting (GBoost) 0.990 £ 0.006 0.950 £ 0.019 0.935 £ 0.024 0.968 £ 0.015 0.951 £0.018
K-Nearest neighbors classifier (KNN) 0.958 +0.014 0.869 =+ 0.020 0.792 + 0.027 1.000 =+ 0.000 0.884 £+ 0.016

TABLE 3 The independent validation diagnostic performance of the machine learning models for moderate-to-severe liver injury using different SMOTE

techniques (mean =+ SD).

Model AUC Accuracy Precision Recall F1-score
Borderline-SMOTE
Logistic regression (LR) 0.822 £ 0.032 0.817 £ 0.008 0.287 £0.015 0.678 £ 0.082 0.403 £ 0.028
Decision tree (DT) 0.669 =+ 0.046 0.761 £ 0.042 0.199 £ 0.034 0.511 £ 0.074 0.284 £ 0.039
Random forest (RF) 0.772 £ 0.017 0.919 £ 0.012 0.620 £ 0.371 0.156 £ 0.108 0.246 £ 0.162
Gradient boosting (GBoost) 0.785 £ 0.018 0.911 £ 0.008 0.524 £ 0.111 0.244 £ 0.090 0.326 £ 0.097
K-Nearest neighbors classifier (KNN) 0.667 £ 0.038 0.911 4+ 0.011 0.425 =+ 0.400 0.111 £ 0.093 0.173 +0.148
SMOTEENN
Logistic regression (LR) 0.963 £ 0.012 0.918 £ 0.017 0.936 £ 0.015 0.923 £ 0.020 0.929 £ 0.015
Decision tree (DT) 0.939 £ 0.011 0.906 £ 0.013 0.923 £0.017 0.914 £ 0.027 0.918 £ 0.012
Random forest (RF) 0.997 £ 0.002 0.972 £ 0.012 0.963 £ 0.011 0.990 £ 0.010 0.976 £ 0.010
Gradient boosting (GBoost) 0.994 £ 0.003 0.968 £ 0.009 0.960 £ 0.013 0.985 £ 0.007 0.972 £ 0.007
K-Nearest neighbors classifier (KNN) 0.995 =+ 0.003 0.967 £ 0.002 0.947 £ 0.004 0.999 =+ 0.002 0.972 £ 0.002
ADASYN
Logistic regression (LR) 0.822 £ 0.032 0.817 £ 0.008 0.287 £0.015 0.678 £ 0.082 0.403 £ 0.028
Decision tree (DT) 0.669 £ 0.046 0.761 £ 0.042 0.199 £ 0.034 0.511 £ 0.074 0.284 £ 0.039
Random forest (RF) 0.772 £ 0.017 0.919 £ 0.012 0.620 £ 0.371 0.156 £ 0.108 0.246 £ 0.162
Gradient boosting (GBoost) 0.785 £ 0.018 0.911 £ 0.008 0.524 £0.111 0.244 £ 0.090 0.326 £ 0.097
K-Nearest neighbors classifier (KNN) 0.667 £ 0.038 0.911 £0.011 0.425 £ 0.400 0.111 £ 0.093 0.173 £0.148
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The diagnostic performance of all ML models with 5-CV and independent validation. (A) The ROC curve of the 5-CV; (B) the ROC curve of the
independent validation; (C) the AUC value of all ML models; (D) the accuracy of all ML models; (E) the precision of all ML models; (F) the recall of all
ML models; and (G) the F1-score of all ML models. ML, machine learning; 5-CV, 5-fold cross-validation; ROC, receiver operating characteristic curve;
AUC, area under the curve; LR, logistic regression; DT, decision trees; RF, random forest; GBoost, gradient boosting; AdaBoost, adaptive boosting;
XGBoost, eXtreme gradient boosting; NB, Naive Bayes; SVM, support vector machine; LightGBM, light gradient boosting machine; KNN, K-nearest
neighbors classifier; ET, extra trees; VC, voting classifier.
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on the above analysis, SMOTE-ENN was selected to address data
imbalance and develop ML models.

