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Introduction: Hospital-acquired infections (HAls) caused by bacterial and viral
pathogens continue to affect millions annually, placing a persistent burden on
healthcare systems. Traditional infection control strategies often fall short due to
their inability to assess real-time spatial and movement data within healthcare
environments dynamically. This study addresses that gap by leveraging the
concept of contagion potential (CP), a behavior- and context-driven metric of
infection risk, to develop a framework for minimizing the incidence of HAls.

Methods: The proposed framework integrates CP, which encapsulates an
individual's susceptibility and transmissibility, taking into account movement
patterns and interactions across hospital units. Unlike models requiring precise
tracking, this approach uses coarse location data to construct a dynamic
infection risk landscape. CP parameters are continuously learned and updated
over time through behavioral data, enabling real-time risk inference. The
framework also introduces a CP-based optimization algorithm for patient-to-
unit assignments that jointly minimizes contagion risk while satisfying clinical and
logistical constraints.

Results: The framework's efficacy is validated through modular and integrated
evaluations. Simulations incorporate mobility patterns reflecting homogeneous
and heterogeneous mixing, with infection spread following empirically grounded
transmission models. Results demonstrate that incorporating CP significantly
reduces infection propagation, enhances patient safety, and leads to more
efficient healthcare resource allocation.

Discussion: This study presents a dynamic, data-driven framework for infection
control within healthcare facilities. By incorporating behavior-aware contagion
metrics into patient flow decisions, the approach offers a scalable and proactive
infection prevention strategy. The findings underscore the potential of CP
to improve both operational outcomes and patient well-being in healthcare
environments.

KEYWORDS

hospital-acquired infections, infection control, contagion potential, optimization,
resource allocation

1 Introduction

Reports from the Centers for Disease Control and Prevention highlight a substantial
public health issue, with millions of hospital-acquired infections (HAIs) annually,
primarily bacterial, contributing to nearly 100,000 deaths each year (1, 2). This situation
presents a significant burden on healthcare systems, both economically and in terms of
patient safety. In response, there has been an increasing emphasis on clinical interventions
aimed at reducing the incidence of specific HAIs, including surgical site infections (SSI),
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ventilator-associated pneumonia (VAP), and central line-associated
bloodstream infections (CLABSI) (3-5). As healthcare institutions
strive to alleviate the impact of HAISs, there is a growing consensus
on the importance of research initiatives that utilize available data
to create integrated strategies for prevention and management, with
the ultimate goal of improving patient outcomes and healthcare
efficiency (6).

The COVID-19 pandemic has further
susceptibility of critically ill patients to HAIs, such as VAP

exposed the

and bloodstream infections (7). These challenges, exacerbated
by shortages in staffing and supplies, have imposed additional
pressure on healthcare systems (8). The pandemic has also
amplified concerns among healthcare workers (HCWs) about
transmitting infections to their immediate patients and families,
leading many to self-isolate, which has negatively impacted both
workforce availability and mental health (9). While measures
such as patient isolation and frequent testing have been employed
to safeguard HCWs from infection (10), there remains a critical
need for data-driven contagion control measures and longitudinal
studies within healthcare environments (11, 12). Studies on HAIs
reveal a strong correlation with invasive devices, emphasizing the
need for stratification to model infection dynamics within medical-
surgical intensive care units (13-16). These insights underscore the
urgency of strategies that minimize the risks of HAIs, protecting
both patients and HCWs from diseases like multidrug-resistant
organisms (MDROSs) and Clostridioides difficile (C. diff).

Patient allocation and scheduling in healthcare systems
have been studied, primarily focusing on two key areas: (1)
patient referral to clinics and timeslot assignment and (2)
human and clinical resource scheduling based on workload
and expertise. In the first line of research, patient referral
models explore strategies for allocating patients among healthcare
facilities to optimize resource utilization and minimize waiting
times. Simulation-optimization methods have been developed
to address uncertainties in patient arrival times and medical
operation durations, integrating heuristic algorithms with particle
swarm optimization to enhance referral efficiency (17). Studies
have also emphasized the significance of communication and
coordination between primary care physicians and specialists,
showing that improved collaboration enhances referral completion
rates and physician satisfaction (18). Additionally, clustering-based
approaches such as Fuzzy C-Means have been proposed to optimize
patient referrals and scheduling, cost, and waiting times (19).

Beyond referrals, the problem of nurse-to-patient assignment
in homecare has been explored, where analytical structural
policies help balance workloads and continuity of care (20).
Parallel to patient allocation, research on scheduling healthcare
personnel has gained attention in optimizing nurse schedules
to balance workload. Integer programming and evolutionary
algorithms have been employed to solve nurse scheduling
problems, showing improvements in algorithmic performance
and practical feasibility (21). Genetic algorithms have also been
applied to nurse scheduling, utilizing indirect coding and heuristic
decoders to construct efficient schedules while overcoming
algorithmic constraints (22). Collectively, these studies contribute
to an understanding of patient and resource allocation, offering
methodologies to enhance health services. There exist limited efforts
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that jointly address the challenge of inpatient assignment in a manner
that simultaneously curbs HAIs while meeting both logistical and
clinical demands.

