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Background: With the rapid advancements in science and technology, artificial 
intelligence (AI) has become increasingly integral to various medical applications, 
including medical devices and assistive healthcare tools. Extensive research 
highlights the significant potential of AI in the development of Internet of Things 
(IoT)-enabled medical devices, particularly in the field of cardiac sensing.

Methods: This study explores and synthesizes current advancements and future 
directions of AI-driven IoT applications in cardiac sensing, highlighting their 
significance. Utilizing a bibliometric approach, we  visualize key focus areas, 
emerging trends, and the evolutionary trajectory of this interdisciplinary field.

Results: As of December 2024, relevant literature at the intersection of IoT, 
cardiac sensors, and AI was systematically retrieved from the SCIE and ESCI 
indices. Using CiteSpace, we conducted a comprehensive visualization analysis 
of countries/regions, academic publications, organizations, authors, citations, 
and key terminologies. A total of 2,128 papers were included in the analysis.

Conclusion: From our perspective, current advancements in AI-powered IoT 
cardiac sensors primarily focus on optimizing AI algorithms, such as deep 
learning techniques, and enhancing the functionality of smart wearable 
devices for precision medicine. Looking ahead, we anticipate that this field will 
increasingly prioritize data privacy protection, particularly in the era of large 
language models, to address emerging challenges and ensure sustainable 
growth. In summary, we need to continue harnessing the power of AI-powered 
IoT for cardiac sensing as part of public health strategies to enable early detection 
of heart diseases.
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1 Introduction

Cardiovascular diseases (CVDs) remain the foremost cause of 
mortality worldwide, accounting for an estimated 17.9 million deaths 
in 2019, or 32% of all global fatalities (1). According to the Global 
Burden of Disease Study 2019, ischemic heart disease and stroke 
together contributed the largest share of disability-adjusted life years 
(DALYs) among over 369 conditions analyzed across 204 countries 
and territories (2). These figures underscore the critical need for early 
detection and continuous monitoring strategies to reduce both acute 
events and long-term complications.

Traditional cardiac monitoring modalities—such as standard 
12-lead electrocardiography (ECG) and 24-h Holter recording—are 
well established in clinical practice but present significant drawbacks. 
Conventional ECG systems typically involve bulky hardware and 
multiple wired electrodes, which can cause discomfort and limit 
patient mobility (3). Moreover, assessments are often episodic rather 
than continuous, potentially missing transient arrhythmias or subtle 
physiological changes; efforts to develop wireless systems have led to 
platforms that reduce cables but still face challenges in ensuring signal 
fidelity and patient compliance (4).

Artificial intelligence (AI) refers to the simulation of human cognitive 
functions by machines, particularly computer systems capable of 
perceiving their environment, learning from data, and making decisions 
to perform tasks that traditionally require human intelligence (5). The 
Internet of Things (IoT) is a worldwide network of uniquely addressable 
physical objects—such as sensors, actuators, and embedded systems—
that interact and exchange data over standard communication protocols 
(6). The convergence of these two domains gives rise to the Artificial 
Intelligence of Things (AIoT), wherein AI algorithms are embedded 
within IoT infrastructures to enable on-device data analytics, real-time 
decision-making, and adaptive system behaviors across cloud, fog, and 
edge environments (7). In healthcare applications, cardiac sensing denotes 
the non-invasive acquisition of physiological signals related to heart 
activity, including electrical potentials via electrocardiography, volumetric 
pulse changes via photoplethysmography, and mechanical vibrations via 
mechanocardiography, to monitor cardiac function and detect anomalies 
continuously (8).

The advent of the AIoT—the convergence of IoT-enabled 
sensors with on-device and cloud-based AI—offers a paradigm 
shift for cardiac sensing. AIoT systems enable real-time data 
acquisition, edge-based inference, and seamless model updates, 
thus minimizing latency and preserving data privacy (9). For 
example, Edge2Analysis demonstrates a lightweight atrial 
fibrillation detection platform that runs on resource-constrained 
embedded processors, achieving diagnostic accuracy comparable 
to cloud-based solutions while reducing communication overhead 
(10). Convolutional neural networks (CNNs) have become integral 
to automated ECG analysis, enabling end-to-end feature extraction 
from raw waveform data; in a landmark study, Hannun et  al. 
trained a 34-layer CNN on over 90,000 single-lead ECG recordings 
to classify 12 rhythm types, achieving an average ROC AUC of 
0.97—performance on par with expert cardiologists (11). In 
parallel, long short-term memory (LSTM) networks excel at 
modeling the temporal dynamics of sequential ECG signals; 
Yildirim (12) proposed a bidirectional LSTM framework with 
wavelet-based preprocessing that decomposed ECG signals into 

multiscale sequences, attaining 99.39% classification accuracy 
across five heartbeat categories on the MIT-BIH Arrhythmia 
Database (12). These examples underscore the complementary 
strengths of CNN and LSTM architectures for robust arrhythmia 
detection in AIoT-enabled cardiac sensing applications. In addition 
to continuous sensing and arrhythmia detection, AIoT-enabled 
cardiac platforms are increasingly applied to remote patient 
monitoring and home-based rehabilitation. For instance, 
implantable wireless sensors such as the CardioMEMS™ HF 
System allow clinicians to track pulmonary artery pressures in 
heart failure patients and intervene proactively, resulting in a 37% 
reduction in HF hospitalizations over 15 months (13). Likewise, 
smartphone-based cardiac rehabilitation programs integrate 
wearable activity trackers, on-device guidance, and cloud-mediated 
telecoaching to deliver exercise prescriptions and education 
remotely; in a randomized trial, a mobile home-based CR 
intervention achieved an 85% completion rate and similar gains in 
peak VO₂ compared with center-based programs (14). Practical 
deployment of AIoT cardiac sensing is challenged by high false-
positive rates and model overfitting. Dang et al. (15) reported that 
wearable cardioverter-defibrillators generated an average of 38.7 
false alarms per patient over 71.5 days, mostly due to motion 
artefacts, eroding patient trust and adherence (15). Ensuring 
informed consent and transparency in AI decision-making—by 
clearly disclosing AI involvement and providing explainable 
rationales—is critical for upholding patient autonomy and trust in 
clinical deployments (16).

Despite these technological strides, the literature on AIoT for 
cardiac monitoring remains fragmented, with most studies 
addressing individual components—such as sensor design, 
algorithmic performance, or communication protocols—without 
offering an integrated field-wide perspective (17). Bibliometric and 
scientometric methods provide robust frameworks for mapping 
research landscapes, uncovering co-authorship networks, and 
tracking the evolution of key topics over time. Global patterns of 
AI research collaboration have been extensively characterized 
through bibliometrics, revealing dominant countries, institutions, 
and thematic hotspots (18). Tools like CiteSpace facilitate the 
visualization of research fronts and intellectual bases, detecting 
citation bursts and pivotal works within a domain (19).

Despite significant advancements in AIoT for cardiac sensing, 
the existing research landscape remains fragmented, often 
addressing specific technological aspects such as sensor 
development, algorithmic refinement, or communication 
standards individually rather than providing a cohesive, 
integrative perspective. To bridge this gap, our study employs a 
comprehensive bibliometric approach to systematically map the 
research published from 2018 to 2024 within the Web of Science 
Core Collection. Utilizing network analyses—including 
co-authorship, co-citation, and keyword co-occurrence—we 
elucidate patterns of scholarly collaboration, pinpoint critical 
technological advancements, and identify emerging research 
trends and persistent challenges. Additionally, we evaluate key 
publicly available datasets and highlight the pivotal role of 
machine learning techniques—ranging from classical algorithms 
like logistic regression and random forests to advanced deep 
learning architectures such as CNNs and LSTMs—in 
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transforming cardiac sensing data into actionable clinical 
insights. By emphasizing the synergy between deep learning 
methodologies, precision medicine applications, robust data 
privacy protocols, and efficient algorithm deployment in edge 
computing environments, particularly crucial in the context of 
evolving large language models (LLMs), this research provides an 
authoritative, integrated overview. Ultimately, our objective is to 
guide future innovation and foster interdisciplinary collaboration, 
thus enhancing the translational potential of AIoT-enabled 
cardiac sensing in clinical practice and public health strategies.

