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How air pollution fuels respiratory 
infections in children: current 
insights
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Background: Air pollution is a significant global health concern, particularly for 
younger children who are especially susceptible to its adverse effects. Pollutants 
such as particulate matter (PM), nitrogen oxides (NO and NO₂), sulfur dioxide 
(SO2), ozone (O3), and carbon monoxide (CO) are associated with increased risks 
of upper respiratory tract infections (URTI) and lower respiratory tract infections 
(LRTI). While this association is well-documented, there are critical gaps in 
understanding the magnitude of these risks, the roles of specific pollutants, and 
the influence of age, sex, and exposure duration.

Methods: To confirm the relationship between air pollution and respiratory 
tract infections in children and to identify areas for further research on reducing 
pollution-related respiratory damage, a literature review was conducted using 
the MEDLINE/PubMed database for studies published from January 2000 to 
December 2024. Eligible studies included randomized controlled trials, cohort 
studies, and meta-analyses focusing on the relationship between air pollution 
and respiratory infections in children. Studies were grouped by pollutant type, 
exposure timing, and infection type.

Results: The literature analysis confirmed that pollution significantly increases 
the risk of URTI and LRTI in children, with infants and young children being the 
most vulnerable. Potential mechanisms for the development of respiratory tract 
pollution-related diseases include the promotion of oxidative stress, induction 
of inflammatory responses, deregulation of the immune system, and genetic 
alterations. Prenatal exposure significantly alters respiratory tract development, 
increasing the risk of LRTI and acute otitis media (AOM) early in life. Both short-
term and long-term postnatal exposures can cause severe and recurrent LRTIs, 
reducing quality of life and leading to frequent hospitalizations and early death. 
However, the available data do not allow for precise definition of the magnitude 
of the risk, the individual and combined roles of specific pollutants, and the 
influence of factors such as age, sex, duration, and site of exposure on the 
development and severity of respiratory infections. Inconsistent findings on 
pollutant combinations and specific diseases like otitis media highlight the need 
for further research.

Conclusion: Air pollution is a major risk factor for respiratory infections in 
children, both prenatal and postnatal exposure can have significant negative 
impact. However, present knowledge is inadequate to develop effective 
preventive and therapeutic measures. Further studies are needed to minimize 
these cultural limits. In particular, it is necessary to delve deeper into how the 
various pollutants circulate, how they interact with each other, and how they are 
influenced by climate change and other environmental drivers. Results of these 
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key researches can be translate into clinical and public health practice capable 
to help protect and improve children’s environmental health.

KEYWORDS

air pollution, air quality improvement, respiratory infections, particulate matter, 
children’s health, prenatal exposure

1 Background

Air pollution, as defined by the World Health Organization 
(WHO), refers to the alteration of the natural characteristics of the 
atmosphere by any chemical, physical, or biological agent 
contaminating the indoor or outdoor environment. It is recognized as 
one of the leading causes of morbidity and mortality worldwide (1). 
The health impacts of air pollution are profound, contributing to an 
increased risk of cardiovascular and respiratory diseases, lung cancer, 
and strokes. In 2021, air pollution was responsible for 8.1 million 
deaths globally, a figure that is projected to rise given the inadequate 
mitigation of climate change, which exacerbates the issue (2). Of these 
pollution-related deaths, 1.7 million occurred in children under the 
age of 5, underscoring their heightened vulnerability to the adverse 
health effects of ambient air pollution (3).

In children, the clinical impact of air pollution differs from that in 
adults. While cardiovascular manifestations predominate in adults 
(accounting for over 60% of air pollution-related deaths) children are 
more prone to respiratory conditions (4). However, exposure to 
pollutants in children has also been associated with severe 
neuropsychiatric outcomes (5). Several biological and behavioral 
factors contribute to this increased susceptibility. The developing 
respiratory system in children is highly sensitive to environmental 
insults, with air pollution interfering with both structural and 
functional growth as early as the fetal stage (6), potentially causing 
persistent and irreversible bronchial and pulmonary damage (7). 
Additionally, children breathe more rapidly than adults, inhaling 
greater volumes of air relative to their body size (8), and they often 
engage in outdoor activities during periods of poor air quality (9). 
Compounding these factors is their immature immune system, which 
makes them more susceptible to respiratory infections, further 
increasing their vulnerability to air pollution (10).