3.4 ML models’ performance

All thirteen ML algorithms achieved substantial and
consistent performance (Figure 2), demonstrating the technique’s
effectiveness in addressing data imbalance and improving model
generalization. Among the tested algorithms, RF and ET emerged
as the top performers. RF achieved a high AUC of 0.998 + 0.002
in 5-CV, while recall obtained with 0.992 + 0.007, respectively.
ET slightly underperformed RF with an AUC of 0.997 £ 0.002
and a recall of 0.990 £ 0.013 in 5-CV. Both models demonstrated
high Fl-score, with RF achieving 0.981 & 0.005 and ET 0.983 &
0.011, respectively, highlighting their superior ability to classify
minority-class instances correctly. In the meantime, GBoost
achieved an AUC of 0.997 £ 0.002 and an Fl-score of 0.972 £
0.012, demonstrating strong overall performance, though slightly
behind the tree-based models. Similarly, LightGBM achieved an
AUC of 0.997 £ 0.002 and an Fl-score of 0.976 =& 0.008, with
metrics comparable to GBoost. These algorithms, while strong, did
not consistently match the precision and recall of ET and RF. SVM
(using a radial basis function kernel [RBF kernel]) and VC showed
competitive results, but lagged slightly behind the top-performing
models. SVM (RBF kernel) achieved an AUC of 0.994 + 0.004
and an Fl-score of 0.981 =+ 0.008, maintaining a strong balance
between sensitivity and specificity. The VC, which combines
predictions from multiple algorithms, achieved an AUC of 0.995
=+ 0.003 and an Fl-score of 0.968 £ 0.011, but it did not surpass
the tree-based models in recall or overall performance. In addition,
no significant differences in data were observed when comparing
5-CV with independent validation across all algorithms, indicating
that the model possesses satisfactory robustness and specificity. In
summary, while SMOTE-ENN improved the performance of all
models, RF and ET emerged as the most effective algorithms and
were selected as the ML algorithms for the study.

3.5 Features performance

The SHAP summary plots (Figure 3) offered an in-depth
analysis of feature importance and their contributions to the
predictive performance of RF and ET models. In Figure 3A,
features were ranked according to their average SHAP values,
which reflect their overall impact on the RF model’s output.
The use of glutathione, GGT, ALT, and low molecular weight
heparin (LMWH) exhibited the highest contributions, indicating
their significant predictive influence. In contrast, features such as
hemoglobin and lymphocyte percentage demonstrated relatively
minimal impact. Figure 3B provided a nuanced representation
of each feature’s contribution, with SHAP values indicating the
magnitude and direction of their effect on RF model predictions.
The color gradient highlights feature values, where red denotes
higher values, and blue represents lower values. For instance,
elevated levels of glutathione and GGT were associated with a
positive influence on predictions. At the same time, lower values
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of features such as neutrophil percentage and treatment duration
exerted a negative impact. These plots underscore the pivotal role
of biochemical markers and clinical parameters in shaping the RF
model’s predictive outcomes.

In the ET model, glutathione, LMWH, GGT, and severe
were identified as the most influential predictors, indicating
their critical role in driving the model’s output (Figure 3C).
Conversely, lymphocyte percentage, ALP, and hemoglobin
exhibited minimal average SHAP values, suggesting their limited
predictive relevance. Figure 3D provided a more granular
perspective; higher values of glutathione, LMWH, and GGT were
associated with positive contributions to predictions, whereas
lower values of neutrophil percentage, monocyte percentage,
and eosinophil count had a negative influence on the outcomes.
Features such as treatment duration, glycyrrhizin, and AST
demonstrated moderate contributions, further underscoring their
relevance. These plots highlighted the pivotal roles of specific
biochemical markers and clinical parameters in shaping the ET
model’s predictions, showcasing its reliance on key features for

accurate and reliable outcomes.

3.6 ML models explainability

The SHAP waterfall plots shown in Figures 4A, B illustrate
the RF model’s prediction of liver injury risk for two patients
based on key features. Figure 4A showed a high-risk prediction
with a final SHAP value of 0.755, mainly due to GGT (+0.25),
LMWH use (4+0.04), and ALT (40.04). Other factors, such as
severe (40.03) and monocyte percentage (+0.03), shifted the base
value to a high-risk outcome. In contrast, Figure 4B depicts a
low-risk prediction with a final SHAP value of 0.241, driven by
normal GGT (—0.07), lower ALT (—0.06), and the absence of
glutathione (—0.06) use. Additional negative influences, including a
lower eosinophil count (—0.06) and non-severe conditions (—0.04),
decreased the risk, while eliminating positive contributions of
LMWH use (40.06) and higher neutrophil percentages (40.04).
The above prediction results were consistent with the actual
outcome (Supplementary Table S2), providing a reference for
clinical decision-making.