For this study, the term contagion refers to the transmission
of infectious agents through close contact between individuals.
Previous works have employed contact networks derived from
precise mobility data, such as Global Positioning System or
Bluetooth beacons, to track the spread of contagion in confined
environments like healthcare facilities (23-26). However, these
methods face challenges due to privacy issues, technological
constraints, discomfort among patients and staff, and the inherent
complexity of human movement patterns (27, 28). Relying solely
on infectious disease testing to monitor contagion is problematic,
as transmission can occur between test intervals, and test results
are often subject to false positives and negatives. This necessitates
robust metrics that account for the uncertainty in both location
data and disease testing outcomes to improve the modeling
and containment of infection spread within closed, interactive
environments like healthcare settings.

We introduced the contagion potential (CP) as a continuous
metric to quantify the overall infection risk contributed by both
symptomatic and asymptomatic individuals (29, 30). The concept
of CP is grounded in the dynamic nature of infection propagation
through social contact, where an individual’s risk is influenced not
only by their infection status but also by the CP values of their
recent contacts. Unlike traditional compartmental epidemic models
that rely primarily on diagnosed infection states, CP provides a
more granular, network-driven representation of transmission risk.
Specifically, CP does not solely depend on whether an individual
has tested positive or negative; rather, it evolves as a function of
their exposure history and the infection risks of their immediate
social network. As illustrated in Figure 1, an individual’s CP
transitions over time (¢t = 1,2,3,...), progressing from lower
values (green, near 0) to higher values (red, near 1) based on
repeated interactions with high-risk contacts. Prior work (31, 32)
has demonstrated that CP integrates principles from network
diffusion and optimization-based models, leveraging spatial contact
structures and epidemiological properties to provide a robust
estimate of individual infection risk.

In this paper, we leverage the contagion potential (CP)
framework to reduce the incidence of hospital-acquired infections
(HAIs). We evaluate infection risk at the individual level by
accounting for heterogeneous characteristics and movement
patterns of healthcare workers (HCWs) and patients within
a facility, offering a dynamic and adaptable measure of both
susceptibility and transmissibility. Healthcare facilities are
composed of distinct units—such as hallways, triage zones, patient
rooms, and waiting areas—between which individuals transition
over time. Our framework, details presented in Section 2, models
these interactions using approximate location information,
represented as transition probabilities between units, thereby
avoiding the need for fine-grained location tracking while still
capturing the temporal and spatial structure of contacts. We
introduce a dynamic learning model that continuously updates
CP parameters based on observed transitions and infection
data, enabling more accurate and timely risk assessments at
both individual and unit levels. This risk-aware modeling is
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FIGURE 1

Evolution of the contagion potential (CP) of an individual (O) from
low (green) to high (red) based on the CP of other individuals he
comes in contact with over time.

embedded within an optimization framework that, to the best of
our knowledge, is the first to jointly tackle inpatient assignment
in a way that minimizes the spread of HAIs while satisfying
logistical and clinical requirements. Our current framework
specifically focuses on modeling and mitigating the contact-based
transmission dynamics of infection, particularly those acquired
through interpersonal interaction and movement across spatial
units. Infections arising primarily due to endogenous flora or
medical devices (e.g., surgical site infections or catheter-associated
infections) are governed by distinct clinical and physiological
mechanisms that are not directly influenced by mobility or
interaction-based contagion patterns. As such, while these types
of infections are clinically significant, they fall outside the scope
of the CP framework presented in this study. By concentrating
on mobility-driven and contact-mediated HAIs, the proposed
approach addresses a key subset of preventable infections where
risk is strongly shaped by behavioral and spatial factors, making it
amenable to intervention through network-aware decision-making
and dynamic risk estimation.

To validate the proposed framework, we conducted two sets of
experiments (refer to Results under Section 3). The first set focuses
on evaluating the individual modules within the framework.
Specifically, we demonstrate the effectiveness of learning CP from
the approximate location of individuals within the unit, the iterative
refinement of CP parameters, and the optimization of the patient-
to-unit assignment problem. Furthermore, we demonstrate that
optimizing based on CP, rather than relying solely on binary
infection status, yields a lower infection count, as it captures the
nuanced contributions to contagion from asymptomatic patients
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as well as the heterogeneity in infection risk. The second set
of experiments involves an integrated evaluation of the entire
framework. This integrated experiment leverages a realistic gravity-
based mobility model that accurately captures indoor movement
patterns and epidemiological parameters, simulating bimodal
infection peaks observed in a healthcare setting. These experiments
establish the efficacy of the framework in reducing infection risk
and optimizing operational decisions in healthcare.

2 Methods
2.1 SIRS epidemic model

We employ the Susceptible-Infected-Recovered-Susceptible
(SIRS) model to describe the progression of infectious diseases,
following the formulation by Brauer and Castillo-Chavez (33).
The population of individuals N is divided into three categories:
susceptible (S), infected (I), and recovered (R). Susceptible
individuals become infected through interactions with infected
individuals at a transmission rate 8, while infected individuals
recover at a rate y. The transmission rate § is the product
of the basic reproduction number Ry and the recovery rate
y (34). Recovered individuals, in turn, may lose immunity and
transition back to the susceptible compartment with a rate 4.
These dynamics are governed by a system of ordinary differential
equations, as defined in Equations 1-3, offering a representation of
disease spread.

g _BSI
s_—N +68R (1)
= B _

1= N yI (2)
R=yI—3R (3)

To extend the framework, we incorporate a spatial variant of
the SIRS model. Here, individuals are assumed to move within a
geographical domain, and interactions that facilitate transmission
occur when individuals are within a radius r of one another.