Reduced lung function, the development of asthma, and an 
elevated risk of respiratory infections are among the most common 
respiratory conditions associated with air pollution in children. 
Prospective studies have demonstrated a strong link between ambient 
air pollution and significant lung function deficits, with improvements 
in air quality shown to partially reverse these effects (11–17). 
Regarding asthma, it has long been established that short-term 
exposure to air pollution exacerbates symptoms in children already 
diagnosed with the condition (18). More recent studies have provided 
compelling evidence that long-term exposure to pollutants, 
particularly particulate matter (PM) and nitrogen oxides (NO and 
NO₂), may contribute to asthma development in previously healthy 
children (19, 20).

However, the relationship between air pollution and the risk of 
respiratory infections remains less well-defined. Despite the Global 
Burden of Disease Study has included upper respiratory infections 
(URTIs) and lower respiratory tract infections (LRTIs) among diseases 
attributable to ambient air pollution (21), the association is still 

debated, with limited definitive data on the roles of specific pollutants 
or their combinations. Furthermore, key variables such as duration of 
exposure, sex, and age remain inadequately explored. These gaps 
hinder the development of evidence-based policies and interventions 
to improve child health outcomes. Additionally, the vicious cycle of 
air pollution and infections—where infections amplify the negative 
effects of pollution and pollution exacerbates infection risk—remains 
unbroken. The primary aim of this study is to synthesize current 
knowledge on the potential link between air pollution and respiratory 
infections in children, to identify areas of controversy and contested 
claims, and to highlight any gaps that may exist in research to date. 
Identifying unresolved questions in this area may pave the way for 
more effective strategies to mitigate these risks and enhance 
child health.

2 Methods

To achieve the study’s objective, a comprehensive literature review 
was conducted using the MEDLINE/PubMed database, covering 
studies published between January 2000 and December 2024. The 
review prioritized high-quality evidence, including randomized 
placebo-controlled trials, controlled clinical trials, double-blind 
randomized controlled studies, systematic reviews, and meta-analyses. 
Articles were included if they were published in English, involved 
subjects of pediatric age, and examined the relationship between air 
pollution and respiratory infections. Exclusion criteria encompassed 
non-English language publications, studies with insufficient or 
incomplete data, non-peer-reviewed articles, duplicates, unavailable 
full texts, or abstract-only papers.

The search strategy used combinations of keywords such as “Air 
Pollution” OR “Particulate matter” OR “Nitric Oxides” OR Carbon 
Oxide” OR!Air Quality Improvement” AND “Respiratory Infection” 
OR “Upper respiratory tract infections” OR “Otitis Media” OR “Lower 
respiratory tract infections” OR “Pneumonia” AND “Child” OR 
“Adolescent.”

All studies identified through the database search were screened 
for relevance by two independent reviewers, VF and NP, based on 
their titles and abstracts. For studies that appeared to meet the 
inclusion criteria, or when relevance could not be  definitively 
determined from the title or abstract alone, the full text was obtained 
for further assessment. The final decision regarding inclusion was 
made after a detailed evaluation of the full text against the predefined 
criteria. Any disagreements between VF and NP were resolved 
through consultation with a third independent reviewer, SE.

The data extracted from the included studies were grouped and 
analyzed according to their relevance in defining the impact of various 
air pollutants on respiratory infections. Specifically, the analysis 
focused on upper respiratory tract infections, including otitis media, 
and lower respiratory tract infections, such as pneumonia. The 
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findings were synthesized to provide a comprehensive overview of the 
relationships between different types of air pollutants and the risk of 
respiratory infections in children.