Figures 4C, D show the ET model’s predictions. Figure 4C
indicates a positive prediction with a final SHAP value of
0.917, primarily driven by the absence of polyunsaturated
phosphatidylcholine (40.20) and glutathione (4-0.08), with minor
contributions from LMWH (40.06) and gender (+0.02). Negative
contributors, such as those with a severe (—0.03) rating, slightly
offset the risk. Figure 4D presented a negative prediction with
a final SHAP value of 0.092, characterized by strong negative
contributions from the absence of glutathione, LMWH, and
severe disease, along with low levels of ALT, GGT, and AST.
These plots demonstrated the ET model’s integration of positive
and negative feature contributions, emphasizing the role of liver
function markers, treatment factors, and clinical severity in risk
stratification. The predictions in the cases above corresponded
with the actual clinical outcomes (Supplementary Table S2),
demonstrating that the ET model achieves high accuracy.
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3.7 Application of the ML models

To streamline the practical implementation of our validated
models, we prioritized the top 10 ranked feature factors for
developing a simplified online prediction system. The constructed
RF and ET models demonstrated robust predictive performance,
with AUC values of 0.994 + 0.003 and 0.992 =+ 0.004,
respectively. The corresponding ROC curves were graphically
presented in Figure 5, while comprehensive model parameters
were systematically documented in Supplementary Table S3. This
optimized model enables the early warning system for risk-
stratified liver injury prediction through a web-based interface
by incorporating relevant clinical features of individual patients.
The online prediction system was publicly accessible at the
URLs https://10jarg4450699.vicp.fun (RF model) and http://
10jarg4450699.vicp.fun (ET model).

Frontiersin Public Health

4 Discussion

This study developed and validated an innovative, early
risk-stratified system for predicting the progression of liver
injury in COVID-19 hospitalized patients. The diagnostic ML
models for system development demonstrated accuracy in both
the training and validation cohorts, and their performance
remained stable across different subgroups. To the best of
our knowledge, this represents the pioneering effort to apply
real-world data within a predictive framework, employing
a categorical methodology to stratify the severity of hepatic
dysfunction. This optimized prediction system demonstrates
significant potential as an instrumental tool, providing
clinicians with a sophisticated reference for the meticulous
management of patient care and the formulation of targeted

therapeutic strategies.
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Liver dysfunction has been widely considered a common
complication among patients with COVID-19, while various
studies have highlighted its prevalence and clinical significance.
Previous studies have documented that hepatocellular injury
manifests in 14-53% of COVID-19 patients, typically characterized
by an elevation in aminotransferase levels below 5-fold ULN in
the initial stage of the pandemic (37). We found that 51.2% of
patients had a liver injury on admission, increasing to 70.0%
during hospitalization in an earlier stage of COVID-19 (38).
Recently, Ruveena et al. conducted a multicenter study enrolling
1,246 hospitalized patients and confirmed that ~58.7% of patients
presented with abnormal liver biochemistry, and 47.7% had
persistent abnormalities up to 6 months after infection (39).
Furthermore, to elucidate the distinctions among various strains in
the context of liver injury, we conducted an extensive evaluation
of hepatic function involving 1,420 patients during the Omicron
wave of the pandemic. Our findings revealed that abnormal liver
function was observed during hospitalization in 45.2% (444/983)
cases; of these, 354 cases were grade 1, 63 were grade 2, and 27
were grade 3 or above, with the main manifestations being elevated
levels of ALT, AST, and GGT, respectively. It is noteworthy that liver
injury in COVID-19 patients is prevalent and persists throughout
hospitalization, unaffected by viral mutations. This aspect should
be taken into consideration in clinical management.

Based on clinical guidelines, grade 1 liver injury was generally
considered clinically insignificant. Consequently, our study focused
on more severe hepatic dysfunction (grade 2+). This clinically
justified approach resulted in a selection bias, with only 90
positive cases (90/983) among 983 eligible patients, yielding
a distribution ratio of 1:9.2. To address this fundamental
challenge in ML applications, we implemented and compared three
advanced resampling techniques, Borderline-SMOTE, SMOTE-
ENN, and ADASYN. After applying these techniques, the class
distribution was substantially balanced. Specifically, Borderline-
SMOTE and ADASYN increased the minority class representation
t0 50.0% (893/1,786), while SMOTE-ENN achieved a minority class
percentage of 57.8% (893/1,545), respectively.

