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Introduction: Hospital-acquired infections (HAIs) caused by bacterial and viral

pathogens continue to a�ect millions annually, placing a persistent burden on

healthcare systems. Traditional infection control strategies often fall short due to

their inability to assess real-time spatial and movement data within healthcare

environments dynamically. This study addresses that gap by leveraging the

concept of contagion potential (CP), a behavior- and context-driven metric of

infection risk, to develop a framework for minimizing the incidence of HAIs.

Methods: The proposed framework integrates CP, which encapsulates an

individual’s susceptibility and transmissibility, taking into account movement

patterns and interactions across hospital units. Unlike models requiring precise

tracking, this approach uses coarse location data to construct a dynamic

infection risk landscape. CP parameters are continuously learned and updated

over time through behavioral data, enabling real-time risk inference. The

framework also introduces a CP-based optimization algorithm for patient-to-

unit assignments that jointlyminimizes contagion risk while satisfying clinical and

logistical constraints.

Results: The framework’s e�cacy is validated through modular and integrated

evaluations. Simulations incorporate mobility patterns reflecting homogeneous

and heterogeneousmixing, with infection spread following empirically grounded

transmission models. Results demonstrate that incorporating CP significantly

reduces infection propagation, enhances patient safety, and leads to more

e�cient healthcare resource allocation.

Discussion: This study presents a dynamic, data-driven framework for infection

control within healthcare facilities. By incorporating behavior-aware contagion

metrics into patient flow decisions, the approach o�ers a scalable and proactive

infection prevention strategy. The findings underscore the potential of CP

to improve both operational outcomes and patient well-being in healthcare

environments.

KEYWORDS

hospital-acquired infections, infection control, contagion potential, optimization,

resource allocation

1 Introduction

Reports from the Centers for Disease Control and Prevention highlight a substantial

public health issue, with millions of hospital-acquired infections (HAIs) annually,

primarily bacterial, contributing to nearly 100,000 deaths each year (1, 2). This situation

presents a significant burden on healthcare systems, both economically and in terms of

patient safety. In response, there has been an increasing emphasis on clinical interventions

aimed at reducing the incidence of specific HAIs, including surgical site infections (SSI),
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ventilator-associated pneumonia (VAP), and central line-associated

bloodstream infections (CLABSI) (3–5). As healthcare institutions

strive to alleviate the impact of HAIs, there is a growing consensus

on the importance of research initiatives that utilize available data

to create integrated strategies for prevention andmanagement, with

the ultimate goal of improving patient outcomes and healthcare

efficiency (6).

The COVID-19 pandemic has further exposed the

susceptibility of critically ill patients to HAIs, such as VAP

and bloodstream infections (7). These challenges, exacerbated

by shortages in staffing and supplies, have imposed additional

pressure on healthcare systems (8). The pandemic has also

amplified concerns among healthcare workers (HCWs) about

transmitting infections to their immediate patients and families,

leading many to self-isolate, which has negatively impacted both

workforce availability and mental health (9). While measures

such as patient isolation and frequent testing have been employed

to safeguard HCWs from infection (10), there remains a critical

need for data-driven contagion control measures and longitudinal

studies within healthcare environments (11, 12). Studies on HAIs

reveal a strong correlation with invasive devices, emphasizing the

need for stratification to model infection dynamics within medical-

surgical intensive care units (13–16). These insights underscore the

urgency of strategies that minimize the risks of HAIs, protecting

both patients and HCWs from diseases like multidrug-resistant

organisms (MDROs) and Clostridioides difficile (C. diff ).

Patient allocation and scheduling in healthcare systems

have been studied, primarily focusing on two key areas: (1)

patient referral to clinics and timeslot assignment and (2)

human and clinical resource scheduling based on workload

and expertise. In the first line of research, patient referral

models explore strategies for allocating patients among healthcare

facilities to optimize resource utilization and minimize waiting

times. Simulation-optimization methods have been developed

to address uncertainties in patient arrival times and medical

operation durations, integrating heuristic algorithms with particle

swarm optimization to enhance referral efficiency (17). Studies

have also emphasized the significance of communication and

coordination between primary care physicians and specialists,

showing that improved collaboration enhances referral completion

rates and physician satisfaction (18). Additionally, clustering-based

approaches such as Fuzzy C-Means have been proposed to optimize

patient referrals and scheduling, cost, and waiting times (19).

Beyond referrals, the problem of nurse-to-patient assignment

in homecare has been explored, where analytical structural

policies help balance workloads and continuity of care (20).

Parallel to patient allocation, research on scheduling healthcare

personnel has gained attention in optimizing nurse schedules

to balance workload. Integer programming and evolutionary

algorithms have been employed to solve nurse scheduling

problems, showing improvements in algorithmic performance

and practical feasibility (21). Genetic algorithms have also been

applied to nurse scheduling, utilizing indirect coding and heuristic

decoders to construct efficient schedules while overcoming

algorithmic constraints (22). Collectively, these studies contribute

to an understanding of patient and resource allocation, offering

methodologies to enhance health services. There exist limited efforts

that jointly address the challenge of inpatient assignment in amanner

that simultaneously curbs HAIs while meeting both logistical and

clinical demands.

For this study, the term contagion refers to the transmission

of infectious agents through close contact between individuals.