3 Results

3.1 Air pollutants

Table 1 shows the key air pollutants and their sources. Particulate 
matter (PM), nitrogen oxides (NO and NO₂), ground-level ozone 
(O₃), sulfur dioxide (SO₂), and carbon monoxide (CO) are among the 
air pollutants with the most significant adverse health impacts (21). 
PM is a complex mixture of solid particles and liquid droplets, 
categorized based on aerodynamic equivalent diameter into coarse 
particles (PM₁₀), fine particles (PM₂.₅), and ultrafine particles (UFP). 
PM₁₀ includes particles with diameters of 10 μm or smaller, PM₂.₅ 
includes particles 2.5 μm or smaller, while UFP consists of nanoscale 
particles. Table 1 lists major air pollutants and their sources. Significant 
pollutants with severe health effects include PM, NO and NO₂, 
ground-level ozone (O₃), sulfur dioxide (SO₂), and carbon monoxide 
(CO) (22). PM consists of solid and liquid particles, categorized by 
size: coarse (PM₁₀, ≤ 10 μm), fine (PM₂.₅, ≤ 2.5 μm), and ultrafine 
particles (UFPs, <0.1 μm or 100 nm). UFPs are also called 
nanoparticles (NPs), nanoaerosols (NAs), and PM0.1. NPs refer to 
engineering materials released into the environment, “UFP” is 
common in toxicological studies, and “PM0.1” is used in atmospheric 
pollution research (23, 24).

PM originates from various sources, including fuel combustion, 
industrial activities, wildfires, wood burning, gravel pits, agricultural 
operations, and dusty roads (primary PM) (25). Common components 

of PM include sodium chloride, elemental carbon, trace metals, and 
minerals. Additionally, PM can form from chemical reactions 
involving gasses such as SO₂, NO, and NO₂, reacting with organic 
compounds from both natural and human-made sources (secondary 
PM) (26).

Inhalation of PM varies depending on particle size. PM₁₀ primarily 
impacts the upper airways due to its larger diameter, whereas smaller 
particles, such as PM₂.₅, can penetrate deeper into the lungs and reach 
the alveoli (22, 27). Ultrafine particles can descend even further, 
increasing the potential for respiratory and systemic damage. Moreover, 
the composition of PM also influences its toxicity. Ultrafine particles 
containing transition metals and organic species, despite contributing 
minimally to the total mass of PM, exhibit high intrinsic toxicity. These 
findings prompted the WHO in 2021 to recommend lowering the annual 
air quality guideline level for PM₂.₅ from 10 μg/m3 to 5 μg/m3 (27).

Gaseous pollutants primarily result from combustion processes, 
particularly fossil fuel combustion (28). For example, NO reacts with 
O₃ to produce NO₂, while ground-level O₃ forms through interactions 
between NO₂ and volatile organic compounds (VOCs) emitted from 
human activities. VOCs include substances such as ammonia, amines, 
aldehydes, hydrogen sulfide, and volatile hydrocarbons (28).

Although criteria for defining air pollution vary between countries 
depending on local characteristics, target values based on average 
exposure indicators for each pollutant are commonly established, 
particularly in industrialized regions. Additionally, several institutions 
provide guidelines for ambient air pollution levels that are considered 
tolerable. These guidelines serve as reference tools for air quality 
management and policy planning (29, 30).

Air quality is often assessed through the Air Quality Index (AQI), 
a standardized scale derived from measurements of air concentrations 
of major pollutants. The AQI ranges from 0 to 500, with higher values 
indicating worse air quality. An AQI below 50 is considered safe, 
whereas values above 100 are deemed unhealthy, particularly for 
sensitive populations (31).