2.2 Contagion potential based on spatial
contacts

Contagion potential (CP) is a continuous variable that
quantifies an individual’s infectivity, capturing both direct infection
status and indirect exposure risks from their recent contacts within
the network. CP evolves dynamically, reflecting the accumulated
risk from interactions in a social network. The CP of an individual
u at time t + 1, with neighbors v € N¢(u), is defined as:

pen W) = am@) + B Y ) (4)

veN(u)

In the above equation, p;4+1(u) represents the updated CP of
individual u, while ZveNt(u) we(v) aggregates the CP values of
w’s contacts at the previous time step. The parameter o captures
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the persistence of CP over time, while § modulates the influence
of social interactions on the evolution of CP. The infection
transmission rate S is derived as Ry x y. This formulation
reflects a fundamental principle of infection propagation: an
individual’s likelihood of transmitting disease is influenced not
only by their infection status but also by the CP of those they
interact with. Exposure to highly infectious individuals raises
one’s CP due to cumulative exposure effects, similar to the force
of infection in classical epidemic models (35). The update rule
ensures that CP accounts for network-driven risk amplification,
where repeated interactions with high-CP individuals increase
transmission potential over time.

To maintain interpretability and comparability, CP values
are constrained within the range [0,1] using the boundary
condition: © = max(0,min(l,x)) after each CP update.
This restriction is both mathematically and epidemiologically
motivated. A CP of 0 represents no transmission potential,
typically assigned to individuals unexposed to the pathogen,
while a CP of 1 denotes maximal transmissibility, corresponding
to individuals with peak infectiousness. Many epidemiological
risk scores, including transmission probabilities and infection
indices, naturally reside in this range to reflect real-world
constraints on disease spread. Constraining CP in this way
also facilitates its interpretation as a probabilistic measure of
infectivity and ensures consistency across different populations
and scenarios.

2.3 Quantifying infectivity using contagion
potential

Assuming that infection spreads through contact between

susceptible and infected individuals, the probability of
encountering an infected individual is proportional to the
fraction of infected individuals in the population, represented as
%. Thus, the number of new infections, denoted by v, depends on
the number of susceptible individuals S and the infected fraction

%, and is given by:

vzﬂx%xs. (5)

This formulation is consistent with classical mean-field
epidemic models (36), where the force of infection is proportional
to the density of infected individuals in the population. However,
such models typically assume perfect knowledge of infection status,
which is rarely the case in real-world epidemics. As discussed
in Section 2.2, contagion potential (CP) measures an individual’s
infectivity as a continuous real value in the range [0, 1], accounting
for both symptomatic and asymptomatic individuals. The mean
CP across the population, denoted by x (and used interchangeably
with CP), serves as an alternative representation of the infection
burden, particularly in scenarios where direct observations of
I are limited. By incorporating CP into the formulation, the
number of newly infected individuals at any given time becomes:
v=p8xpuxS.
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2.4 Modeling occupancy and contact
within a healthcare unit

The contagion potential (CP) of each grid evolves based on
the movement of personnel and the inherent uncertainty in their
contact information within units. The CP of a grid at any given
time is calculated as the average CP of individuals within that grid.
Considering the modeled movement of individuals between grids,

t t
the CP of grid i at time ¢+ 1 can be expressed as: ,uf‘H = %,
j i

where w!_ ; represents the number of people moving from grid j to

—>1
grid i at] time ¢, and u]’ is the CP of grid j at time t. In practical
scenarios, the precise locations of individuals within a unit may
often be unknown or undisclosed due to privacy concerns. Given
n;j is the number of individuals in grid j, r is the radius of influence,
and A; is the area of grid j, the expected number of neighbors for a

person in grid j, in terms of its population density, is:

(nj—1) x 7 x r?
ej = max | ————,0 (6)
4j

This expected number of neighbors can be used to predict the
updated CP of an individual. The estimated updated CP of an
individual v in grid j at time t+1 is given by: i1 (1) = o x i (1) +
e x B x /l;, where o and B are scaling factors representing the
contribution of individual and grid CPs, respectively. As mentioned
in Section 2.2, if this value exceeds 1, ji;+1 (1) = 1.