Previous works have employed contact networks derived from

precise mobility data, such as Global Positioning System or

Bluetooth beacons, to track the spread of contagion in confined

environments like healthcare facilities (23–26). However, these

methods face challenges due to privacy issues, technological

constraints, discomfort among patients and staff, and the inherent

complexity of human movement patterns (27, 28). Relying solely

on infectious disease testing to monitor contagion is problematic,

as transmission can occur between test intervals, and test results

are often subject to false positives and negatives. This necessitates

robust metrics that account for the uncertainty in both location

data and disease testing outcomes to improve the modeling

and containment of infection spread within closed, interactive

environments like healthcare settings.

We introduced the contagion potential (CP) as a continuous

metric to quantify the overall infection risk contributed by both

symptomatic and asymptomatic individuals (29, 30). The concept

of CP is grounded in the dynamic nature of infection propagation

through social contact, where an individual’s risk is influenced not

only by their infection status but also by the CP values of their

recent contacts. Unlike traditional compartmental epidemic models

that rely primarily on diagnosed infection states, CP provides a

more granular, network-driven representation of transmission risk.

Specifically, CP does not solely depend on whether an individual

has tested positive or negative; rather, it evolves as a function of

their exposure history and the infection risks of their immediate

social network. As illustrated in Figure 1, an individual’s CP

transitions over time (t = 1, 2, 3, . . .), progressing from lower

values (green, near 0) to higher values (red, near 1) based on

repeated interactions with high-risk contacts. Prior work (31, 32)

has demonstrated that CP integrates principles from network

diffusion and optimization-basedmodels, leveraging spatial contact

structures and epidemiological properties to provide a robust

estimate of individual infection risk.

In this paper, we leverage the contagion potential (CP)

framework to reduce the incidence of hospital-acquired infections

(HAIs). We evaluate infection risk at the individual level by

accounting for heterogeneous characteristics and movement

patterns of healthcare workers (HCWs) and patients within

a facility, offering a dynamic and adaptable measure of both

susceptibility and transmissibility. Healthcare facilities are

composed of distinct units—such as hallways, triage zones, patient

rooms, and waiting areas—between which individuals transition

over time. Our framework, details presented in Section 2, models

these interactions using approximate location information,

represented as transition probabilities between units, thereby

avoiding the need for fine-grained location tracking while still

capturing the temporal and spatial structure of contacts. We

introduce a dynamic learning model that continuously updates

CP parameters based on observed transitions and infection

data, enabling more accurate and timely risk assessments at

both individual and unit levels. This risk-aware modeling is
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FIGURE 1

Evolution of the contagion potential (CP) of an individual (O) from

low (green) to high (red) based on the CP of other individuals he

comes in contact with over time.

embedded within an optimization framework that, to the best of

our knowledge, is the first to jointly tackle inpatient assignment

in a way that minimizes the spread of HAIs while satisfying

logistical and clinical requirements. Our current framework

specifically focuses on modeling and mitigating the contact-based

transmission dynamics of infection, particularly those acquired

through interpersonal interaction and movement across spatial

units. Infections arising primarily due to endogenous flora or

medical devices (e.g., surgical site infections or catheter-associated

infections) are governed by distinct clinical and physiological

mechanisms that are not directly influenced by mobility or

interaction-based contagion patterns. As such, while these types

of infections are clinically significant, they fall outside the scope

of the CP framework presented in this study. By concentrating

on mobility-driven and contact-mediated HAIs, the proposed

approach addresses a key subset of preventable infections where

risk is strongly shaped by behavioral and spatial factors, making it

amenable to intervention through network-aware decision-making

and dynamic risk estimation.

To validate the proposed framework, we conducted two sets of

experiments (refer to Results under Section 3). The first set focuses

on evaluating the individual modules within the framework.

Specifically, we demonstrate the effectiveness of learning CP from

the approximate location of individuals within the unit, the iterative

refinement of CP parameters, and the optimization of the patient-

to-unit assignment problem. Furthermore, we demonstrate that

optimizing based on CP, rather than relying solely on binary

infection status, yields a lower infection count, as it captures the

nuanced contributions to contagion from asymptomatic patients

as well as the heterogeneity in infection risk. The second set

of experiments involves an integrated evaluation of the entire

framework. This integrated experiment leverages a realistic gravity-

based mobility model that accurately captures indoor movement

patterns and epidemiological parameters, simulating bimodal

infection peaks observed in a healthcare setting. These experiments

establish the efficacy of the framework in reducing infection risk

and optimizing operational decisions in healthcare.

2 Methods

2.1 SIRS epidemic model

We employ the Susceptible-Infected-Recovered-Susceptible

(SIRS) model to describe the progression of infectious diseases,

following the formulation by Brauer and Castillo-Chavez (33).

The population of individuals N is divided into three categories:

susceptible (S), infected (I), and recovered (R). Susceptible

individuals become infected through interactions with infected

individuals at a transmission rate β , while infected individuals

recover at a rate γ . The transmission rate β is the product

of the basic reproduction number R0 and the recovery rate

γ (34). Recovered individuals, in turn, may lose immunity and

transition back to the susceptible compartment with a rate δ.

These dynamics are governed by a system of ordinary differential

equations, as defined in Equations 1–3, offering a representation of

disease spread.