3.2 Disease mechanisms

The impact of air pollution on respiratory tract damage and the 
risk of respiratory infections is influenced by several factors, including 
site of deposition, penetration capacity, bioavailability, and the long 
residence time of pollutants in the air (Table  2). While each air 
pollutant may exhibit specific toxic properties, most damage leading 
to increased susceptibility to respiratory infections stems from shared 
mechanisms. These include the promotion of oxidative stress, 
induction of inflammatory responses, deregulation of the immune 
system, and genetic alterations (32, 33). However, much of the available 
data originates from in vitro studies, and it remains unclear whether 
the concentrations of pollutants causing tissue damage in experimental 
settings are representative of real-world exposures in humans (34).

3.2.1 Oxidative stress
Oxidative stress results from an excessive production of reactive 

oxygen species (ROS), including oxygen radicals, hydroxyl radicals, 
and highly reactive forms of oxygen such as hydrogen peroxide 
(H₂O₂) and singlet oxygen (O₂) (22). Under normal physiological 
conditions, ROS play essential roles in modulating cellular processes, 
such as growth factor signaling, hypoxic responses, inflammation, and 

TABLE 1 Summary of key air pollutants and their sources.

Air pollutant Description Primary sources

PM10 Particles ≤ 10 μm in 

diameter; primarily affect 

upper airways

Construction, dust, 

industrial activities

PM2.5 Particles ≤ 2.5 μm in 

diameter; can penetrate 

alveoli

Vehicle emissions, 

wildfires, industrial 

processes

UFP Ultrafine particles; nanoscale 

size, highly toxic

Combustion engines, 

industrial emissions

NO Reactive gas formed during 

combustion; precursor to 

NO2

Combustion engines, 

industrial emissions

NO2 Nitrogen dioxide; formed 

from NO reaction with O3

Combustion processes, 

vehicle emissions

O3 Ozone; secondary pollutant 

formed from VOC and NO2 

reactions

Industrial emissions, 

vehicle exhaust, VOC 

reactions

SO2 Sulfur dioxide; primarily 

from fossil fuel combustion

Coal and oil combustion, 

industrial emissions

CO Carbon monoxide; formed by 

incomplete combustion of 

fuels

Incomplete combustion 

of fossil fuels, wood 

burning
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immune regulation (35). These beneficial effects occur only when ROS 
levels are tightly controlled. Excessive ROS production can lead to the 
oxidation of DNA, proteins, and lipids, resulting in genomic instability, 
protein dysfunction, and cellular damage or death (36, 37). Lipid 
peroxidation further exacerbates cell dysfunction (38).

To counteract these effects, cells maintain antioxidant networks 
composed of enzymes like superoxide dismutase (SOD), catalase, and 
glutathione peroxidase (GPx), along with low-molecular-weight 
scavengers such as glutathione (GSH), uric acid, and coenzyme Q 
(39). These antioxidants ensure ROS levels remain in balance, 
preserving their physiological benefits (40). Unfortunately, many air 
pollutants, including ultrafine particles (UFP), PM₂.₅, ozone (O₃), 
nitrogen oxides (NO and NO₂), and transition metals, are potent 
oxidants or stimulate ROS production (41). When pollutant levels rise, 
ROS production exceeds the neutralizing capacity of antioxidants, 
leading to oxidative stress and subsequent tissue damage (42).

In the respiratory tract, oxidative stress from air pollution causes 
mucus hypersecretion, damage to lung macrophages and bronchial 
epithelial cells, inactivation of antiproteases, bronchial wall edema, 
and bronchoconstriction (43–46).