2 Materials and methods

In terms of data, we began by collecting recent literature from 
the Web of Science (WoS). The WoS Core Collection, provided by 
Clarivate Analytics, is a multidisciplinary citation database 
containing over 21,000 peer-reviewed journals, 300,000 conference 
proceedings, and 134,000 books, covering 254 subject areas. The 
Science Citation Index Expanded (SCIE), a core index of WoS, 
includes 9,500 globally recognized journals and 61 million 
publications across 182 natural science categories. The Emerging 
Sources Citation Index (ESCI) comprises 8,000 high-quality 
journals and 4 million publications across 254 categories. For this 
study, we primarily used the SCIE and ESCI indices as data sources. 

Next, we focused on data from January 1, 2018, to December 26, 
2024, excluding subsequent updates to ensure consistency. For the 
topic “AI of Things for Heart Sensing,” our search query was: 
TS = (((“Artificial Intelligence” OR AI OR “Machine Learning” OR 
“Deep Learning” OR CNN OR LSTM OR “Neural Network” OR 
“Data Mining”) AND (“Heart” OR Cardiac OR Cardiovascular OR 
Atrial OR Ventricular OR Arrhythmia OR “Heart Disease” OR 
“Cardiology”) AND (“IoT” OR “Wearable Devices” OR “Sensors” 
OR “Smart Devices” OR “ECG” OR “Medical Monitoring”))) AND 
PY = (2018–2024).

Prior to 2018, AIoT-enabled cardiac monitoring was largely 
confined to proof-of-concept studies and small-scale pilots; from 
2018 onward, however, the field has witnessed a pronounced shift 
toward large-scale clinical and consumer implementations (20–
22). Figure  1 depicts our stepwise bibliometric workflow for 
mapping the AIoT cardiac-sensing literature. We  began with a 
topic-based search of the Web of Science Core Collection—
covering both the SCIE and the ESCI—and restricted our dataset 
to publications dated January 1, 2018 through December 26, 2024. 
All retrieved records were exported in plain-text format with full 
bibliographic details and cited references, then imported into 
CiteSpace for successive analyses of co-authorship, co-citation, and 
keyword co-occurrence networks. This flowchart ensures a 
transparent and reproducible approach to data acquisition, 
preprocessing, and visualization in the present study.

FIGURE 1

Flowchart of the search strategy in the study.
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Following this, we used the Web of Science search tool to perform 
a basic analysis of the number of publications, citation counts, and 
global trends. The records were then exported in “plain text format” 
as “full record and cited references” for further analysis in CiteSpace, 
a widely used software in many studies (23, 24).

CiteSpace is a bibliometric tool designed to reveal research trends 
and knowledge structures. It can perform citation analysis to identify 
key publications, research hotspots, and influential authors while 
supporting various data sources. CiteSpace also generates time-based 
visual maps to illustrate the evolution of a field. Its powerful 
visualization capabilities allow for intuitive exploration of citation 
links, co-citation, and bibliometric coupling, while its text mining 
features analyze keyword co-occurrence to highlight key topics and 
emerging trends. Therefore, it is a valuable tool for discussing current 
advances and future directions in this perspective article. Furthermore, 
we searched Scopus and PubMed; after limiting the results to SCI/

SSCI publications, we  confirmed that all of these were already 
captured by our Web of Science search.

3 Recent and current advances

3.1 Global trends of publications

Over the past seven years (January 2018 to December 2024), 
a total of 2,128 publications on AI of Things for Cardiac Sensing 
were identified. As illustrated in Figure  2a, annual output in 
AI-driven IoT-cardiology research remained modest from 2018 
to 2020, with fewer than 100 papers published each year. A slight 
dip occurred in 2022 (approximately 80 papers), potentially 
attributable to the global COVID-19 pandemic, which redirected 
medical research priorities toward pandemic-related studies. 

FIGURE 2

Network analysis of this research field. (a) Global trends of publications. (b) Global research productivity and influence network visualization map of 
countries and regions. (c) Network visualization of institutions. (d) Network visualization of authors. (e) Keyword co-occurrence visualization map. (f) 
Keyword clustering visualization map.
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Despite this temporary decline, the field exhibited sustained 
growth overall, with a notable acceleration post-2019. Specifically, 
publication volumes surged by over 300% between 2020 and 
2024, reflecting intensified research activity and technological 
maturation in AIoT-cardiac integration.

3.2 Network analysis of countries or 
regions

In the search for AIoT applications in heart sensors, publication 
data by country/region shows that the United  States leads in the 
number of papers published, followed by China and India. These 
countries/regions also exhibit the strongest international collaboration 
networks (Figure  2b). While China’s publication output and 
collaboration ratio are generally lower, the United States is highly 
proactive in collaborating with other countries/regions. Overall, 
international collaboration is predominantly concentrated in 
developed countries/regions, while developing countries/regions lag 
behind in both publication output and cooperation.

3.3 Network analysis of institutions

According to Web of Science (WoS) statistics, more than 500 
institutions have published research papers on the application of AIoT 
in heart sensors. Among them, the institutions with the highest 
publication counts are the Chinese Academy of Sciences and the 
Egyptian Knowledge Bank. Figure  2c illustrates the collaboration 
network among these institutions, where thicker lines represent 
stronger collaborative relationships. As shown in the figure, 
institutional collaboration is notably close, especially within domestic 
institutions. However, similar to the analysis of country or regional 
collaboration, there are still certain limitations in inter-institutional 
cooperation. For instance, while institutions within China have 
relatively strong collaboration ties, they exhibit insufficient depth of 
cooperation with institutions from other countries or regions. This 
phenomenon may be related to factors such as research resources, 
technological advantages, and the willingness to collaborate across 
different countries or regions, warranting further investigation.

3.4 Network analysis of authors

WOS records indicate that a total of 153 authors have published 
papers in the field of AIoT and heart sensors. Among these authors, 
the top five in terms of publication volume are Acharya U Rajendra 
(41 publications), Liu Chengliang (14 publications), Liu Chengyu (12 
publications), Qin Chengjin (9 publications), and Jin Yanrui (9 
publications). Specifically, Professor U Rajendra Acharya stands out 
as the most prolific scholar in this field. Since 2018, Professor Acharya 
has published 41 papers, establishing himself as a leading figure in this 
domain. His research focuses on the application of AIoT technologies 
in heart monitoring, particularly in data processing and algorithm 
optimization. His contributions have had a profound impact on the 
advancement of this field.

It is noteworthy that, among the top 20 authors, only five are from 
industry, with the remaining authors primarily from academia. This 

trend suggests that, while the industrial sector has played a crucial role 
in driving technological applications and commercialization, 
academia still holds a dominant position in this area of research. 
Academia has not only made significant contributions to fundamental 
research and technological innovation but also provided theoretical 
support for the deeper exploration of AIoT in heart sensors. 
Furthermore, academia’s leading role has fostered more 
interdisciplinary collaboration, particularly in fields such as computer 
science, biomedical engineering, and bioinformatics, providing strong 
support for the optimization of AIoT systems.