Ṡ = −
βSI

N
+ δR (1)

İ =
βSI

N
− γ I (2)

Ṙ = γ I − δR (3)

To extend the framework, we incorporate a spatial variant of

the SIRS model. Here, individuals are assumed to move within a

geographical domain, and interactions that facilitate transmission

occur when individuals are within a radius r of one another.

2.2 Contagion potential based on spatial
contacts

Contagion potential (CP) is a continuous variable that

quantifies an individual’s infectivity, capturing both direct infection

status and indirect exposure risks from their recent contacts within

the network. CP evolves dynamically, reflecting the accumulated

risk from interactions in a social network. The CP of an individual

u at time t + 1, with neighbors v ∈ Nt(u), is defined as:

µt+1(u) = αµt(u)+ β
∑

v∈Nt(u)

µt(v) (4)

In the above equation, µt+1(u) represents the updated CP of

individual u, while
∑

v∈Nt(u)
µt(v) aggregates the CP values of

u’s contacts at the previous time step. The parameter α captures
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the persistence of CP over time, while β modulates the influence

of social interactions on the evolution of CP. The infection

transmission rate β is derived as R0 × γ . This formulation

reflects a fundamental principle of infection propagation: an

individual’s likelihood of transmitting disease is influenced not

only by their infection status but also by the CP of those they

interact with. Exposure to highly infectious individuals raises

one’s CP due to cumulative exposure effects, similar to the force

of infection in classical epidemic models (35). The update rule

ensures that CP accounts for network-driven risk amplification,

where repeated interactions with high-CP individuals increase

transmission potential over time.

To maintain interpretability and comparability, CP values

are constrained within the range [0, 1] using the boundary

condition: µ = max(0,min(1,µ)) after each CP update.

This restriction is both mathematically and epidemiologically

motivated. A CP of 0 represents no transmission potential,

typically assigned to individuals unexposed to the pathogen,

while a CP of 1 denotes maximal transmissibility, corresponding

to individuals with peak infectiousness. Many epidemiological

risk scores, including transmission probabilities and infection

indices, naturally reside in this range to reflect real-world

constraints on disease spread. Constraining CP in this way

also facilitates its interpretation as a probabilistic measure of

infectivity and ensures consistency across different populations

and scenarios.

2.3 Quantifying infectivity using contagion
potential

Assuming that infection spreads through contact between

susceptible and infected individuals, the probability of

encountering an infected individual is proportional to the

fraction of infected individuals in the population, represented as
I
N . Thus, the number of new infections, denoted by ν, depends on

the number of susceptible individuals S and the infected fraction
I
N , and is given by:

ν = β ×
I

N
× S. (5)

This formulation is consistent with classical mean-field

epidemic models (36), where the force of infection is proportional

to the density of infected individuals in the population. However,

such models typically assume perfect knowledge of infection status,

which is rarely the case in real-world epidemics. As discussed

in Section 2.2, contagion potential (CP) measures an individual’s

infectivity as a continuous real value in the range [0, 1], accounting

for both symptomatic and asymptomatic individuals. The mean

CP across the population, denoted by µ (and used interchangeably

with CP), serves as an alternative representation of the infection

burden, particularly in scenarios where direct observations of

I are limited. By incorporating CP into the formulation, the

number of newly infected individuals at any given time becomes:

ν = β × µ× S.

2.4 Modeling occupancy and contact
within a healthcare unit

The contagion potential (CP) of each grid evolves based on

the movement of personnel and the inherent uncertainty in their

contact information within units. The CP of a grid at any given

time is calculated as the average CP of individuals within that grid.

Considering the modeled movement of individuals between grids,

the CP of grid i at time t+1 can be expressed as:µt+1
i =

∑

j ω
t
j→i×µt

j
∑

j ω
t
j→i

,

where ωt
j→i represents the number of people moving from grid j to

grid i at time t, and µt
j is the CP of grid j at time t. In practical

scenarios, the precise locations of individuals within a unit may

often be unknown or undisclosed due to privacy concerns. Given

nj is the number of individuals in grid j, r is the radius of influence,

and Aj is the area of grid j, the expected number of neighbors for a

person in grid j, in terms of its population density, is:

ej = max

(

(nj − 1)× π × r2

Aj
, 0

)

(6)

This expected number of neighbors can be used to predict the

updated CP of an individual. The estimated updated CP of an

individual u in grid j at time t+1 is given by: µ̃t+1(u) = α×µ̃t(u)+

ej × β × µ̃t
j , where α and β are scaling factors representing the

contribution of individual and grid CPs, respectively. Asmentioned

in Section 2.2, if this value exceeds 1, µ̃t+1(u) = 1.