3.2.2 Inflammatory response, immune system 
deregulation, and genetic changes

Oxidative stress and direct exposure to air pollutants trigger 
severe inflammation and dysregulation of antimicrobial and antiviral 
immunity in the respiratory tract, increasing the risk of infections 
(47). Studies have primarily focused on PM and NO₂. A systematic 
review of 55 studies found that in vitro exposure of bronchial epithelial 
cells and macrophages to PM₂.₅ (50–100 μg/mL for 9–24 h) 
significantly increased the production of pro-inflammatory cytokines, 
including IL-1α, IL-1β, IL-6, IL-8, and GM-CSF (48). This promotes 
lung injury while reducing interferon-β (IFN-β) secretion, a key 
antiviral cytokine (49). PM also activates the NLRP3 inflammasome 
in epithelial cells, producing bioactive IL-1β and amplifying 
inflammation (47). Furthermore, PM reduces alveolar macrophage 
motility, impairs mucociliary clearance, inhibits bacterial phagocytosis 
(50, 51), and promotes airway pathogen growth when containing 
iron (52).

PM exposure also enhances dendritic cell maturation, leading to 
increased Th2/Th17 cytokine levels and decreased Th1 cytokine 
expression. This shift induces inflammation and promotes infiltration 
of inflammatory cells into respiratory tissues (53). Some of these 
effects may be mediated by PM-induced epigenetic modifications, 
such as DNA methylation, histone modifications, and microRNA 
regulation. For instance, PM₂.₅ exposure has been associated with 

methylation of key inflammation-regulating genes, including IFN-γ, 
IL-4, IL-10, and Foxp3, resulting in lower Treg cell levels (54–56).

NO₂ has similar effects on inflammation and immunity. Exposure 
to NO₂ at levels common in areas with heavy traffic or in households 
with gas stoves increases the release of GM-CSF, IL-8, and TNF-α 
from airway epithelial cells (57). Repeated exposure also induces 
Th2-mediated cytokine production, including IL-5, IL-10, and IL-13, 
suggesting a pro-allergic effect (58). Additionally, NO₂ increases 
ICAM-1 expression in epithelial cells, a major receptor for 
rhinoviruses and respiratory syncytial viruses, explaining its role as a 
risk factor for recurrent respiratory infections (58). NO₂ exposure 
during pregnancy has also been linked to DNA methylation of 
mitochondria-related genes in offspring and altered expression of 
antioxidant defense genes (59).

Although less extensively studied, other gaseous pollutants like O₃ 
and SO₂ exhibit similar inflammatory and immune-modulating 
effects. Xu et  al. reported that a 10 μg/m3 increase in short-term 
exposure to O₃ and SO₂ resulted in significant increases of 1.05% (95% 
confidence interval [CI] 0.09–2.02) and 10.44% (95% CI 4.20–17.05), 
respectively, in C-reactive protein levels, a major inflammatory 
biomarker (60).

3.3 Clinical evidence of the impact of air 
pollutants on the risk of respiratory 
infections

The relationship between air pollution and the susceptibility of 
children to respiratory infections is well-documented through 
numerous studies. Increased incidences of both upper respiratory 
tract infections (URTIs) and lower respiratory tract infections (LRTIs) 
have been observed across all pediatric age groups, with infants, 
toddlers, and preschool children showing the highest vulnerability. 
This association is evident following both short- and long-term 
exposure to air pollution. Notably, prenatal exposure to pollutants has 
also been linked to increased respiratory infection rates after birth 
(61–65). The following sections summarize key findings that highlight 
the effects of air pollution on respiratory health.

3.3.1 Prenatal exposure
Air pollutants, particularly PM, can cross the placenta and 

enter the fetal circulatory system, with detectable amounts found 
in fetal tissues as early as the first and second trimesters of 
pregnancy (66, 67). These pollutants can disrupt normal lung 
development, increasing susceptibility to infections through 

TABLE 2 Evidence linking air pollutants to respiratory infections.