The collaboration relationships among authors are shown in 
Figure 2d. In this field, cooperation tends to be organized by country, 
with limited international collaboration. However, as international 
exchange and cooperation gradually increase, it is expected that this 
trend will improve in the future. Cross-border collaboration can 
promote the rapid dissemination and sharing of technologies, 
accelerating the application and innovation of AIoT technologies in 
the field of heart sensors.

Overall, the dominant position of academia, coupled with the 
contributions from industry, has mutually reinforced and driven the 
development of the IoT and heart sensor field. In the future, as 
international cooperation strengthens and interdisciplinary research 
deepens, the application prospects of AIoT in heart health monitoring 
will become even more promising.

3.5 Network analysis of keywords

Figure 2e shows a dense co-occurrence network in which “machine 
learning,” “deep learning,” “neural network” and “convolutional neural 
network” occupy the highest-degree nodes, each tightly connected to 
biomedical-signal terms (“ECG” “heart rate variability,” “arrhythmia 
detection”) and bridged by “wearable sensor” and “Internet of Things,” 
underlining the fusion of AI methods with IoT platforms for real-time 
cardiac monitoring. Figure 2f partitions these keywords into ten modular 
clusters—of which the most prominent are atrial fibrillation detection 
(#0), heart rate variability analysis (#1), wearable-sensor development 
(#2), deep learning architectures (#6) and broader cardiovascular disease 
applications (#9)—thereby mapping the principal thematic areas driving 
AIoT research in heart sensing.

3.6 Network analysis of citations

Since 2018, the top five most-cited journals in the dataset are: 
IEEE Transactions on Biomedical Engineering (1,206 citations), 
IEEE Access (1,024 citations), Biomedical Signal Processing and 
Control (1,022 citations), Computers in Biology and Medicine 
(1,011 citations), and Sensors (970 citations). As shown in Figure 3, 
the co-citation network among these journals indicates strong and 
close connections, with their collaboration being globally 
widespread. Compared to the connections between countries and 
authors, the collaboration network among journals exhibits a more 
international and interdisciplinary character. This phenomenon 
suggests that research in the field of heart sensors has attracted 
significant global attention, and journal collaboration has played a 
key role in disseminating and sharing research outcomes in 
this area.

https://doi.org/10.3389/fpubh.2025.1569887
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ren et al. 10.3389/fpubh.2025.1569887

Frontiers in Public Health 06 frontiersin.org

Regarding authors, since 2018, Goldberger AL has been cited 
510 times, ranking first, followed by Acharya UR with 492 
citations. These data reflect the significant positions and 
influence of these two scholars in the field, particularly in the 
application of AIoT technologies to heart sensors. Their work has 
laid a solid theoretical foundation and provided technical support 
for subsequent research.

In conclusion, the close collaboration between journals and 
the high citation rates of scholars reflect the widespread influence 
and rapid development of the heart sensor field within the global 
academic community. Furthermore, cross-journal and 
interdisciplinary cooperation will further promote innovation 
and technological breakthroughs in this field, providing more 
opportunities for the future optimization of heart health 
monitoring technologies.

3.7 Dataset of harnessing AIoT for cardiac 
sensing

The development and rigorous validation of AIoT-based 
cardiac sensing solutions critically depend on publicly available 
datasets that capture a variety of physiological modalities, 
acquisition conditions, and subject cohorts. As summarized in 

Table 1, five benchmark datasets have become de facto standards 
for algorithm development and comparative evaluation in this 
field. These repositories span PPG, ECG, multimodal recordings, 
and motion artefact labels, thereby supporting a wide range of 
use cases from heart-rate estimation under motion to arrhythmia 
detection in clinical-grade signals.

The PPG-DaLiA dataset comprises wrist-worn PPG and tri-axial 
accelerometer recordings from fifteen healthy volunteers during daily 
activities (e.g., sitting, walking, cycling), offering context-aware labels 
for motion-robust heart-rate estimation. In contrast, the TROIKA 
dataset focuses on high-intensity exercise, providing PPG and 
accelerometry from twelve subjects running at speeds up to 15 km/h, 
which is ideal for benchmarking algorithms under pronounced 
motion artefacts. The WESAD (Wearable Stress and Affect Detection) 
dataset extends beyond cardiac sensing to include chest-mounted 
ECG and PPG, wrist-worn PPG and electrodermal activity (EDA), 
and skin temperature measurements across stress, amusement, and 
baseline states (≈63 million instances), facilitating multimodal 
emotion and stress detection studies. The CapnoBase dataset offers 
synchronized PPG and clinical-grade ECG recordings from 39 
subjects, enabling cross-modal fusion and quality-assessment 
research. Finally, the classic MIT-BIH Arrhythmia Database, with over 
590,000 annotated ECG beats from Holter monitors, remains the gold 
standard for arrhythmia classification.

FIGURE 3

Journal co-citation relationship visualization. Each node represents a journal and is color-coded by modularity class.
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Collectively, these datasets underpin AIoT cardiac sensing 
research by providing diverse signal types, rich annotations, and real-
world contexts. Their complementary characteristics—from daily-life 
motion labels to high-fidelity clinical ECG—ensure that AIoT 
algorithms can be trained, validated, and stress-tested across the full 
spectrum of application scenarios.

3.8 Machine learning for harnessing AIoT 
for cardiac sensing

Machine learning (ML) techniques play a central role in 
transforming raw physiological signals acquired via AIoT platforms 
into clinically relevant insights. As summarized in Table  2, both 
classical and deep learning algorithms have been applied to tasks 
ranging from disease prediction and arrhythmia classification to 
continuous anomaly detection under real-world conditions.

Early studies focused on traditional classifiers for binary 
heart-disease prediction and risk stratification. For example, 
Singh and Kumar (25) compared logistic regression and k-nearest 
neighbors (KNN), achieving up to 88.5% accuracy in predicting 
coronary artery disease, while Renu et al. (26) reported 100% 
accuracy for KNN on a similar task. Stehlik et al. (27) employed 
smartphone-based and cloud-based ML pipelines to predict 
rehospitalization risk in heart-failure patients, obtaining 88% 
sensitivity. De Cannière et  al. (28) integrated ECG and 
accelerometer data with support vector machines (SVM) and 
linear regression models, yielding an R2 of 0.661 and root-mean-
square error (RMSE) of 64.8 m for rehabilitation tracking. These 
conventional methods offer interpretability and low 
computational overhead, making them suitable for resource-
constrained AIoT devices.

Beyond classical approaches, ensemble and tree-based models 
such as random forests (RF) and XGBoost have been applied to 
biosignal features for heart-failure detection. Feng et  al. (29) 
extracted linear and nonlinear features from ballistocardiography 
and respiratory effort signals, demonstrating up to 94.97% 

accuracy in leave-one-out experiments with RF and XGBoost 
classifiers. Similarly, Nigar et al. (30) proposed a hybrid IoMT–
ML framework combining convolutional neural network (CNN) 
backbones (e.g., VGG16, ResNet) with edge-to-cloud analytics, 
achieving an area under the ROC curve (AUC) of 0.883 for heart-
disease detection.

Deep learning architectures have further advanced AIoT 
cardiac sensing by enabling end-to-end waveform analysis. Su 
et  al. (31) developed a portable ECG acquisition and model-
fusion system incorporating CNN and long short-term memory 
(LSTM) networks, reporting 99.13% overall classification 
accuracy. Attia et  al. (32) employed a CNN to screen for 
asymptomatic left ventricular dysfunction, obtaining AUCs up to 
0.94 across multiple cardiomyopathies. Recent pediatric studies 
by Mayourian et  al. (33, 34) leveraged CNNs on ECG–
echocardiogram pairs to predict biventricular dysfunction, 
achieving AUCs between 0.80 and 0.94 for various outcomes. 
Wong et  al. (35) introduced a binarized CNN (bCNN) for 
ventricular ectopic beat classification on edge devices, recording 
97.3% accuracy and 98.1% specificity.