2.5 Equilibrium condition of unit
occupancy and CP

The contagion potential (CP) of a grid is derived from an

inter-unit transition probability matrix T, where Tij represents the

probability of transitioning from grid i to grid j. Using a PageRank

centrality approach (37), the equilibrium distribution of individuals

across grids is described by the eigenvector equation: T · E =

λ · E, where E = (ǫi) represents the equilibrium distribution of

individuals across units, that is, the rank of grid i times N. λ = 1

ensures that the expected population is stable. Given W = (ωij) as

the grid transition matrix, where ωij is the likelihood of movement

from the category of grid i to the category of grid j based on

simulated hospital mobility between these categories, the transition

probabilities are: Tij =
ǫi·ωij

∑

j ǫi·ωij
. Similarly, the CP vector of grids,

denoted as µ, satisfies the eigenvector equation under steady-state

conditions T · µ = λ · µ, where λ = 1. Let µt = (µ1, . . . ,µG)

represent the grid-wise mean CP vector at time t. The temporal

evolution of the CP is given by:

µt+1 = µt · T. (7)

As the system stabilizes, the population distribution and grid

CPs converge to their equilibrium values. In the experimental

results presented (see Results under Section 3), Equation 7 is

used to estimate the CP of a grid using the PageRank process

to determine T.
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2.6 Dynamic learning of contagion
potential parameters

The iterative learning model is designed to progressively refine

the CP parameters for individual u by updating them based

on real-time feedback and data. By continuously adjusting the

parameters through a sequence of learning iterations, the model

adapts to the individual’s specific contagion dynamics, improving

prediction accuracy over time. This approach ensures that the

CP estimation is closely aligned with the individual’s observed

behavior and characteristics. In the equations below, du represents

the discrepancy between the true CP and the CP estimated based

on current parameters (α,β) for a person u, while d̄ denotes the

population mean discrepancy.

Recall from Section 2.2, that if a person is infected, their actual

CP is 1. The discrepancy observed for an infected individual is then

the difference between 1 and their predicted CP. The weighting

factor w, typically between 0 and 1, determines the contribution of

du relative to d̄. The learning rate for a person u after τu updates

is denoted by lru(τu), and the discounting factor for learning rate

updates is represented by ξ , where ξ ∈ [0, 1]. The following update

rule is used for all v ∈ {αu,βu : u = 1, 2, . . . ,N}. The parameter v is

referenced for convenience.

Update Rule for v: v← v+ lru

×

(

1− w · du − (1− w) · d̄
)

(8)

Learning Rate Update: lru(τu + 1)← lru(τu) · ξ (9)

The CP parameters are determined by sequentially running

the αu and learning rate updates, as follows. First, the update rule

adjusts αu based on the weighted sum of du and d̄. The weight w

determines the balance between individual discrepancy du and the

mean or reference discrepancy d̄. Second, the learning rate update

decreases the learning rate lru over time to stabilize learning and

prevent overshooting.

2.7 Patient assignment

The formulations below aim to minimize the overall risk

associated with assigning individuals to different units, considering

their specific requirements for specialized treatments.

2.7.1 Optimization approach
The decision variables include Xuj, a binary variable indicating

if a person u is assigned to grid j. The inputs consist of (1) Ruk,

a binary matrix indicating if person u needs specialized treatment

k; (2) Cjk, another binary matrix indicating if grid j belongs to

category k; and (3) Z(αu,βu,Xu), a CP (or risk) function for person

u based on αu and βu. To ensure treatment needs are met, a person

should be assigned to a grid where a treatment need can be met,

though note that a person may need a variety of treatments, and

should eventually be assigned to a grid where they can receive each

necessary treatment. In practice, there may be only one grid j in

which treatment k can be given, or multiple grids may support

treatment k. Thus, this framework ensures inpatients receive the

necessary treatment while minimizing contagion.

Objective: min

n
∑

u=1

Z(αu,βu,Xu) (10)

Subject to:

m
∑

j=1

Xuj =

K
∑

k=1

Ruk, ∀u ∈ {1, 2, . . . , n} (11)

n
∑

u=1

Xuj ≤ c, ∀j ∈ T (12)

Xuj · Cjk ≥ Ruk, ∀u ∈ {1, . . . , n}, ∀k ∈ {1, . . . ,K},

∀j ∈ {1, . . . ,m} (13)

Xuj ∈ {0, 1}, ∀u ∈ {1, 2, . . . , n}, ∀j ∈ {1, 2, . . . ,m}

(14)

The risk score, based on CP, is Z(αu,βu,Xu) =
∑28

j=1 αuµt(u)+

Xujβuµ
t
jNEj, where αuµt(u) measures the decay in the CP of

individual i. If person u needs to go to grid j, Xuj = 1, and the risk

associated with grid j is βuµ
t
j ×N×Ej, sinceN×Ej is the predicted

number of people in grid j which has average CP µt
j . The objective,

as defined in Expression 10, is to minimize the risk by assigning

individuals to grids in a manner that optimally satisfies their health

requirements. Constraint 11 ensures that each person is assigned

to units that fulfill their treatment needs. Constraint 12 represents

optional consideration to restrict the capacity of each treatment

(non-waiting room) grid to c, where T is the set of treatment grids.

Constraint 13 ensures that a person can only be assigned to grids

equipped to provide necessary treatments. Lastly, Constraint 14

enforces binary assignment decisions of a patient to a grid.

2.7.2 Greedy baseline
The mean CP and number of infections recorded under the

optimization framework are compared to a greedy assignment

process, which uniformly assigns patients to grids based on their

treatment needs.

3 Results

We validate the framework through two sets of experiments.