Pollutant Main 
references

Respiratory outcome Key findings

PM2.5 (70, 71) Increased risk of LRTI, impaired lung development Prenatal exposure linked to LRTI risk (RR = 1.34, 95% CI 1.09–1.66)

PM10 (85) URTI and LRTI in children, worsened asthma symptoms Short-term exposure increases risk of URTI by 10%

NO2 (87–89) Strongly associated with URTI, inflammation, immune 

modulation

NO2 exposure strongly correlated with pediatric URTI

O3 (89) Increased inflammatory biomarkers, exacerbates URTI 10 μg/m3 increase associated with 1.05% rise in inflammation markers

SO2 (60, 86, 90) Linked to pneumonia risk, inflammatory pathways 

activation

10 μg/m3 exposure increases pneumonia hospitalization by 10.44%
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mechanisms such as oxidative stress, impaired placental function, 
and epigenetic modifications (68). Given that lung organogenesis 
begins shortly after conception and continues throughout 
pregnancy and postnatal life (69), early exposure can lead to 
significant structural and functional alterations, predisposing the 
lungs to infections.

Evidence suggests that earlier exposure during pregnancy 
correlates with more severe lung damage. For instance, the effects of 
prenatal PM₁₀ exposure are more pronounced in preterm infants 
compared to full-term newborns, indicating that underdeveloped 
lungs are particularly vulnerable (70). Additionally, transient 
tachypnea and respiratory distress syndrome are more prevalent in 
infants with prenatal exposure to pollutants such as O₃, CO, PM₂.₅, 
and PM₁₀ (71). Long-term studies reveal that lung damage caused by 
prenatal exposure persists, with children showing impaired lung 
function up to 9 years of age (72–74).

The link between prenatal exposure and infection susceptibility 
has also been highlighted. A cohort study involving infants 
hospitalized for respiratory problems found that intrauterine exposure 
to high PM₂.₅ levels (>24 μg/m3) during the first and second trimesters 
increased the risk of LRTI (1st trimester, relative risk [RR] 1.31, 95% 
CI 1.08–1.60; 2nd trimester, RR = 1.34, CI 95% 1.09–1.66) (75). A 
separate study reported that maternal exposure to industrial pollutants 
such as PM₁₀ and SO₂ significantly raised the risk of pneumonia in 
their offspring (odds ratio [OR] 1.83, 95% CI 1.59–2.11 for PM₁₀ and 
OR 3.43, 95% CI 2.83–4.17 for SO₂) (76).

PM₂.₅ exposure during pregnancy has been specifically linked to 
increased LRTI risk in children during their first year of life, with 
higher third-trimester exposure showing a significant association 
(RR = 1.06, 95% CI 1.00–1.13) (77). Furthermore, prenatal exposure 
to air pollutants such as PM₂.₅, SO₂, and NO₂ has been associated with 
an increased risk of acute otitis media (AOM) in childhood, with ORs 
of 1.43 (95% CI 1.19–1.71), 1.18 (95% CI 1.01–1.37), and 1.18 (95% 
CI 1.00–1.39), respectively (78).

3.3.2 Short-term exposure in infants and children
The link between transient exposure to air pollution and the 

development of URTIs and LRTIs has been studied extensively 
worldwide. Most studies show that even brief exposure to pollutants 
significantly increases the risk of respiratory infections (79–84).

3.3.2.1 Upper respiratory tract infections
A Polish study involving 1,475 children aged 3–12 years found 

that higher PM₂.₅ and PM₁₀ concentrations over a 12-week period 
were associated with a 10% increase in URTI incidence in areas with 
the highest pollution levels compared to those with the lowest (85). 
Similarly, a Chinese study on daily air pollution and outpatient visits 
for URTI in children aged 0–14 years reported a positive association 
between pollutant levels and infection risk. For a 10 μg/m3 increase in 
PM₂.₅, PM₁₀, SO₂, NO₂, and CO concentrations, the excess risk (ER) 
of URTI was 0.15% (95% CI 0.07–0.23), 0.38% (95% CI 0.17–0.60), 
2.92% (95% CI 1.88–3.97), 4.47% (95% CI 3.69–5.25), and 0.05% (95% 
CI 0.02–0.08), respectively (86). NO₂ appeared to have the strongest 
effect, as confirmed by previous studies (87, 88).