2.5 Equilibrium condition of unit
occupancy and CP

The contagion potential (CP) of a grid is derived from an
inter-unit transition probability matrix T, where Tj; represents the
probability of transitioning from grid i to grid j. Using a PageRank
centrality approach (37), the equilibrium distribution of individuals
across grids is described by the eigenvector equation: T - E =
A - E, where E = (¢;) represents the equilibrium distribution of
individuals across units, that is, the rank of grid i times N. A = 1
ensures that the expected population is stable. Given W = (w;;) as
the grid transition matrix, where wjj is the likelihood of movement
from the category of grid i to the category of grid j based on
simulated hospital mobility between these categories, the transition

€iWijj

probabilities are: Tj; = S o Similarly, the CP vector of grids,
j €i"@ij

denoted as p, satisfies the eigenvector equation under steady-state

1)
represent the grid-wise mean CP vector at time ¢. The temporal

conditions T - w = A - u, where . = 1. Let u; = (u1,..

evolution of the CP is given by:

Mepr =g - T 7)

As the system stabilizes, the population distribution and grid
CPs converge to their equilibrium values. In the experimental
results presented (see Results under Section 3), Equation 7 is
used to estimate the CP of a grid using the PageRank process
to determine T.
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2.6 Dynamic learning of contagion
potential parameters

The iterative learning model is designed to progressively refine
the CP parameters for individual u by updating them based
on real-time feedback and data. By continuously adjusting the
parameters through a sequence of learning iterations, the model
adapts to the individual’s specific contagion dynamics, improving
prediction accuracy over time. This approach ensures that the
CP estimation is closely aligned with the individual’s observed
behavior and characteristics. In the equations below, d,, represents
the discrepancy between the true CP and the CP estimated based
on current parameters (o, 8) for a person u, while d denotes the
population mean discrepancy.

Recall from Section 2.2, that if a person is infected, their actual
CP is 1. The discrepancy observed for an infected individual is then
the difference between 1 and their predicted CP. The weighting
factor w, typically between 0 and 1, determines the contribution of
d, relative to d. The learning rate for a person u after 7, updates
is denoted by Ir,(7,), and the discounting factor for learning rate
updates is represented by &, where & € [0, 1]. The following update
rule is used for all v € {ay, B, : 4 = 1,2,..., N}. The parameter v is
referenced for convenience.

Update Rule forv: v < v+,

x(1—w.du—(1—w)-[i) ®)

Learning Rate Update: Ir,(t, + 1) < Ir,(t,) - & )

The CP parameters are determined by sequentially running
the o, and learning rate updates, as follows. First, the update rule
adjusts a,, based on the weighted sum of d,, and d. The weight w
determines the balance between individual discrepancy d,, and the
mean or reference discrepancy d. Second, the learning rate update
decreases the learning rate Ir, over time to stabilize learning and
prevent overshooting.

2.7 Patient assignment

The formulations below aim to minimize the overall risk
associated with assigning individuals to different units, considering
their specific requirements for specialized treatments.

2.7.1 Optimization approach

The decision variables include Xyj»a binary variable indicating
if a person u is assigned to grid j. The inputs consist of (1) Ry,
a binary matrix indicating if person u needs specialized treatment
k; (2) Cj, another binary matrix indicating if grid j belongs to
category k; and (3) Z(ay, Bu» Xu), a CP (or risk) function for person
u based on «,, and B,,. To ensure treatment needs are met, a person
should be assigned to a grid where a treatment need can be met,
though note that a person may need a variety of treatments, and
should eventually be assigned to a grid where they can receive each
necessary treatment. In practice, there may be only one grid j in
which treatment k can be given, or multiple grids may support
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treatment k. Thus, this framework ensures inpatients receive the
necessary treatment while minimizing contagion.

n
min Z Z(ay, Bus Xy)

Objective: (10)
u=1
Subject to:
m K
quj=ZRuk, Yue(1,2,...,n) (11
j=1 k=1
n
Y Xy<c VjeT (12)
u=1
Xyj- Gk = Ry, Yu € {1,...,n}, Vk € {1,...,K},
Vie(l,...,m} (13)
Xuj € {0,1}, VYue({l,2,...,n},Vje{l,2,...,m}
(14)

The risk score, based on CP, is Z(«y, By, Xy,) = Zjﬁl oy (1) +
XujBu M}NEj, where oy (u) measures the decay in the CP of
individual i. If person u needs to go to grid j, X,; = 1, and the risk
associated with grid j is B, ;L]’- x N x Ej, since N x Ej is the predicted
number of people in grid j which has average CP ;L]’-. The objective,
as defined in Expression 10, is to minimize the risk by assigning
individuals to grids in a manner that optimally satisfies their health
requirements. Constraint 11 ensures that each person is assigned
to units that fulfill their treatment needs. Constraint 12 represents
optional consideration to restrict the capacity of each treatment
(non-waiting room) grid to ¢, where T is the set of treatment grids.
Constraint 13 ensures that a person can only be assigned to grids
equipped to provide necessary treatments. Lastly, Constraint 14
enforces binary assignment decisions of a patient to a grid.

2.7.2 Greedy baseline

The mean CP and number of infections recorded under the
optimization framework are compared to a greedy assignment
process, which uniformly assigns patients to grids based on their
treatment needs.

3 Results

We validate the framework through two sets of experiments.
The first set demonstrates the functionality and performance of
each core module in isolation (see Section 3.1.10), while the
second presents an end-to-end evaluation that integrates realistic
epidemiological and mobility parameters (Section 3.2). COVID-19
is used as a representative case study due to its continued relevance,
well-documented contact-driven transmission characteristics, and
the availability of structured data reflecting healthcare-associated
risks. However, being a data-driven optimization approach, the
proposed framework, given relevant data, is designed to be
generalizable to other mobility-driven and contact-mediated HAIs
beyond COVID-19. Table | summarizes the default parameter
values used in the simulation and their application to the synthetic
dataset. The term “true” refers to ground truth values for model
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TABLE 1 Default values of the epidemiological parameters.