The first set demonstrates the functionality and performance of

each core module in isolation (see Section 3.1.10), while the

second presents an end-to-end evaluation that integrates realistic

epidemiological and mobility parameters (Section 3.2). COVID-19

is used as a representative case study due to its continued relevance,

well-documented contact-driven transmission characteristics, and

the availability of structured data reflecting healthcare-associated

risks. However, being a data-driven optimization approach, the

proposed framework, given relevant data, is designed to be

generalizable to other mobility-driven and contact-mediated HAIs

beyond COVID-19. Table 1 summarizes the default parameter

values used in the simulation and their application to the synthetic

dataset. The term “true” refers to ground truth values for model
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TABLE 1 Default values of the epidemiological parameters.

Parameter Value

Population size (N) 330 (48, 49)

Number of grids 28

Temporal resolution Daily

Reproduction number, Delta, Omicron (R0) 3.2, 9 (50, 51)

Contact radius (r) 6 feet (52)

Probability I to R (γ ) 0.05 (30)

Probability R to S (δ) 0.025 (30)

Probability S to I (β) 0.16 = R0 · γ (30)

Viral load shedding rate (α) 1
8
(53, 54)

Initial proportion of susceptible individuals (S0) 0.8

Initial proportion of infected individuals (I0) 0.2

components such as the number of neighbors, contagion potential

(CP), and epidemiological variables. The discrepancy between

these true and inferred values serves as a measure of predictive

performance throughout our experiments.

3.1 Study design

3.1.1 Specialized units and inter-zonal movement
We conceptualize specialized units within a healthcare facility

as distinct zones, which are integral to infection control and patient

management. As depicted in Figure 2 Left, these units include the

patient room (PR), where individual care is delivered; the waiting

room (WR), designated for patients awaiting treatment; the triage

(TR) area, where the patient assessments occur; and the hallway

(HW). Each section within a unit is modeled as a 10 ft × 10 ft

grid square (38). The dynamic nature of patient and healthcare

worker movement across these units contributes to varying levels

of infection risk. A transition matrix (Figure 2 Right) is used

to define the likelihood of individuals traveling between units.

These probabilities provide a quantitative framework for evaluating

infection risks due to movements.

3.1.2 Three-phase contagion potential
framework

The study is structured into three phases to address hospital-

acquired infections (HAIs). First, we infer CP from approximate

location data, leveraging the knowledge of the grid occupied by

persons at a given time to estimate their infection risks. Second,

we consider heterogeneous infection parameters αi and βi for

individual i. As shown in Figure 3, we define three frequency levels

(in decreasing order), 1, H, and L, such that 1 < H < L.

Mobility occurs at the base frequency 1, CP parameter estimation is

conducted at the intermediate frequencyH, and patient assignment

takes place at the lowest frequency L. Third, the optimization

focuses on the grid assignment of patients and healthcare workers,

using CP-based metrics to design optimal placement strategies

that minimize infection spread while accounting for operational

constraints. Optimized assignments are based on the CP of each

grid. The CP of a grid is the average of the CPs of the individuals.

Thus, the infection risk in a grid is higher when the CP of the grid

is higher.

3.1.3 Unimodal and bimodal infection trends
Classic disease models often consider one wave of infection,

but as new variants arise in a pandemic or new countermeasures

are implemented, multiple waves of infection occur. The bimodal

incidence pattern has been specifically chosen because it more

closely aligns with the contagion dynamics observed among SARS-

CoV-2 positive staff and healthcare workers (39). When two waves

of infection are considered, each wave corresponds to introducing

a new variant. In the first (or only) wave, a variant with R0 = 3.2

is used, and 20% of the population is infected. This corresponds to

the COVID-19 Delta variant. When a new variant is introduced,

with R0 = 9, corresponding to the COVID-19 Omicron variant,

8% − 25% of the population is infected. We perform experiments

with both incidence models: Section 3.1.10, where we show the

working of each module in the framework, is based on an unimodal

incidence, while the complete analysis (in Section 3.2) uses a

bimodal incidence.

3.1.4 Generating an inter-unit transition matrix
We model the movement of individuals within the healthcare

center with a classical gravity mobility model (40) that captures the

complexities of movement better than homogeneous mixing. In the

gravity model, the probability of moving from grid i to grid j is

given by κ ×
ninj
dν
ij
, where ni and nj are the number of individuals

in the grids i and j, respectively, dij is the distance between grids

i and j, the constants κ = 0.08, ν = 1.78 as per (40). The inter-

unit transition matrix is recalculated using the gravity mobility

model since the number of individuals in a given grid evolves. The

estimated values are row-normalized to ensure that each row in

the transition matrix sums to 1. Thus, the resulting matrix is valid

for stochastic modeling, effectively capturing inter-unit movement

among the clinical staff.

We separately study the three aspects of the proposed CP

framework: (1) the expected occupancy and contact among

individuals within a unit (see Methods Section 2.4 and 2.5 for

details); (2) updating CP parameters (see Section 2.6), and (3) the

assignment of patients to units to control HAI (see Section 2.7.1).

3.1.5 Expected unit occupancy
The neighbors of a person are the individuals they come into

contact with. In a crowded unit with high population density, each

occupant will likely have more neighbors and a commensurately

high incidence of hospital-acquired infections (HAIs). Under the

assumption of random mobility across and within units, the

probability of moving from grid i to grid j is given by tij, where

T = (tij). In this scenario, 330 individuals move about the

healthcare facility. Under homogeneous mixing, we measure the

number of contacts or neighbors of an individual as the expected
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FIGURE 2

Healthcare units and movement of personnel. (Left) A facility is partitioned into four units, namely, patient room (PR), waiting room (WR), triage (TR),

and hallway (HW). Each unit comprises grids (dotted squares). (Right) The clinical sta� can move from one unit to another as per the directed links in

the transition network.