IoT-specific implementations have also been explored. Rincon et al. 
(36) integrated a MobileNet-based deep network with fog computing for 
real-time ECG classification, achieving over 90% accuracy across rhythm 
classes. Sivapalan et al. (37) demonstrated a lightweight LSTM–MLP 
anomaly detector optimized for IoT edge sensors, yielding 94% accuracy 
and 85% F1-score in live deployments. Kwon and Dong (38) combined 
flexible piezoelectric sensors with ML algorithms to enable continuous, 
non-invasive cardiac monitoring.

Collectively, these studies illustrate the breadth of ML 
strategies—from interpretable linear models to compact deep 
neural networks—deployed on AIoT infrastructures for cardiac 
sensing. While classical methods remain valuable for low-power 
applications, deep learning offers superior performance for 
complex waveform analysis. Future research should address 
challenges in data heterogeneity, on-device inference efficiency, 
and model explainability to facilitate robust, real-time cardiac 
monitoring across diverse populations.

TABLE 1 Available dataset of cardiac sensing.

Dataset Description Cardiac sensing data included

PPG-DaLiA (63) PPG signals from wrist-worn devices during daily activities (e.g., sitting, 

walking, cycling). Includes motion data for context-aware analysis.

URL: https://ubicomp.eti.unisiegen.de/home/datasets/sensors19/

Fifteen subjects performed a range of activities 

under near-real-life conditions

TROIKA Dataset (64) Wrist-based PPG and accelerometer data for heart rate estimation during 

physical exercise.

URL: https://arxiv.org/abs/1409.5181

12 subjects during fast running at the peak speed 

of 15 km/h

WESAD (Wearable Stress and 

Affect Detection) (65)

Multimodal data (ECG, PPG, EDA) from chest (RespiBAN) and wrist (Empatica 

E4) devices. Focuses on stress and emotion detection.

URL: https://archive.ics.uci.edu/dataset/465/wesad+wearable+stress+and+affect

+detection

Instances: 63000000

CapnoBase Dataset (66) Simultaneous PPG and ECG recordings from pulse oximeters and clinical 

devices.

URL: https://peterhcharlton.github.io/RRest/datasets.html

39 subjects’ data analysed

MIT-BIH Arrhythmia Database 

(67)

Classic ECG dataset from Holter monitors (portable devices).

URL: https://www.physionet.org/content/mitdb/1.0.0/

Sample: 590262
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TABLE 2 Summary of machine learning for cardiac sensing.

Reference Main ideas Applied method Performance

Singh and 

Kumar (25)

Examines several popular machine learning models for 

heart disease prediction.

Logistic Regression, KNN 88.5% accuracy

Stehlik et al. (27) Analysed data from a wearable patch for predicting the 

risk of rehospitalization.

smartphone-based and cloud-based 

machine learning algorithm

88% sensitivity

De Cannière 

et al. (28)

Multi-parameter sensors (ECG and accelerometer) were 

used to collect data during each test.

Linear Regression, Support Vector 

Machine

Linear Model: R2 of 0.661, RMSE of 64.8 m, 

Best performing model had a MAE of 42.8 m 

(±36.8 m)

Feng et al. (29) Piezoelectric sensor captured BCG and respiratory effort 

signals; linear/nonlinear features extracted for HF 

detection; improved performance validated via LOO/

LOSO cross-validation with ML classifiers.

KNN, SVM, RF (Random Forest), 

XGBoost

accuracy of 94.97 and 87.00% in the LOO and 

the LOSO experiments

Nigar et al. (30) proposes a hybrid approach that combines the Internet 

of Medical Things (IoMT) and ML for the early detection 

and monitoring of six chronic diseases

VGG16, VGG19, ResNet, DenseNet and 

Inception-v3

88.3% AUC for Heart Disease

Renu et al. (26) Prediction of heart disease using various machine 

learning algorithms.

K-NN, Decision Trees, SVM, Logistic 

Regression, Random Forest

the KNN has the greatestaccuracy of 100%

Vani (68) Impact of machine learning in cardiac disease diagnosis. SVM, Naive Bayes

Yadav et al. (69) Prediction of cardiac arrest using machine learning. Univariate and Bivariate analysis

Ekuma et al. (70) Classification of cardiac disease using ML. Logistic Regression, K-NN, SVM, Naive 

Bayes, Decision Tree, Gradient Boosting

High accuracy with confusion matrix 

evaluation

Kwon and Dong 

(38)

flexible sensors and ML for heart monitoring. Flexible cardiac sensors with machine 

learning

Promising results for real-time cardiac 

monitoring

Sarveshvar et al. 

(71)

Comparison of different ML techniques for heart disease 

prediction.

Naïve Bayes, Logistic Regression, 

Random Forest

Promising outcomes with accuracy and 

confusion matrix validation

Mayourian et al. 

(33)

AI-ECG model to predict cardiovascular magnetic 

resonance (CMR)-defined biventricular dysfunction/

dilation in patients with CHD.

convolutional neural network, CNN AUROC: LV dysfunction 0.89; LV dilation 

0.83; RV dysfunction 0.82; RV dilation 0.80

Mayourian et al. 

(34)

The model used a CNN trained on ECG–

echocardiogram pairs from patients ≤18 years of age, 

collected within 2 days apart.

convolutional neural network, CNN LV Composite Outcome: AUROC 0.86, 

AUPRC 0.39

LV Dysfunction: AUROC 0.94, AUPRC 0.32

LV Hypertrophy: AUROC 0.84, AUPRC 0.25, 

LV Dilation: AUROC 0.87, AUPRC 0.33

Siontis et al. (72) The purpose of this study was to determine the 

frequency, associations, and prognostic impact of 

different clinical presentations of new-onset AF.

Mod-Sev MR, confirmed by echo AUC: IV 0.758, EV 0.850

Attia et al. (32) AI-enabled ECG screening method for identifying 

asymptomatic left ventricular dysfunction (ALVD).

Convolutional Neural Network AUC: HCM-0.91, PAH-0.94, Amyloid-0.86, 

MVP-0.77

Su et al. (31) a portable ECG signal acquisition and analysis system 

based on machine learning and model fusion.

logistic regression, support vector 

machines, XGBoost, CNN, LSTM

overall classification accuracy of 99.13%

Cañón-Clavijo 

et al. (73)

IoT-based system for heart monitoring and arrhythmia 

detection.

CNN, k-nearest neighbors (KNN), and 

RF

Normal Beats: 93%

Ventricular Beats: 94%

Supraventricular Beats: 82%

Rincon et al. 

(36)

IoT and fog computing-based monitoring system for 

cardiovascular patients.

Deep Learning, MobileNet Atrial Fibrillation (Af): 90%, Normal Sinus 

Rhythm (Nsr): 89%, Too Noisy to Classify 

(no): 92%, Other Rhythm (Or): 95%

Sivapalan et al. 

(37)

Model is designed to address several key challenges in 

real-time ECG anomaly detection for IoT edge devices.