3.3.2.2 Lower respiratory tract infections
A meta-analysis of 17 studies demonstrated that short-term 

exposure to PM₂.₅, PM₁₀, SO₂, O₃, and NO₂ increased the risk of 

pneumonia, with ER per 10 μg/m3 increase in PM₂.₅ and PM₁₀ being 
1.8% (95% CI 0.5–3.1) and 1.5% (95% CI 0.6–2.4), respectively (89). 
In a U.S. study, each 10 μg/m3 increase in PM₂.₅ was associated with a 
15–32% rise in healthcare encounters for LRTI, with the greatest effect 
seen after three weeks of exposure (90).

A Korean study of 713,588 children hospitalized for LRTI found 
that a 10 μg/m3 increase in the 7-day moving average of PM₂.₅ 
concentrations increased hospital admissions by 1.20% (95% CI 0.71–
1.71) in children aged 0–5 years (84). Seasonal variations were noted, 
with stronger effects during the warm season.

3.3.3 Long-term exposure to air pollution
Long-term exposure to air pollution is strongly linked to 

increased respiratory infections, as evidenced by higher child 
mortality rates due to LRTI in regions with poor air quality. The 
2019 Global Burden of Disease (GBD) Study reported 691,373 
deaths in children under five attributable to PM exposure, with the 
vast majority occurring in low- and middle-income countries (91). 
Reducing household air pollution has been shown to lower 
pneumonia incidence significantly, emphasizing the benefits of 
long-term air quality improvements (92).

The ESCAPE project, involving 10 European birth cohorts, 
found that long-term exposure to PM₁₀ and NO₂ increased 
pneumonia risk in children under 2 years, with ORs of 1.76 (95% 
CI 1.00–3.09) and 1.30 (95% CI 1.02–1.65) per 10 μg/m3 increase, 
respectively (93). Additionally, PM₂.₅ exposure during early 
childhood was linked to AOM risk, with the highest impact seen 
in the first year of life (94).

Further evidence comes from a study by Hertz-Picciotto et al., 
which reported a 30% increased risk of bronchitis in children under 
two for every 25 μg/m3 increase in PM₂.₅ exposure over a 30-day 
average (RR 1.30, 95% CI 1.08–1.58) (64). Similarly, Lanari et  al. 
confirmed the association between PM₂.₅ and hospitalization for RSV 
bronchiolitis in children, particularly those living near highways 
(95, 96).

4 Discussion

The available evidence clearly demonstrates that air pollution 
poses a significant threat to children’s respiratory health, with a well-
established link to an increased risk of both URTIs and LRTIs. 
However, despite the undeniable association between air pollution and 
respiratory infections, several critical aspects remain unresolved. 
These include the precise magnitude of the risk, the individual and 
combined roles of specific pollutants, and the influence of factors such 
as age, sex, duration, and site of exposure on the development and 
severity of respiratory infections.

A major challenge in addressing these questions is the significant 
heterogeneity across studies. Variability in study populations, 
methodologies for defining and measuring pollution, types and 
combinations of pollutants examined, exposure durations, outcome 
assessments, and analytical approaches have led to conflicting results. 
Furthermore, many studies suffer from methodological limitations, 
such as inadequate control for confounding factors and reliance on 
indirect measures of exposure. Additionally, the majority of research 
has been conducted in high-income or upper-middle-income 
countries, where pollution levels and population characteristics differ 
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from those in low-income countries, limiting the generalizability of 
the findings.

Prenatal exposure to air pollution and its association with subsequent 
LRTI risk illustrates these challenges. A recent systematic review by 
Pepper et al. (97), which analyzed 16 publications covering 12 research 
studies, highlights the difficulties in drawing reliable conclusions. While 
the review suggested a potential positive association between prenatal 
PM₂.₅ exposure and increased LRTI risk, the overall evidence was 
inconclusive. The small number of studies, high risk of bias in exposure 
and outcome assessments, and lack of data from low-income settings 
underscore the need for further research in this area.