FIGURE 3

Study design: three modules of the contagion potential (CP) framework varying in frequency of occurrences: 1 (blue), high H (yellow), and low L

(green).

number of people in a circle with a contact radius r = 6 feet.

Over 100 hours, we calculate the average number of neighbors in

a grid and compare it to our estimation of the expected number of

neighbors (as per Methods Section 2.4). Figure 4A shows a strong

cubic correlation (residuals 2.75) between the true and predicted

neighbor counts. The fit line (shown in red) follows a polynomial

of the form y = −0.61x3 + 5.41x2 − 13.81x+ 12.

Using a PageRank algorithm formulation of the transition

matrix T, as per Methods Section 2.5, the PageRank of a grid,

denoted as Ei, measures the proportion of the total population in

a given grid i. The expected population of grid i is then computed

as Ei × N, where N is the total number of individuals. This

predicted population is compared to the observed population of a

grid in Figure 4B. Together, these results suggest that even when

precise mobility data is unavailable, the CP framework can infer

interaction patterns based on the overall knowledge of the inter-

unit transitions.

3.1.6 Inferring CP from exact and inexact
movement data

Similar to the idea of estimating the occupancy of a healthcare

unit, one can derive realistic estimates of CP under both exact and

inexact knowledge of the number of people as perMethods Section

2.5. When the exact number of people entering grid i is unknown,

T is used to predict the CP of grid i, as demonstrated in Figure 5

Left. Even with the added uncertainty surrounding the movement

of individuals between units, we can closely predict the CP of a grid

over time. Mobility is predicted based on the PageRank transition

matrix, and Figure 5 Right shows that the predicted CP still closely

follows the true CP of a grid.

3.1.7 Inferring CP parameters
This aspect of the proposed CP framework focuses on

minimizing the risk of infection for individuals by dynamically

adapting their contagion parameters. Two key parameters are

considered: α, which represents the rate at which an individual

sheds the disease (with lower α indicating quicker shedding),

and β , which quantifies the susceptibility of an individual to

infection (with higher β indicating greater likelihood of acquiring

the disease). Since these parameters are typically unknown for

individuals, each u is initially assigned αu and βu values sampled

from a distribution for all u = 1, 2, . . . ,N. Over time, these

parameters are iteratively refined using the update rules (described

in Methods Section 2.6), which adjust αu and βu based on the

discrepancies between the true and predicted infectivity levels

of individual i. Equation 8 describes the update to αu and βu,

where the weighting factor between the current player’s discrepancy

and the average discrepancy is w = 0.2. The learning rate is

then adjusted in Equation 9 with adjustment parameter ξ =

0.1. As the learning progresses, αu and βu converge to values
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FIGURE 4

Prediction of the number of contacts per individual and the occupancy in healthcare units. (A) The mean predicted number of neighbors per

individual (shown as blue dots) in a grid against the true mean. (B) The predicted occupancy (colored blue) and true occupancy (colored red) of a unit

over time.

FIGURE 5

Inferring mean CP across healthcare units over time from exact and inexact movement data: (Left) Exact; (Right) Inexact.

that more accurately represent the true infectivity parameters of

each individual, thereby minimizing the difference between the

predicted and actual infection levels. This adaptive process is

illustrated in Figure 6, which shows the reduction in the average

discrepancy between true and estimated infectivity parameters

across the population.

3.1.8 E�cacy of CP in optimizing patient
allocation

To demonstrate the efficacy of CP in patient allocation,

we conduct an experiment where the optimization formulation

based on the SIRS epidemic model serves as a control, in which

untested individuals are assumed to be uninfected. In contrast,

our proposed CP-based optimization framework accounts for

transmission potential, particularly from asymptomatic individuals

who remain undetected. Figure 7 shows that the CP-based

allocation reduces the mean population CP and the number of

infected individuals over time. This improvement arises from

the ability of CP to capture the hidden transmission dynamics

of untested asymptomatic individuals, thereby highlighting its

effectiveness in mitigating HAIs.

3.1.9 Allocation of patients to units
The last phase of the CP framework involves assigning

patients to units, aiming to minimize their risk of exposure while

ensuring their clinical needs are met. This is achieved through

an optimization framework designed to mitigate infection trends

(See Methods Section 2.7.1, where Ruk is a binary vector indicating

that person u needs specialized treatment k and Cjk is a binary

matrix indicating if grid j belongs to treatment category k). In this

experiment, C is defined as a random 28 × 28 permutation matrix

corresponding to the 28 grids, each with a treatment category, and

each individual is assigned to visit between 2 and 14 grids. The

CP-based risk of a person umoving to grid j at time t is calculated as

αu×µt(u)+βu×µj, where αu and βu are the contagion parameters

of individual u, µt(u) represents their contagion potential, and µj

denotes the average CP of grid j, estimating the exposure risk of

grid j. The cumulative risk of the population is minimized while
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ensuring that individuals are assigned to grids capable of meeting

their treatment requirements. The results of this optimization

approach are compared to those obtained from a greedy assignment

baseline strategy (discussed under Section 2.7.2). Figure 8 illustrates

the outcomes of this procedure within an ER system.