LSTM, MLP 94% Accuracy, 85% F1 score

Wong et al. (35) Efficient binary convolutional neural network (bCNN) 

algorithm utilizing function-merging and block-reuse 

techniques to classify between Ventricular and non-

Ventricular Ectopic Beat images.

bCNN 97.3% accuracy, 91.3% sensitivity, 98.1% 

specificity, 86.7% precision, 88.9% F1-score
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4 Discussion

Our analysis demonstrates a 500% increase in AIoT–cardiac sensing 
publications from 2018 to 2024, with ‘machine learning,’ ‘deep learning,’ 
and ‘wearable sensors’ emerging as the most central keywords. These 
trends underscore the rapidly growing integration of AI algorithms into 
IoT-based cardiac monitoring platforms (Figures  2a,e) (39, 40). It 
illuminates current advancements, collaboration networks, and key 
thematic clusters. The surge in scientific output over the past five years 
reflects growing scholarly and industrial interest in integrating advanced 
artificial intelligence techniques with IoT-based healthcare solutions for 
cardiovascular disease.

A notable finding is that the United States and China have 
emerged as leaders in both research productivity and recognition, 
a trend that aligns with substantial national-level investments in 
AI research and medical innovation (18, 41). While these two 
countries demonstrate robust research output, the majority of 
collaborative activities remain concentrated within their 
respective national networks, highlighting a missed opportunity 
for deeper global partnerships (42–44). In contrast, European 
countries/regions, Japan, and the Taiwan Province of China have 
engaged in more frequent cross-border collaborations, suggesting 
that broader international efforts could accelerate technological 
breakthroughs and promote standardized methodologies in 
this field.

Another critical insight into current advancements in this 
field is the central role of deep learning (45), machine learning, 
and neural network methods in processing large-scale cardiac 
data. Techniques such as CNNs, LSTM networks, and other 
advanced algorithms have revolutionized the detection of cardiac 
anomalies, including arrhythmias, and have improved predictive 
capabilities through the analysis of ECG signals and heart rate 
variability. Achieving reliable performance in real-world settings 
depends heavily on robust sensor technologies and consistently 
high-quality data. Future efforts may benefit from refining the 
design of wearable and implantable sensors while advancing data 
collection protocols to mitigate potential variability and ensure 
reproducible model training.

The integration of IoT devices with AI-driven analysis has 
transformed traditional approaches to cardiovascular diagnostics 
and disease management. Real-time physiological monitoring 
and wireless data transmission enable more efficient care models, 
supporting remote patient monitoring, early intervention, and 
personalized therapy recommendations. Edge computing 
techniques (10, 46), in particular, hold significant promise for 
reducing latency, improving computational efficiency, and 
addressing privacy concerns. Scaling these technologies will 
require a robust approach to infrastructure development, 
including secure data-sharing protocols, cloud or edge computing 
architectures, and regulatory frameworks to ensure patient 
privacy and data security (47), particularly in the era of large 
language models (LLMs) (48). For instance, Abbott’s 
CardioMEMS HF System—a wireless implantable pulmonary 
artery pressure sensor—has been deployed in home-care 
programs, reducing heart failure readmissions by up to 37% (13). 
In contrast to RAG-based pipelines such as ClinicalRAG (49), 
which augments LLM outputs with dynamically retrieved 

heterogeneous medical knowledge to improve diagnostic 
accuracy, and MedRAG (50), which leverages knowledge-graph–
elicited reasoning to reduce chronic-pain misdiagnosis by up to 
12%, our edge-enabled IoT–AI framework uniquely integrates 
real-time physiological sensor streams with low-latency, 
on-device analytics.

Despite encouraging progress, several challenges remain. 
Chief among these are ensuring patient data security and 
achieving model interpretability in high-stakes clinical settings. 
The transfer and storage of sensitive health information carry 
inherent risks, highlighting the need for robust cryptographic 
mechanisms and carefully designed privacy protocols (9). 
Additionally, the “black-box” nature of many AI models raises 
concerns for clinical adoption (51), as healthcare providers and 
regulatory bodies increasingly demand transparent and 
explainable decision-making processes (52). Advances in 
interpretable or explainable AI could address these concerns by 
offering greater clarity into how AI-based decisions are made, 
thereby fostering trust among clinicians and patients. For 
example, embedding SHAP-based explanations in edge-deployed 
wearable ECG analytics can highlight the specific waveform 
features driving arrhythmia predictions, allowing clinicians to 
interpret and validate model outputs in real time (53). Future 
work should explore AIoT integration into home-based cardiac 
kits and telehealth platforms—such as Eko’s DUO digital 
stethoscope with 1-lead ECG for remote cardiac exams and the 
PrediHealth telemonitoring kit combining medical and 
environmental sensors with AI-driven predictive models for 
chronic heart failure management (54). This perspective article 
also has certain limitations. Although the reliance on the Web of 
Science database is well-justified given its reputation, it may 
exclude significant scientific contributions published in 
conference proceedings (55), smaller specialized journals, or 
patent literature within this field.

In summary, current advancements in AI-powered IoT 
cardiac sensing center on refining AI algorithms—notably deep 
learning architectures—and advancing the capabilities of smart 
wearable devices to support precision medicine (56–61). In our 
assessment, the field must now shift toward prioritizing data 
security and privacy safeguards, especially as LLMs introduce 
new ethical and technical complexities (48). Addressing these 
challenges will be critical to ensuring sustainable progress and 
societal trust. Moving forward, integrating AIoT-driven cardiac 
sensing into public health frameworks remains essential to 
facilitate early detection of cardiovascular diseases, ultimately 
improving global healthcare outcomes through innovation, 
collaboration, and responsible governance. Moreover, AIoT-
driven solutions such as handheld tele-ECG systems and cloud-
connected wireless Holter monitors promise to bridge cardiac 
care gaps in rural and resource-limited settings by enabling real-
time diagnosis and remote specialist consultation (62).

Data availability statement

The data presented in this study are deposited in the GitHub 
repository “Drcreater/review” (https://github.com/Drcreater/review).

https://doi.org/10.3389/fpubh.2025.1569887
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://github.com/Drcreater/review


Ren et al. 10.3389/fpubh.2025.1569887

Frontiers in Public Health 10 frontiersin.org

Ethics statement

The data used in this analysis were sourced from publicly available 
repositories. The conduct of this study was approved by the Ethics 
Committee of Guangdong Second Provincial General Hospital 
(approval no. 2023-KY-KZ-287-02). As this research did not involve 
direct interaction with human or animal subjects, obtaining informed 
consent was not required.

Author contributions

HR: Data curation, Formal analysis, Funding acquisition, 
Investigation, Validation, Writing – original draft. FJ: Conceptualization, 
Funding acquisition, Project administration, Resources, Supervision, 
Writing – original draft. YM: Formal analysis, Investigation, Methodology, 
Software, Visualization, Writing – original draft. RW: Data curation, 
Validation, Writing – review & editing. CH: Methodology, Validation, 
Writing – review & editing. YW: Resources, Software, Writing – review & 
editing. JZ: Project administration, Supervision, Writing  – review & 
editing. YS: Conceptualization, Data curation, Formal analysis, Funding 
acquisition, Resources, Writing – review & editing.

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This work was 
supported by the National Natural Science Foundation of China 
(82000329), the Guangzhou Science and Technology Project 
(2024B03J0821, 2024A03J074, 2024A03J1067), the Guangdong 
Second Provincial General Hospital’s Lift Project Special Fund 
(TJGC-2022005), and the Guangdong Second Provincial General 

Hospital’s Three Specialties and Four Young Talents Fund 
(2024E001), and the Guangdong Provincial Medical Science 
Research Fund (B2024030).

Acknowledgments

The authors thank the Research Management Office (RMO) of the 
City University of Macau for its support through various policies 
related to research paper publications.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

References
 1. World Health Organization. (2021). Cardiovascular diseases (CVDs). Geneva: 

World Health Organization.