Parameter Value

Population size (N) 330 (48, 49)

Number of grids 28

Temporal resolution Daily

Reproduction number, Delta, Omicron (Ry) 3.2,9(50,51)

Contact radius (r) 6 feet (52)
Probability I to R (y) 0.05 (30)
Probability R to S (8) 0.025 (30)
Probability S to I (B) 0.16 = Ry - y (30)
Viral load shedding rate («) 3 (53,54)
Initial proportion of susceptible individuals (Sy) 0.8

Initial proportion of infected individuals (Iy) 0.2

components such as the number of neighbors, contagion potential
(CP), and epidemiological variables. The discrepancy between
these true and inferred values serves as a measure of predictive
performance throughout our experiments.

3.1 Study design

3.1.1 Specialized units and inter-zonal movement

We conceptualize specialized units within a healthcare facility
as distinct zones, which are integral to infection control and patient
management. As depicted in Figure 2 Left, these units include the
patient room (PR), where individual care is delivered; the waiting
room (WR), designated for patients awaiting treatment; the triage
(TR) area, where the patient assessments occur; and the hallway
(HW). Each section within a unit is modeled as a 10ft x 10ft
grid square (38). The dynamic nature of patient and healthcare
worker movement across these units contributes to varying levels
of infection risk. A transition matrix (Figure 2 Right) is used
to define the likelihood of individuals traveling between units.
These probabilities provide a quantitative framework for evaluating
infection risks due to movements.

3.1.2 Three-phase contagion potential
framework

The study is structured into three phases to address hospital-
acquired infections (HAIs). First, we infer CP from approximate
location data, leveraging the knowledge of the grid occupied by
persons at a given time to estimate their infection risks. Second,
we consider heterogeneous infection parameters «; and §; for
individual i. As shown in Figure 3, we define three frequency levels
(in decreasing order), 1, H, and L, such that 1 < H < L.
Mobility occurs at the base frequency 1, CP parameter estimation is
conducted at the intermediate frequency H, and patient assignment
takes place at the lowest frequency L. Third, the optimization
focuses on the grid assignment of patients and healthcare workers,
using CP-based metrics to design optimal placement strategies
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that minimize infection spread while accounting for operational
constraints. Optimized assignments are based on the CP of each
grid. The CP of a grid is the average of the CPs of the individuals.
Thus, the infection risk in a grid is higher when the CP of the grid
is higher.

3.1.3 Unimodal and bimodal infection trends

Classic disease models often consider one wave of infection,
but as new variants arise in a pandemic or new countermeasures
are implemented, multiple waves of infection occur. The bimodal
incidence pattern has been specifically chosen because it more
closely aligns with the contagion dynamics observed among SARS-
CoV-2 positive staff and healthcare workers (39). When two waves
of infection are considered, each wave corresponds to introducing
a new variant. In the first (or only) wave, a variant with Ry = 3.2
is used, and 20% of the population is infected. This corresponds to
the COVID-19 Delta variant. When a new variant is introduced,
with Ry = 9, corresponding to the COVID-19 Omicron variant,
8% — 25% of the population is infected. We perform experiments
with both incidence models: Section 3.1.10, where we show the
working of each module in the framework, is based on an unimodal
incidence, while the complete analysis (in Section 3.2) uses a
bimodal incidence.

3.1.4 Generating an inter-unit transition matrix

We model the movement of individuals within the healthcare
center with a classical gravity mobility model (40) that captures the
complexities of movement better than homogeneous mixing. In the
gravity model, the probability of moving from grid i to grid j is
given by k x %C.lj’ where n; and #; are the number of individuals
in the grids i an]d j» respectively, dj; is the distance between grids
i and j, the constants x = 0.08,v = 1.78 as per (40). The inter-
unit transition matrix is recalculated using the gravity mobility
model since the number of individuals in a given grid evolves. The
estimated values are row-normalized to ensure that each row in
the transition matrix sums to 1. Thus, the resulting matrix is valid
for stochastic modeling, effectively capturing inter-unit movement
among the clinical staff.

We separately study the three aspects of the proposed CP
framework: (1) the expected occupancy and contact among
individuals within a unit (see Methods Section 2.4 and 2.5 for
details); (2) updating CP parameters (see Section 2.6), and (3) the
assignment of patients to units to control HAI (see Section 2.7.1).