The average grid CP is consistently lower for the optimization

than for the greedy assignment, as shown in Figure 8 Left,

indicating that the optimized assignment process effectively

reduces the risk of infection. This is consistent with the result

of Figure 8 Right. The number of infected individuals falls to

equilibrium more quickly when assignments are selected to

minimize CP than with the greedy assignment algorithm.

3.1.10 Contagion potential for varying risk levels
CP provides a robust and adaptable framework for quantifying

individual infection risk in heterogeneous populations. Figure 9

illustrates the dynamic evolution of average CP and infection

counts over time across three risk strata, each consisting of

FIGURE 6

The di�erence between true and estimated infectivity of a person

diminishes as their infectivity parameters are learned.

110 individuals: high-risk, medium-risk, and low-risk. These risk

levels are encoded using distinct values of the susceptibility and

transmissibility parameters (αu,βu), where high-risk individuals

are assigned αu = 0.8 and βu = 2, medium-risk individuals

αu = 0.2 and βu = 1.25, and low-risk individuals αu = 0.05

and βu = 0.5. As individuals move through different zones

in the healthcare facility, the learning model (see Section 2.6)

updates the CP parameters in response to observed transitions

and infection data, allowing it to reflect the evolving infection

dynamics adaptively. This stratified analysis shows that the CP

metric effectively differentiates risk levels across population groups:

high-risk and low-risk individuals consistently exhibit the highest

and lowest average CP and infection rates over time, while

the medium-risk individuals fall in between, in alignment with

their parameterization.

3.1.11 E�ect of grid capacity
The optimization formulation for inpatient allocation to grids

is designed to balance multiple objectives. Its effectiveness in

minimizing HAI incidence is discussed earlier (see Section 3.1.9).

We carry out an illustrative example to highlight how the allocation

probabilities of patients vary in a small population ofN = 50 based

on CP under varying grid capacities, by considering a population

of N = 50 and comparing two scenarios: high capacity (c = 30)

and low capacity (c = 10). As depicted in Figure 10, where the

CP values are binned and averaged over increments of 0.25, when

capacity is high, most individuals, regardless of CP, are assigned

to treatment grids with high probability. In contrast, under low

capacity, individuals with high CP are prioritized for assignment,

showing the ability to adaptively allocate limited resources by

emphasizing contagion as a decision factor. This is consistent with

the optimization seeking to isolate high-CP individuals so that their

ability to infect others is limited.

3.2 Complete experiment

This experiment integrates all the modules discussed in

Section 3.1.10 into a comprehensive, end-to-end analysis of the

FIGURE 7

Patient allocation based on CP and SIRS model: (Left) mean CP; (Right) total infected.
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FIGURE 8

E�ect of optimized assignment on infection spread under one infection wave: comparison of the (Left) mean CP (Right) infected number, under

greedy and optimized assignments.

FIGURE 9

Infection risk and outcome based on high, medium, and low patient risk: (Left) mean CP; (Right) total infected.

FIGURE 10

Proportion of rounds allocated to treatment based on mean CP for

high and low capacity treatment rooms.

proposed CP-based HAI control framework, incorporating realistic

epidemiological and mobility trends. Specifically, we model the

occurrence of multiple waves of infection within a healthcare

setting, capturing the dynamic nature of disease spread. Figure 11

follows the same optimization procedure outlined earlier, now

extended to account for a second wave of infection. This second

wave is characterized by a strain with R0 = 9, compared to

the initial wave’s R0 = 3.2, reflecting the potential emergence

of more transmissible variants. Furthermore, to achieve a realistic

representation of patient and healthcare worker movement

patterns, we employ the gravity model for indoor mobility (Refer

to Section 3.1.4).

Figure 3 outlines the procedures involved in the complete

experiment. At each time step, the location of individuals is

updated, as described in the Study Design section (Section 3.1),

which defines three frequency levels: 1, H, and L such that 1 <

H < L. Recall that mobility occurs at the base frequency 1, CP

parameter updates appear at the intermediate frequency H, and

personnel assignments are optimized at the lowest frequency L.

The CP updates are preceded by infectious disease testing, which
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FIGURE 11

E�ect of optimized assignment on infection spread under two infection waves: comparison of the (Left) mean CP (Right) infected number, under

greedy, and optimized assignments.

FIGURE 12

Convergence of the CP parameters αi and βi (inferring over time using the proposed learning model) to the true mean parameter values: (Left) CP

parameter (α); (Right) CP parameter (β).

provides ground truth for CP learning and updates, as CP =

1 is assigned to tested infected individuals. Although personnel

allocation is desirable to control infection levels, these assignments

occur less frequently than CP updates due to logistical constraints.

This process is implemented over a simulated period of 120 h, with

H = 3, L = 8, and location updates occurring three times an hour.

Two waves of infection are studied during this period, consistent

with the COVID-19 pandemic data analyzed in Lindsey et al. (39).

Figure 11 Left, Right show that optimized patient assignment shows

a reduced mean CP and daily incidence than the greedy patient

allocation approach that relies on assignment based on treatment

needs (Section 2.7.2).