 2. Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global 
burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a 
systematic analysis for the global burden of disease study 2019. Lancet. (2020) 
396:1204–22. doi: 10.1016/S0140-6736(20)30925-9

 3. Khairuddin A. M., Ku Azir K. N. F., Kan P. E. (2017). Limitations and future of 
electrocardiography devices: a review and the perspective from the internet of things, 
In 2017 international conference on research and innovation in information systems 
(ICRIIS), (IEEE), 1–7.

 4. Cosoli G, Spinsante S, Scardulla F, D’Acquisto L, Scalise L. Wireless ECG and cardiac 
monitoring systems: state of the art, available commercial devices and useful electronic 
components. Measurement. (2021) 177:109243. doi: 10.1016/j.measurement.2021.109243

 5. Allen G. (2020). Understanding AI technology. Joint Artificial Intelligence Center 
(JAIC). Pentagon, United States 2, 24–32.

 6. Atzori L, Iera A, Morabito G. The internet of things: a survey. Comput Netw. (2010) 
54:2787–805. doi: 10.1016/j.comnet.2010.05.010

 7. Zhang J, Tao D. Empowering things with intelligence: a survey of the progress, 
challenges, and opportunities in artificial intelligence of things. IEEE Internet Things J. 
(2021) 8:7789–817. doi: 10.1109/JIOT.2020.3039359

 8. Galli A, Montree RJH, Que S, Peri E, Vullings R. An overview of the sensors for 
heart rate monitoring used in extramural applications. Sensors. (2022) 22:4035. doi: 
10.3390/s22114035

 9. Baker S, Xiang W. Artificial intelligence of things for smarter healthcare: a survey 
of advancements, challenges, and opportunities. IEEE Commun Surv Tutor. (2023) 
25:1261–93. doi: 10.1109/COMST.2023.3256323

 10. Chen J, Zheng Y, Liang Y, Zhan Z, Jiang M, Zhang X, et al. Edge2Analysis: A novel 
AIoT platform for atrial fibrillation recognition and detection. IEEE J Biomed Health 
Inform. (2022) 26:5772–82. doi: 10.1109/JBHI.2022.3171918

 11. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, et al. 
Cardiologist-level arrhythmia detection and classification in ambulatory 
electrocardiograms using a deep neural network. Nat Med. (2019) 25:65–9. doi: 
10.1038/s41591-018-0268-3

 12. Yildirim Ö. A novel wavelet sequence based on deep bidirectional LSTM network 
model for ECG signal classification. Comput Biol Med. (2018) 96:189–202. doi: 
10.1016/j.compbiomed.2018.03.016

 13. Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, Stevenson LW, 
et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a 
randomised controlled trial. Lancet. (2011) 377:658–66. doi: 10.1016/S0140-6736 
(11)60101-3

 14. Varnfield M, Karunanithi M, Lee C-K, Honeyman E, Arnold D, Ding H, et al. 
Smartphone-based home care model improved use of cardiac rehabilitation in 
postmyocardial infarction patients: results from a randomised controlled trial. Heart. 
(2014) 100:1770–9. doi: 10.1136/heartjnl-2014-305783

 15. Dang PL, Lacour P, Parwani AS, Baehr FL, Primessnig U, Schoeppenthau D, et al. 
False alarms in wearable cardioverter defibrillators—A relevant issue or an insignificant 
observation. J Clin Med. (2024) 13:7768. doi: 10.3390/jcm13247768

 16. Astromskė K, Peičius E, Astromskis P. Ethical and legal challenges of informed 
consent applying artificial intelligence in medical diagnostic consultations. AI Soc. 
(2021) 36:509–20. doi: 10.1007/s00146-020-01008-9

 17. Murat F, Sadak F, Yildirim O, Talo M, Murat E, Karabatak M, et al. Review of deep 
learning-based atrial fibrillation detection studies. Int J Environ Res Public Health. (2021) 
18:11302. doi: 10.3390/ijerph182111302

https://doi.org/10.3389/fpubh.2025.1569887
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1016/S0140-6736(20)30925-9
https://doi.org/10.1016/j.measurement.2021.109243
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1109/JIOT.2020.3039359
https://doi.org/10.3390/s22114035
https://doi.org/10.1109/COMST.2023.3256323
https://doi.org/10.1109/JBHI.2022.3171918
https://doi.org/10.1038/s41591-018-0268-3
https://doi.org/10.1016/j.compbiomed.2018.03.016
https://doi.org/10.1016/S0140-6736(11)60101-3
https://doi.org/10.1016/S0140-6736(11)60101-3
https://doi.org/10.1136/heartjnl-2014-305783
https://doi.org/10.3390/jcm13247768
https://doi.org/10.1007/s00146-020-01008-9
https://doi.org/10.3390/ijerph182111302


Ren et al. 10.3389/fpubh.2025.1569887

Frontiers in Public Health 11 frontiersin.org

 18. Hu H, Wang D, Deng S. Global collaboration in artificial intelligence: bibliometrics 
and network analysis from 1985 to 2019. J Data Inf Sci. (2020) 5:86–115. doi: 
10.2478/jdis-2020-0027

 19. Chen C. CiteSpace II: detecting and visualizing emerging trends and transient 
patterns in scientific literature. J Am  Soc Inf Sci Technol. (2006) 57:359–77. doi: 
10.1002/asi.20317

 20. Giannakopoulou K-M, Roussaki I, Demestichas K. Internet of things technologies 
and machine learning methods for Parkinson’s disease diagnosis, monitoring and 
management: A systematic review. Sensors. (2022) 22:1799. doi: 10.3390/s22051799

 21. Pise AA, Almuzaini KK, Ahanger TA, Farouk A, Pant K, Pareek PK, et al. Enabling 
artificial intelligence of things (AIoT) healthcare architectures and listing security issues. 
Comput Intell Neurosci. (2022) 2022:1–14. doi: 10.1155/2022/8421434

 22. Zimerman A, Sheridan B, Cooke S, Jena AB. Trends in new diagnoses of atrial 
fibrillation after release of an ECG-capable smartwatch. Circulation. (2020) 142:814–6. 
doi: 10.1161/CIRCULATIONAHA.119.045562

 23. Huang Y, Qi Y, Liu C, Jing F, Li C, Wang M, et al. A decade of progress in artificial 
intelligence for fundus image-based diabetic retinopathy screening (2014–2024): a 
bibliometric analysis (2024). doi: 10.1101/2024.11.02.24316635,

 24. Wu X., Liang D., Li C., Ren H., Gao T., Jing F. (2024). Bibliometric analysis and 
research trends in artificial intelligence for medical imaging in Alzheimer’s disease., in 
Proceedings of the 2024 9th International Conference on Biomedical Imaging, Signal 
Processing, (New York, NY, USA: ACM), 39–45.

 25. Singh A., Kumar R. (2020). Heart disease prediction using machine learning 
algorithms. in 2020 International conference on electrical and electronics engineering 
(ICE3), 2020, 452–457.