3.1.5 Expected unit occupancy

The neighbors of a person are the individuals they come into
contact with. In a crowded unit with high population density, each
occupant will likely have more neighbors and a commensurately
high incidence of hospital-acquired infections (HAIs). Under the
assumption of random mobility across and within units, the
probability of moving from grid i to grid j is given by t;;, where
T =
healthcare facility. Under homogeneous mixing, we measure the

(t;). In this scenario, 330 individuals move about the

number of contacts or neighbors of an individual as the expected
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FIGURE 2

Healthcare units and movement of personnel. (Left) A facility is partitioned into four units, namely, patient room (PR), waiting room (WR), triage (TR),
and hallway (HW). Each unit comprises grids (dotted squares). (Right) The clinical staff can move from one unit to another as per the directed links in

the transition network.
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FIGURE 3
Study design: three modules of the contagion potential (CP) framework varying in frequency of occurrences: 1 (blue), high H (yellow), and low L
(green).
number of people in a circle with a contact radius r = 6 feet.  Left. Even with the added uncertainty surrounding the movement

Over 100 hours, we calculate the average number of neighbors in
a grid and compare it to our estimation of the expected number of
neighbors (as per Methods Section 2.4). Figure 4A shows a strong
cubic correlation (residuals 2.75) between the true and predicted
neighbor counts. The fit line (shown in red) follows a polynomial
of the form y = —0.61x> + 5.41x> — 13.81x + 12.

Using a PageRank algorithm formulation of the transition
matrix T, as per Methods Section 2.5, the PageRank of a grid,
denoted as E;, measures the proportion of the total population in
a given grid i. The expected population of grid i is then computed
as E; x N, where N is the total number of individuals. This
predicted population is compared to the observed population of a
grid in Figure 4B. Together, these results suggest that even when
precise mobility data is unavailable, the CP framework can infer
interaction patterns based on the overall knowledge of the inter-
unit transitions.

3.1.6 Inferring CP from exact and inexact
movement data

Similar to the idea of estimating the occupancy of a healthcare
unit, one can derive realistic estimates of CP under both exact and
inexact knowledge of the number of people as per Methods Section
2.5. When the exact number of people entering grid i is unknown,
T is used to predict the CP of grid i, as demonstrated in Figure 5

Frontiers in Public Health

of individuals between units, we can closely predict the CP of a grid
over time. Mobility is predicted based on the PageRank transition
matrix, and Figure 5 Right shows that the predicted CP still closely
follows the true CP of a grid.

3.1.7 Inferring CP parameters

This aspect of the proposed CP framework focuses on
minimizing the risk of infection for individuals by dynamically
adapting their contagion parameters. Two key parameters are
considered: «, which represents the rate at which an individual
sheds the disease (with lower « indicating quicker shedding),
and B, which quantifies the susceptibility of an individual to
infection (with higher 8 indicating greater likelihood of acquiring
the disease). Since these parameters are typically unknown for
individuals, each u is initially assigned «,, and B, values sampled
1,2,...,N. Over time, these
parameters are iteratively refined using the update rules (described
in Methods Section 2.6), which adjust «, and B, based on the
discrepancies between the true and predicted infectivity levels

from a distribution for all u =

of individual i. Equation 8 describes the update to «, and B,
where the weighting factor between the current player’s discrepancy
and the average discrepancy is w = 0.2. The learning rate is
then adjusted in Equation 9 with adjustment parameter & =
0.1. As the learning progresses, o, and B, converge to values
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FIGURE 4

Prediction of the number of contacts per individual and the occupancy in healthcare units. (A) The mean predicted number of neighbors per
individual (shown as blue dots) in a grid against the true mean. (B) The predicted occupancy (colored blue) and true occupancy (colored red) of a unit
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FIGURE 5

Inferring mean CP across healthcare units over time from exact and inexact movement data: (Left) Exact; (Right) Inexact.

that more accurately represent the true infectivity parameters of
each individual, thereby minimizing the difference between the
predicted and actual infection levels. This adaptive process is
illustrated in Figure 6, which shows the reduction in the average
discrepancy between true and estimated infectivity parameters
across the population.

3.1.8 Efficacy of CP in optimizing patient
allocation

To demonstrate the efficacy of CP in patient allocation,
we conduct an experiment where the optimization formulation
based on the SIRS epidemic model serves as a control, in which
untested individuals are assumed to be uninfected. In contrast,
our proposed CP-based optimization framework accounts for
transmission potential, particularly from asymptomatic individuals
who remain undetected. Figure7 shows that the CP-based
allocation reduces the mean population CP and the number of
infected individuals over time. This improvement arises from
the ability of CP to capture the hidden transmission dynamics
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of untested asymptomatic individuals, thereby highlighting its
effectiveness in mitigating HAIs.

3.1.9 Allocation of patients to units

The last phase of the CP framework involves assigning
patients to units, aiming to minimize their risk of exposure while
ensuring their clinical needs are met. This is achieved through
an optimization framework designed to mitigate infection trends
(See Methods Section 2.7.1, where R is a binary vector indicating
that person u needs specialized treatment k and Cj is a binary
matrix indicating if grid j belongs to treatment category k). In this
experiment, C is defined as a random 28 x 28 permutation matrix
corresponding to the 28 grids, each with a treatment category, and
each individual is assigned to visit between 2 and 14 grids. The
CP-based risk of a person © moving to grid j at time ¢ is calculated as
oty X (e (1) + Bu x 1), where oy, and B, are the contagion parameters
of individual u, j1;(u) represents their contagion potential, and j;
denotes the average CP of grid j, estimating the exposure risk of
grid j. The cumulative risk of the population is minimized while
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ensuring that individuals are assigned to grids capable of meeting
their treatment requirements. The results of this optimization
approach are compared to those obtained from a greedy assignment
baseline strategy (discussed under Section 2.7.2). Figure 8 illustrates
the outcomes of this procedure within an ER system.