Figure 12 Left shows the convergence of the estimated

mean α to the true mean α, and Figure 12 Right shows this

process for β . Both parameters follow a similar trajectory as

they are learned simultaneously through the same samples

and procedures. Note that the time required for parameter

convergence is highly dependent on the number of tested infected

individuals. Since the learning model (see Section 2.6) relies on the

infected individuals, a higher infection prevalence accelerates the

learning process.

Figure 13 Left shows that under the bimodal infection curves

(refer to Section 3.1.3), the average CP remains consistently

lower under the optimization protocol compared to the greedy

algorithm, though the difference is smaller than when optimization

is performed daily. Figure 13 Right depicts that infections decrease

more rapidly under optimization, even when optimization is

applied less frequently. Figure 14 gives the CP and infection

trends for the gravity-model based mobility, showing that a

similar circumstance of infection dying out more rapidly under

optimized assignments.

4 Discussion

We proposed a contagion potential (CP) framework to address

hospital-acquired infections (HAIs) by dynamically assessing

infection risks based on individual characteristics and movement
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FIGURE 13

E�ect of patient assignment on infection spread under the bimodal infection curve: comparing the (Left) mean CP and (Right) infected count under

greedy and optimized assignments.

FIGURE 14

E�ect of patient assignment on infection spread under the gravity mobility model: comparing the (Left) mean CP and (Right) infected count under

greedy and optimized assignments.

behaviors within healthcare facilities. CP employs macro-location

data to provide a real-time infection risk landscape without

necessitating precise tracking. This approach models interactions

between patients and HCWs across key units, such as hallways,

triage areas, and patient rooms, offering a practical and scalable

solution for infection control. The framework further integrates

a continuous learning model to refine CP parameters iteratively

based on collected data, enhancing its capacity to assess risks

accurately at both individual and unit levels. A key contribution

of this work is the integration of CP within an optimization

framework, making it one of the early efforts to allocate patients

to healthcare units while simultaneously addressing objectives

related to contagion mitigation, logistics, and clinical care. Unlike

conventional patient allocation strategies that primarily focus on

capacity constraints or clinical urgency, our approach jointly

optimizes infection control while ensuring that logistical and

clinical requirements are met. By embedding CP into the decision-

making process, the optimization framework provides a dynamic

and data-driven mechanism to guide patient assignments in a

manner that reduces contagion risk while maintaining operational

efficiency. This multi-faceted approach not only enhances the

effectiveness of HAI mitigation strategies but also underscores the

potential of computational frameworks in improving healthcare

resource management.

Our analysis confirms the efficacy of the CP framework in

approximating contact information to learn contagion dynamics.

By avoiding the need for exact location data, the model leverages

coarse-grained macro-locations to assess risks. An optimization

framework for patient allocation based onCP is demonstrablymore

effective in minimizing contagion compared to the compartmental

epidemic models, which assign a binary infection status to tested-

positive individuals. The framework’s adaptability, driven by its

continuous learning capability, allows it to respond dynamically

to shifting infection patterns and operational constraints,

positioning it as a future tool for patient allocation while

containing HAIs.
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To model infections arising from endogenous flora and

invasive medical procedures, the current CP framework could be

expanded beyond its contact-based paradigm (41). This begins

with interpreting CP as a composite risk score that integrates both

interpersonal transmission risk and endogenous susceptibility.

While the existing model evaluates infection risk based on

movement patterns and interpersonal contact, endogenous

infections depend more heavily on internal physiological

conditions, prior colonization, immune status, and exposure to

procedures such as catheter insertion or surgery (42). Incorporating

these factors requires augmenting the CP calculation with patient-

specific clinical features drawn from electronic health records,

as well as procedural exposure histories. This integration could

result in a hybrid contagion metric that more accurately reflects

multimodal infection risk in healthcare settings stemming

from myriad multidrug-resistant organisms. A second critical

adaptation involves the temporal modeling of procedure-related

risk. Many endogenous infections follow time-sensitive trajectories

post-exposure—e.g., surgical site infections peak within days after

surgery, and catheter-associated infections increase with dwell

time (43). The framework must further include explicit timepoints

for high-risk procedures and dynamically adjust the CP score over

time as procedural windows open or close. Lastly, the existing

optimization framework (as discussed in Section 2.7.1), which

currently assigns patients to units by minimizing contagion while

satisfying logistical constraints, must be reformulated as a joint

optimization problem. This new formulation must simultaneously

minimize risks from both contact-based transmission and

endogenous sources, potentially involving trade-offs between

spatial cohorting and procedural scheduling. By addressing

these three adaptations, the CP framework can evolve into

a tool for infection prevention across diverse etiologies and

healthcare scenarios.

The framework also has implications for patient privacy and

the secure use of clinical data. Specifically, the information shared

within the CP-based optimization framework consists of patient

location data and clinical needs for allocation to the appropriate

grid. By focusing on macro-location tracking rather than precise

geolocation, our approach lends itself to privacy-preserving

features, such as group-based anonymization techniques like k-

anonymity and l-diversity (44). Therefore, a detailed investigation

of privacy-preserving safeguards is part of our ongoing research

efforts. However, emerging privacy-preserving technologies, such

as multiparty homomorphic encryption (45) and differential

privacy (46), offer promising avenues for future exploration. For

instance, differential privacy could be employed to aggregate CP at

the grid level without exposing individual health indicators, while

federated learning could enable collaborative data modeling across

institutions without sharing raw patient data (47).
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