 26. Renu Y., Sree P. M., Ramj E. (2023). Heart disease prediction using machine 
learning algorithms doi: 10.1109/i-PACT58649.2023.10434931

 27. Stehlik J, Schmalfuss C, Bozkurt B, Nativi-Nicolau J, Wohlfahrt P, Wegerich S, et al. 
Continuous wearable monitoring analytics predict heart failure hospitalization: the 
LINK-HF multicenter study. Circ Heart Fail. (2020) 13:e006513. doi: 
10.1161/CIRCHEARTFAILURE.119.006513

 28. De Cannière H, Corradi F, Smeets CJ, Schoutteten M, Varon C, Van Hoof C, et al. 
Wearable monitoring and interpretable machine learning can objectively track 
progression in patients during cardiac rehabilitation. Sensors. (2020) 20:3601. doi: 
10.3390/s20123601

 29. Feng S, Wu X, Bao A, Lin G, Sun P, Cen H, et al. Machine learning–aided detection 
of heart failure (LVEF ≤ 49%) by using ballistocardiography and respiratory effort 
signals. Front Physiol. (2023) 13:1068824. doi: 10.3389/fphys.2022.1068824

 30. Nigar N, Jaleel A, Islam S, Shahzad MK, Affum EA. IoMT meets machine learning: 
from edge to cloud chronic diseases diagnosis system. J Healthc Eng. (2023) 
2023:9995292. doi: 10.1155/2023/9995292

 31. Su S, Zhu Z, Wan S, Sheng F, Xiong T, Shen S, et al. An ECG signal acquisition and 
analysis system based on machine learning with model fusion. Sensors (Basel). (2023) 
23:7643. doi: 10.3390/s23177643

 32. Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, et al. 
Screening for cardiac contractile dysfunction using an artificial intelligence–enabled 
electrocardiogram. Nat Med. (2019) 25:70–4. doi: 10.1038/s41591-018-0240-2

 33. Mayourian J, Gearhart A, Cava L, Vaid A, Nadkarni GN, Triedman JK, et al. Deep 
learning-based electrocardiogram analysis predicts biventricular dysfunction and 
dilation in congenital heart disease. J Am  Coll Cardiol. (2024) 84:815–28. doi: 
10.1016/j.jacc.2024.05.062

 34. Mayourian J, La Cava WG, Vaid A, Nadkarni GN, Ghelani SJ, Mannix R, et al. 
Pediatric ECG-based deep learning to predict left ventricular dysfunction and 
remodeling. Circulation. (2024) 149:917–31. doi: 10.1161/CIRCULATIONAHA. 
123.067750

 35. Wong DLT, Li Y, John D, Ho WK, Heng CH. An energy efficient ECG ventricular 
ectopic beat classifier using binarized CNN for edge AI devices. IEEE Trans Biomed 
Circuits Syst. (2022) 16:222–32. doi: 10.1109/TBCAS.2022.3152623

 36. Rincon JA, Guerra-Ojeda S, Carrascosa C, Julian V. An IoT and fog computing-
based monitoring system for cardiovascular patients with automatic ECG classification 
using deep neural networks. Sensors. (2020) 20:7353. doi: 10.3390/s20247353

 37. Sivapalan G, Nundy KK, Dev S, Cardiff B, John D. ANnet: a lightweight neural 
network for ECG anomaly detection in IoT edge sensors. IEEE Trans Biomed Circuits 
Syst. (2022) 16:24–35. doi: 10.1109/TBCAS.2021.3137646

 38. Kwon SH, Dong L. Flexible sensors and machine learning for heart monitoring. 
Nano Energy. (2022) 102:107632. doi: 10.1016/j.nanoen.2022.107632

 39. Huang J-D, Wang J, Ramsey E, Leavey G, Chico TJA, Condell J. Applying artificial 
intelligence to wearable sensor data to diagnose and predict cardiovascular disease: A 
review. Sensors. (2022) 22:8002. doi: 10.3390/s22208002

 40. Umer M, Aljrees T, Karamti H, Ishaq A, Alsubai S, Omar M, et al. Heart failure 
patients monitoring using IoT-based remote monitoring system. Sci Rep. (2023) 
13:19213. doi: 10.1038/s41598-023-46322-6

 41. Guo Y, Hao Z, Zhao S, Gong J, Yang F. Artificial intelligence in health care: 
bibliometric analysis. J Med Internet Res. (2020) 22:e18228. doi: 10.2196/18228

 42. Basu A, Foland P, Holdridge G, Shelton R D. China’s rising leadership in science 
and technology: quantitative and qualitative indicators. Scientometrics. (2018) 
117:249–69. doi: 10.1007/s11192-018-2877-5

 43. He C, Wu J, Zhang Q. Characterizing research leadership on geographically 
weighted collaboration network. Scientometrics. (2021) 126:4005–37. doi: 
10.1007/s11192-021-03943-w

 44. He C, Wu J, Zhang Q. Proximity-aware research leadership recommendation in 
research collaboration via deep neural networks. J Assoc Inf Sci Technol. (2022) 73:70–89. 
doi: 10.1002/asi.24546

 45. Bizopoulos P, Koutsouris D. Deep learning in cardiology. IEEE Rev Biomed Eng. 
(2019) 12:168–93. doi: 10.1109/RBME.2018.2885714

 46. Zhang L, Zhu T, Xiong P, Zhou W. The price of unlearning: identifying unlearning 
risk in edge computing. ACM Trans Multimedia Comput Commun Appl. (2024) doi: 
10.1145/3662184

 47. Wazid M, Das AK, Park Y. Blockchain-envisioned secure authentication approach 
in AIoT: applications, challenges, and future research. Wirel Commun Mob Comput. 
(2021) 2021:3866006. doi: 10.1155/2021/3866006

 48. Mirzaei T, Amini L, Esmaeilzadeh P. Clinician voices on ethics of LLM integration 
in healthcare: a thematic analysis of ethical concerns and implications. BMC Med Inform 
Decis Mak. (2024) 24:250. doi: 10.1186/s12911-024-02656-3

 49. Lu Y., Zhao X., Wang J. (2024). ClinicalRAG: enhancing clinical decision support 
through heterogeneous knowledge retrieval. In proceedings of the 1st workshop on 
towards knowledgeable language models (KnowLLM 2024) (Stroudsburg, PA, USA: 
Association for Computational Linguistics), 64–68.

 50. Zhao X., Liu S., Yang S.-Y., Miao C. (2025). Medrag: enhancing retrieval-
augmented generation with knowledge graph-elicited reasoning for healthcare copilot, 
in Proceedings of the ACM on web conference 2025, (New York, NY, USA: ACM), 
4442–4457.

 51. Petch J, Di S, Nelson W. Opening the black box: the promise and limitations of 
explainable machine learning in cardiology. Can J Cardiol. (2022) 38:204–13. doi: 
10.1016/j.cjca.2021.09.004

 52. Salih A, Boscolo Galazzo I, Gkontra P, Lee AM, Lekadir K, Raisi-Estabragh Z, et al. 
Explainable artificial intelligence and cardiac imaging: toward more interpretable models. 
Circ Cardiovasc Imaging. (2023) 16:e014519 doi: 10.1161/CIRCIMAGING.122.014519

 53. Tonekaboni S., Joshi S., McCradden M. D., Goldenberg A. (2019). What clinicians 
want: contextualizing explainable machine learning for clinical end use., in Proceedings 
of the 4th Machine Learning for Healthcare Conference, eds. F. Doshi-Velez, J. 
Fackler, K. Jung, D. Kale, R. Ranganath, B. Wallace, et al. (PMLR), 359–380. Available 
online at: https://proceedings.mlr.press/v106/tonekaboni19a.html

 54. Cassieri P., Filippo G.De, Singh S., Mazzotta M., Sisto G., Lazoi M., et al. (2025). 
Predihealth: telemedicine and predictive algorithms for the care and prevention of 
patients with chronic heart failure. Available online at: https://arxiv.org/abs/2504.03737 
(Accessed July 7, 2025).

 55. Ukil A., Roy U. K., (2017). Smart cardiac health management in IoT through heart 
sound signal analytics and robust noise filtering. In 2017 IEEE 28th annual international 
symposium on personal, indoor, and Mobile radio communications (PIMRC), 1–5.