The differences in the performance of various SMOTE
techniques could be explained by the approaches to handling
class imbalance, noise, and overfitting (40). Borderline-SMOTE
partially generates synthetic samples near the decision boundary,
improving recall for misclassified samples. However, it failed to
address noisy or overlapping samples from the majority class,
which limited its effectiveness and resulted in only marginal
performance gains, as seen in GBoost’s Fl-score of 0.326 =+
0.097 in validation (41). The ADASYN algorithm focuses on
underrepresented synthetic samples in regions where the minority
class is most underrepresented. While enhancing cross-validation
performance, it led to overfitting in our research. The synthetic
samples generated were too tailored to the training set, causing
poor generalization to unseen data (42). For instance, the F1-
score of RF dropped significantly from 0.949 + 0.021 in 5-CV to
0.246 £ 0.162 in independent validation, highlighting the issue of
overfitting. In contrast, the SMOTE-ENN algorithm demonstrated
superior efficacy by combining SMOTE’s ability to generate
balanced, synthetic samples with ENN’s noise reduction, which
removed noisy majority-class samples near the decision boundary
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(31). This dual combination produced cleaner, more balanced
datasets, allowing models to learn robust decision boundaries.
SMOTE-ENN consistently delivered superior performance across
all metrics, with RF achieving an F1-score of 0.976 & 0.010 and ET
achieving 0.984 £ 0.006, respectively. The SMOTE-ENN’s balance
of oversampling and noise removal ensured generalization, making
it the most effective technique in this study (43). These findings
underscore the crucial role of advanced resampling strategies
in enhancing the diagnostic performance of ML models for
imbalanced medical datasets, underscoring their importance in
clinical decision-making applications.

In this retrospective study, the predictive performance of
multiple ML algorithms was evaluated. Among the assessed models,
the RF and ET algorithms outperformed simpler models such as LR
and NB. The RF algorithm, which utilizes a bootstrapping approach
to aggregate outputs from multiple decision trees, demonstrated the
highest predictive accuracy. Similarly, the ET algorithm effectively
captured complex interactions between variables, highlighting its
suitability for clinical prediction tasks. The potential reasons for
the superior performance of RF and ET are as follows: Firstly,
RF and ET excelled at capturing complex non-linear relationships
and variable interactions, making them highly effective in medical
prediction tasks; Secondly, they demonstrated strong robustness
to noise and missing data, while being well-suited for high-
dimensional, small-sample datasets; Finally, their ability to evaluate
feature importance enhanced interpretability, providing valuable
insights for clinical decision-making (30, 44, 45). These strengths
established RF and ET as indispensable tools for managing the
complexities of medical data and improving predictive accuracy in
healthcare applications.

In our study, we integrated the complex interplay between liver
function, kidney function, inflammatory markers, and medication
factors into ML algorithms. This approach significantly enhanced
the accuracy of liver injury prediction and demonstrated potential
value for clinical trials. The SHAP plots for both the RF
and ET models highlighted several key factors contributing to
the prediction of liver injury in COVID-19 patients. Within
the top ten features identified in these models, three primary
categories of indicators emerged: hepatic enzyme indexes (e.g.,
ALT, AST, and GGT), infectious indexes (e.g., neutrophil
percentage, monocyte percentage, and eosinophil count), and
medications (e.g., glutathione, glycyrrhizin, phosphatidylcholine,
LMWH, and doxophylline). Previous studies reported that
hepatocellular damage in COVID-19 patients was likely induced by
medications, a systemic inflammatory response, and the sequelae
of hypoxia-ischemia reperfusion injury (46-48). Initially, within
the clinical environment, the potential hepatotoxic effects of
medications metabolized in the liver, such as lopinavir, ritonavir,
and remdesivir, had to be considered in the context of liver
injury (48, 49, 63). Subsequently, the SARS-CoV-2 virus may
elicit a hyperinflammatory state by triggering an excessively robust
immune response, leading to substantial tissue devastation (50, 62).
This pathological process could impair pulmonary and hepatic
function, partially due to the high expression of angiotensin-
converting enzyme 2 (ACE2) receptors in these organs (37, 51).
Moreover, elevated hepatic enzyme levels indicated that preexisting
liver injury had led to a higher degree of hepatocellular damage,
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which might be attributed to the fact that the compromised
liver was in a state of overload and more susceptible to further
injury (39). Elevated liver enzymes, such as GGT, ALT, and AST,
highlighted the direct relationship between liver function markers
and liver injury. For instance, GGT, an enzyme associated with
bile duct and liver function, had been identified as a significant
predictor of liver injury in COVID-19 and was confirmed as
such in our study (52). Disease severity was another prominent
factor, as patients with more severe conditions were more likely to
experience significant liver injury due to factors such as systemic
inflammation, hypoxia, and multiorgan involvement (48, 53).
These results suggested that both liver-specific factors and systemic
influences, including medication effects and disease severity, were
critical in predicting liver injury in COVID-19 patients.