The average grid CP is consistently lower for the optimization
than for the greedy assignment, as shown in Figure 8 Left,
indicating that the optimized assignment process effectively
reduces the risk of infection. This is consistent with the result
of Figure 8 Right. The number of infected individuals falls to
equilibrium more quickly when assignments are selected to
minimize CP than with the greedy assignment algorithm.

3.1.10 Contagion potential for varying risk levels
CP provides a robust and adaptable framework for quantifying
individual infection risk in heterogeneous populations. Figure 9
illustrates the dynamic evolution of average CP and infection
counts over time across three risk strata, each consisting of

Average Difference over Time
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0.0
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Time

FIGURE 6
The difference between true and estimated infectivity of a person
diminishes as their infectivity parameters are learned.

10.3389/fpubh.2025.1566854

110 individuals: high-risk, medium-risk, and low-risk. These risk
levels are encoded using distinct values of the susceptibility and
transmissibility parameters («y, By), where high-risk individuals
are assigned «, = 0.8 and B, = 2, medium-risk individuals
0.2 and B, 0.05

= 0.5. As individuals move through different zones

oy 1.25, and low-risk individuals o,
and B,
in the healthcare facility, the learning model (see Section 2.6)
updates the CP parameters in response to observed transitions
and infection data, allowing it to reflect the evolving infection
dynamics adaptively. This stratified analysis shows that the CP
metric effectively differentiates risk levels across population groups:
high-risk and low-risk individuals consistently exhibit the highest
and lowest average CP and infection rates over time, while
the medium-risk individuals fall in between, in alignment with
their parameterization.

3.1.11 Effect of grid capacity

The optimization formulation for inpatient allocation to grids
is designed to balance multiple objectives. Its effectiveness in
minimizing HAI incidence is discussed earlier (see Section 3.1.9).
We carry out an illustrative example to highlight how the allocation
probabilities of patients vary in a small population of N = 50 based
on CP under varying grid capacities, by considering a population
of N = 50 and comparing two scenarios: high capacity (c = 30)
10). As depicted in Figure 10, where the
CP values are binned and averaged over increments of 0.25, when

and low capacity (¢ =
capacity is high, most individuals, regardless of CP, are assigned
to treatment grids with high probability. In contrast, under low
capacity, individuals with high CP are prioritized for assignment,
showing the ability to adaptively allocate limited resources by
emphasizing contagion as a decision factor. This is consistent with
the optimization seeking to isolate high-CP individuals so that their
ability to infect others is limited.

3.2 Complete experiment

This experiment integrates all the modules discussed in
Section 3.1.10 into a comprehensive, end-to-end analysis of the
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FIGURE 7

Patient allocation based on CP and SIRS model: (Left) mean CP; (Right) total infected.
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Effect of optimized assignment on infection spread under one infection wave: comparison of the (Left) mean CP (Right) infected number, under
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Infection risk and outcome based on high, medium, and low patient risk: (Left) mean CP; (Right) total infected.
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Frontiersin Public Health

proposed CP-based HAI control framework, incorporating realistic
epidemiological and mobility trends. Specifically, we model the
occurrence of multiple waves of infection within a healthcare
setting, capturing the dynamic nature of disease spread. Figure 11
follows the same optimization procedure outlined earlier, now
extended to account for a second wave of infection. This second
wave is characterized by a strain with Ry = 9, compared to
the initial wave’s Ry = 3.2, reflecting the potential emergence
of more transmissible variants. Furthermore, to achieve a realistic
representation of patient and healthcare worker movement
patterns, we employ the gravity model for indoor mobility (Refer
to Section 3.1.4).

Figure 3 outlines the procedures involved in the complete
experiment. At each time step, the location of individuals is
updated, as described in the Study Design section (Section 3.1),
which defines three frequency levels: 1, H, and L such that 1 <
H < L. Recall that mobility occurs at the base frequency 1, CP
parameter updates appear at the intermediate frequency H, and
personnel assignments are optimized at the lowest frequency L.
The CP updates are preceded by infectious disease testing, which
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Effect of optimized assignment on infection spread under two infection waves: comparison of the (Left) mean CP (Right) infected number, under
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parameter (a); (Right) CP parameter (8).

Convergence of the CP parameters «; and g; (inferring over time using the proposed learning model) to the true mean parameter values: (Left) CP

Learned Beta over Time

1.2350

1.2325 -
1.2300 -

1.2275
]

Bet:

1.2250

1.2225 4

1.2200 -

12175

60 80 120

Time

provides ground truth for CP learning and updates, as CP
1 is assigned to tested infected individuals. Although personnel
allocation is desirable to control infection levels, these assignments
occur less frequently than CP updates due to logistical constraints.
This process is implemented over a simulated period of 120 h, with
H = 3, L = 8, and location updates occurring three times an hour.
Two waves of infection are studied during this period, consistent
with the COVID-19 pandemic data analyzed in Lindsey et al. (39).
Figure 11 Left, Right show that optimized patient assignment shows
a reduced mean CP and daily incidence than the greedy patient
allocation approach that relies on assignment based on treatment
needs (Section 2.7.2).