Similar issues arise in studies of postnatal exposure to air 
pollution. As highlighted in this review, the true impact of 
individual air pollutants and their combinations remains 
inadequately defined. Most studies evaluate pollutants in isolation, 
overlooking the potential synergistic effects of multiple pollutants. 
For example, the study by Lu et al. demonstrates this limitation; 
while all common pollutants appeared to increase URTI risk when 
assessed individually, only NO₂ remained significantly associated 
when full-pollutant models were applied. This finding underscores 
the complexity of interactions between pollutants and the need for 
more comprehensive analyses.

The impact of air pollution on specific respiratory diseases also 
requires further clarification. While the association between air 
pollution and pneumonia appears robust, its role in promoting 
conditions such AOM and bronchiolitis is less clear, with studies 
producing conflicting results. Additionally, the mechanisms by which 
individual pollutants exert their harmful effects remain incompletely 
understood. For instance, PM appears to affect respiratory tissues in 
ways that go beyond its mass, with evidence suggesting that the 
chemical composition of PM may play a critical role in tissue damage. 
Unfortunately, studies investigating PM composition and its impact 
on health are scarce, highlighting another important gap in the 
current knowledge.

5 Conclusion

Air pollution remains a major and persistent risk factor for 
respiratory infections in children, contributing to a significant burden 
of disease and mortality. Both prenatal and postnatal exposure to 
pollutants such as PM, nitrogen oxides (NO and NO₂), SO₂, O₃, and 
CO have been linked to increased susceptibility to respiratory 
infections, impairing lung development and compromising immune 
defenses (98–100). Despite extensive evidence supporting these 
associations, substantial knowledge gaps remain, limiting the 
development of targeted and effective public health interventions.

Future research is urgently needed to elucidate the specific 
mechanisms through which air pollution exacerbates respiratory 
infections (Table  3). Understanding the cellular and molecular 
pathways by which pollutants induce oxidative stress, inflammation, 
immune dysregulation, and epigenetic modifications in pediatric 
populations is crucial. Investigating the individual and combined 
effects of various pollutants, including emerging contaminants such 
as UFP and VOCs, will help clarify their synergistic or antagonistic 
interactions. Long-term cohort studies in diverse geographical and 
socio-economic settings are necessary to better assess chronic 

exposure risks, regional variations in pollution levels, and health 
disparities among different populations.

Differentiating the impact of air pollution exposure at various 
stages of lung development, from in utero to early childhood, will 
identify critical windows of susceptibility and potential interventions. 
Additionally, examining how climate change influences pollutant 
dispersion, seasonal variations, and their interactions with respiratory 
infections, particularly in vulnerable pediatric populations, will 
provide a more comprehensive understanding of the issue. Assessing 
the effectiveness of public health interventions, including air quality 
regulations, indoor air purification, behavioral modifications, and 
novel pharmacological or nutritional strategies, is essential for 
mitigating pollution-related damage.

While further research is essential, existing mitigation 
strategies should be reinforced to provide immediate protection. 
Stricter air quality standards, enhanced pollution monitoring, 
promotion of clean energy sources, and community-based 
interventions—such as reducing indoor exposure to biomass fuel 
combustion—are critical steps in reducing the burden of air 
pollution on children’s respiratory health. Additionally, integrating 
environmental health considerations into pediatric healthcare 
policies can improve early diagnosis and management of pollution-
related respiratory conditions.

Addressing these knowledge gaps and implementing evidence-
based policies will be crucial in developing more targeted, effective, 
and sustainable approaches to protecting children from the harmful 
effects of air pollution. By fostering interdisciplinary collaboration 
among environmental scientists, healthcare providers, and 
policymakers, we can advance our understanding of air pollution’s 
health impact and pave the way for innovative solutions that enhance 
children’s well-being worldwide.
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