While existing ML approaches for predicting hepatic toxicity
have provided important mechanistic insights through modeling,
significant translational limitations persist (60). There were
substantial translational challenges due to the discordance between
preclinical drug databases and real-world clinical trajectories (54,
55). Our research represented the first attempt to develop predictive
models to integrate liver-toxic and liver-protective medications
with real-world data. This innovation allowed clinicians to
evaluate patients’ pharmacological treatment plans and implement
individualized therapies, thereby enabling more targeted medical
monitoring. LMWH, an anticoagulant frequently administered
in severe COVID-19 cases, exhibited a strong association with
liver injury. This correlation likely stemmed from its systemic
effects on inflammation and liver function in critically ill patients
(56, 57). A case-control study involving 2,141 COVID-19 patients
revealed that the co-administration of LMWH was a statistically
significant risk factor for liver injury (58). Similarly, in patients
with pulmonary embolism treated with LMWH, 17.1% exhibited
liver dysfunction (57). Interestingly, doxophylline (DOXO), a
bronchodilator commonly used to treat pulmonary diseases, has
also been identified as a predictor of liver injury. This may
be attributed to its hepatic metabolism, which was sensitive
to the stimulation or inhibition of the P450 enzyme system.
Thus, the dosage of DOXO could be increased by various drugs,
including corticosteroids, macrolides, and quinolone antibiotics
(51). Furthermore, DOXO might influence the metabolism of other
drugs, potentially contributing to liver injury. On the other hand,
our ML models highlighted liver-protective properties as influential
factors. For instance, glutathione, a key antioxidant involved in
liver detoxification, consistently ranked highly. This underscored
its crucial role in maintaining liver function and its association
with oxidative stress, a common feature in COVID-19 (10, 59). It
was noteworthy that the use of liver-protective drugs in high-risk
patients still led to a higher level of liver damage, indicating that
the treatment method required further optimization, such as the
combination with other types of detoxification drugs.

Overall, our Al-driven framework facilitated timely risk
stratification by performing continuous multivariate pattern
analysis of electronic health records (EHRs), thereby triggering
protocolized confirmatory retesting and reducing diagnostic delays
in the detection of subclinical hepatotoxicity. Our study advances
clinical management in three key ways. First, the robust model
training on real-world data. The ML models were trained on
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diverse, representative EHRs, capturing a wide spectrum of
clinical characteristics to ensure accurate and reliable predictions.
Second, non-invasive and cost-effective monitoring. By leveraging
routinely collected EHR data, our approach reduces reliance
on traditional liver function testing, minimizing healthcare
costs and patient burden. Thirdly, data-driven clinical decision
support. The model’s predictive capabilities provide evidence-based
guidance for personalized interventions, mitigating hepatotoxicity,
personalized medicine, reducing liver risks, and improving
patient outcomes.

While our research demonstrated promising results, several
limitations must be acknowledged. First, as a retrospective study,
it was inherently subject to biases, which may have led to the
omission of specific crucial parameters. For instance, data on body
mass index (BMI) and mechanical ventilation were not recorded in
the medical records and, therefore, could not be included. Second,
the study population was predominantly of East Asian descent,
with no representation from other ethnic groups, which made
the generalizability of the findings to other populations uncertain.
Third, as a single-center study, it lacked external validation.
Therefore, further prospective multicenter studies were needed to
confirm and extend the applicability of these findings.

5 Conclusion

In this study, we developed an ML model-based early warning
system for risk-stratified liver injury in hospitalized COVID-19
patients with real-world data from a large cohort. The system was
trained with multiple ML models, with RF and ET emerging as
the most effective in accurately predicting early-stage (moderate-
to-severe) cases of liver injury. The system demonstrated strong
predictive capability by integrating various clinical features, such
as liver function tests, inflammation markers, and medication
history. SHAP analysis revealed key features influencing the system
model’s predictions, including glutathione levels, GGT, LMWH
use, and disease severity, all of which were significantly associated
with liver injury risk. This system provides valuable decision
support for clinicians, enabling the early identification of patients
at risk and facilitating tailored therapeutic interventions. This study
highlighted the potential of ML algorithms to enhance clinical
decision-making and improve outcomes for COVID-19 patients
with liver complications.
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