Figure 12 Left shows the convergence of the estimated
mean « to the true mean «, and Figure 12 Right shows this
process for . Both parameters follow a similar trajectory as
they are learned simultaneously through the same samples
and procedures. Note that the time required for parameter
convergence is highly dependent on the number of tested infected
individuals. Since the learning model (see Section 2.6) relies on the
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infected individuals, a higher infection prevalence accelerates the
learning process.

Figure 13 Left shows that under the bimodal infection curves
(refer to Section 3.1.3), the average CP remains consistently
lower under the optimization protocol compared to the greedy
algorithm, though the difference is smaller than when optimization
is performed daily. Figure 13 Right depicts that infections decrease
more rapidly under optimization, even when optimization is
applied less frequently. Figure 14 gives the CP and infection
trends for the gravity-model based mobility, showing that a
similar circumstance of infection dying out more rapidly under
optimized assignments.

4 Discussion

We proposed a contagion potential (CP) framework to address
hospital-acquired infections (HAIs) by dynamically assessing
infection risks based on individual characteristics and movement
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Effect of patient assignment on infection spread under the bimodal infection curve: comparing the (Left) mean CP and (Right) infected count under
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behaviors within healthcare facilities. CP employs macro-location
data to provide a real-time infection risk landscape without
necessitating precise tracking. This approach models interactions
between patients and HCWs across key units, such as hallways,
triage areas, and patient rooms, offering a practical and scalable
solution for infection control. The framework further integrates
a continuous learning model to refine CP parameters iteratively
based on collected data, enhancing its capacity to assess risks
accurately at both individual and unit levels. A key contribution
of this work is the integration of CP within an optimization
framework, making it one of the early efforts to allocate patients
to healthcare units while simultaneously addressing objectives
related to contagion mitigation, logistics, and clinical care. Unlike
conventional patient allocation strategies that primarily focus on
capacity constraints or clinical urgency, our approach jointly
optimizes infection control while ensuring that logistical and
clinical requirements are met. By embedding CP into the decision-
making process, the optimization framework provides a dynamic
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and data-driven mechanism to guide patient assignments in a
manner that reduces contagion risk while maintaining operational
efficiency. This multi-faceted approach not only enhances the
effectiveness of HAI mitigation strategies but also underscores the
potential of computational frameworks in improving healthcare
resource management.

Our analysis confirms the efficacy of the CP framework in
approximating contact information to learn contagion dynamics.
By avoiding the need for exact location data, the model leverages
coarse-grained macro-locations to assess risks. An optimization
framework for patient allocation based on CP is demonstrably more
effective in minimizing contagion compared to the compartmental
epidemic models, which assign a binary infection status to tested-
positive individuals. The framework’s adaptability, driven by its
continuous learning capability, allows it to respond dynamically
to shifting infection patterns and operational constraints,
positioning it as a future tool for patient allocation while
containing HAIs.
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To model infections arising from endogenous flora and
invasive medical procedures, the current CP framework could be
expanded beyond its contact-based paradigm (41). This begins
with interpreting CP as a composite risk score that integrates both
interpersonal transmission risk and endogenous susceptibility.
While the existing model evaluates infection risk based on
movement patterns and interpersonal contact, endogenous
infections depend more heavily on internal physiological
conditions, prior colonization, immune status, and exposure to
procedures such as catheter insertion or surgery (42). Incorporating
these factors requires augmenting the CP calculation with patient-
specific clinical features drawn from electronic health records,
as well as procedural exposure histories. This integration could
result in a hybrid contagion metric that more accurately reflects
multimodal infection risk in healthcare settings stemming
from myriad multidrug-resistant organisms. A second critical
adaptation involves the temporal modeling of procedure-related
risk. Many endogenous infections follow time-sensitive trajectories
post-exposure—e.g., surgical site infections peak within days after
surgery, and catheter-associated infections increase with dwell
time (43). The framework must further include explicit timepoints
for high-risk procedures and dynamically adjust the CP score over
time as procedural windows open or close. Lastly, the existing
optimization framework (as discussed in Section 2.7.1), which
currently assigns patients to units by minimizing contagion while
satisfying logistical constraints, must be reformulated as a joint
optimization problem. This new formulation must simultaneously
minimize risks from both contact-based transmission and
endogenous sources, potentially involving trade-offs between
spatial cohorting and procedural scheduling. By addressing
these three adaptations, the CP framework can evolve into
a tool for infection prevention across diverse etiologies and
healthcare scenarios.

The framework also has implications for patient privacy and
the secure use of clinical data. Specifically, the information shared
within the CP-based optimization framework consists of patient
location data and clinical needs for allocation to the appropriate
grid. By focusing on macro-location tracking rather than precise
geolocation, our approach lends itself to privacy-preserving
features, such as group-based anonymization techniques like k-
anonymity and l-diversity (44). Therefore, a detailed investigation
of privacy-preserving safeguards is part of our ongoing research
efforts. However, emerging privacy-preserving technologies, such
as multiparty homomorphic encryption (45) and differential
privacy (46), offer promising avenues for future exploration. For
instance, differential privacy could be employed to aggregate CP at
the grid level without exposing individual health indicators, while
federated learning could enable collaborative data modeling across
institutions without sharing raw patient data (47).
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