 56. Acharya UR, Fujita H, Sudarshan VK, Oh SL, Adam M, Tan JH, et al. Automated 
characterization of coronary artery disease, myocardial infarction, and congestive heart 
failure using contourlet and shearlet transforms of electrocardiogram signal. Knowl 
Based Syst. (2017) 132:156–66. doi: 10.1016/j.knosys.2017.06.026

 57. Jeon E, Oh K, Kwon S, Son H, Yun Y, Jung ES, et al. A lightweight deep learning 
model for fast electrocardiographic beats classification with a wearable cardiac monitor: 
development and validation study. JMIR Med Inform. (2020) 8:e17037. doi: 
10.2196/17037

 58. Kwon S, Hong J, Choi EK, Lee B, Baik C, Lee E, et al. Detection of atrial fibrillation 
using a ring-type wearable device (CardioTracker) and deep learning analysis of 
photoplethysmography signals: prospective observational proof-of-concept study. J Med 
Internet Res. (2020) 22:e16443. doi: 10.2196/16443

 59. Liao S, Bokhari M, Chakraborty P, Suszko A, Jones G, Spears D, et al. Use of 
wearable technology and deep learning to improve the diagnosis of Brugada syndrome. 
JACC Clin Electrophysiol. (2022) 8:1010–20. doi: 10.1016/j.jacep.2022.05.003

 60. Nahavandi D, Alizadehsani R, Khosravi A, Acharya U R. Application of artificial 
intelligence in wearable devices: opportunities and challenges. Comput Methods Prog 
Biomed. (2022) 213:106541. doi: 10.1016/j.cmpb.2021.106541

 61. Torres-Soto J, Ashley EA. Multi-task deep learning for cardiac rhythm detection 
in wearable devices. NPJ Digit Med. (2020) 3:116. doi: 10.1038/s41746-020-00320-4

 62. Singh M, Agarwal A, Sinha V, Manoj Kumar R, Jaiswal N, Jindal I, et al. Application 
of handheld tele-ECG for health care delivery in rural India. Int J Telemed Appl. (2014) 
2014:1–6. doi: 10.1155/2014/981806

 63. Reiss A, Indlekofer I, Schmidt P, Van Laerhoven K. Deep PPG: large-scale heart 
rate estimation with convolutional neural networks. Sensors. (2019) 19:3079. doi: 
10.3390/s19143079

 64. Zhang Z, Pi Z, Liu B. TROIKA: A general framework for heart rate monitoring 
using wrist-type Photoplethysmographic signals during intensive physical exercise. 
IEEE Trans Biomed Eng. (2015) 62:522–31. doi: 10.1109/TBME.2014.2359372

https://doi.org/10.3389/fpubh.2025.1569887
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.2478/jdis-2020-0027
https://doi.org/10.1002/asi.20317
https://doi.org/10.3390/s22051799
https://doi.org/10.1155/2022/8421434
https://doi.org/10.1161/CIRCULATIONAHA.119.045562
https://doi.org/10.1101/2024.11.02.24316635
https://doi.org/10.1109/i-PACT58649.2023.10434931
https://doi.org/10.1161/CIRCHEARTFAILURE.119.006513
https://doi.org/10.3390/s20123601
https://doi.org/10.3389/fphys.2022.1068824
https://doi.org/10.1155/2023/9995292
https://doi.org/10.3390/s23177643
https://doi.org/10.1038/s41591-018-0240-2
https://doi.org/10.1016/j.jacc.2024.05.062
https://doi.org/10.1161/CIRCULATIONAHA.123.067750
https://doi.org/10.1161/CIRCULATIONAHA.123.067750
https://doi.org/10.1109/TBCAS.2022.3152623
https://doi.org/10.3390/s20247353
https://doi.org/10.1109/TBCAS.2021.3137646
https://doi.org/10.1016/j.nanoen.2022.107632
https://doi.org/10.3390/s22208002
https://doi.org/10.1038/s41598-023-46322-6
https://doi.org/10.2196/18228
https://doi.org/10.1007/s11192-018-2877-5
https://doi.org/10.1007/s11192-021-03943-w
https://doi.org/10.1002/asi.24546
https://doi.org/10.1109/RBME.2018.2885714
https://doi.org/10.1145/3662184
https://doi.org/10.1155/2021/3866006
https://doi.org/10.1186/s12911-024-02656-3
https://doi.org/10.1016/j.cjca.2021.09.004
https://doi.org/10.1161/CIRCIMAGING.122.014519
https://proceedings.mlr.press/v106/tonekaboni19a.html
https://arxiv.org/abs/2504.03737
https://doi.org/10.1016/j.knosys.2017.06.026
https://doi.org/10.2196/17037
https://doi.org/10.2196/16443
https://doi.org/10.1016/j.jacep.2022.05.003
https://doi.org/10.1016/j.cmpb.2021.106541
https://doi.org/10.1038/s41746-020-00320-4
https://doi.org/10.1155/2014/981806
https://doi.org/10.3390/s19143079
https://doi.org/10.1109/TBME.2014.2359372


Ren et al. 10.3389/fpubh.2025.1569887

Frontiers in Public Health 12 frontiersin.org

 65. Schmidt P., Reiss A., Duerichen R., Marberger C., Van Laerhoven K. (2018). 
Introducing WESAD, a multimodal dataset for wearable stress and affect detection, in 
proceedings of the 20th ACM international conference on multimodal Interaction, 
(New York, NY, USA: ACM), 400–408.

 66. Karlen W., Turner M., Cooke E., Dumont G., Ansermino J. M. (2010). CapnoBase: 
signal database and tools to collect, share and annotate respiratory signals, in 2010 annual 
meeting of the society for technology in anesthesia (Society for Technology in anesthesia), 27.

 67. Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng 
Med Biol Mag. (2001) 20:45–50. doi: 10.1109/51.932724

 68. Vani T. Impetus to machine learning in cardiac disease diagnosis In: K Chauhan 
and RK Chauhan, editors. Image Processing for Automated Diagnosis of Cardiac Diseases. 
Cambridge: Academic Press (2021)

 69. Yadav A. L., Soni K., Khare S., (2023). Heart diseases prediction using machine 
learning. In 2023 14th international conference on computing communication and 
networking technologies (ICCCNT), 1–7.

 70. Ekuma IC, Ndubuka GI, Azeez TO, Chikezie O, Nosiri SA, Ekedigwe MC, et al. 
(2023). Implementation of Machine Learning Algorithm for Cardiac Arrest Prediction. 
Engineering And Technology Journal, 8, 1967–197.

 71. Sarveshvar M. R., Gogoi A., Chaubey A. K., Rohit S., Mahesh T. R. (2021). 
Performance of different machine learning techniques for the prediction of heart 
diseases., in 2021 international conference on forensics, analytics, big data, 
security (FABS), 1–4. Available online at: https://ieeexplore.ieee.org/document/ 
9702566

 72. Siontis K, Gersh BJ, Killian JM, Noseworthy PA, Mccabe P, Weston SA, et al. 
Typical, atypical, and asymptomatic presentations of new-onset atrial fibrillation in the 
community: characteristics and prognostic implications. Heart Rhythm. (2016) 
13:1418–24. doi: 10.1016/j.hrthm.2016.03.003

 73. Cañón-Clavijo R, Montenegro-Marin CE, Gaona-Garcia PA, Ortiz-Guzmán J. IoT 
based system for heart monitoring and arrhythmia detection using machine learning. J 
Healthc Eng. (2023) 2023:6401673. doi: 10.1155/2023/6401673

https://doi.org/10.3389/fpubh.2025.1569887
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1109/51.932724
https://ieeexplore.ieee.org/document/9702566
https://ieeexplore.ieee.org/document/9702566
https://doi.org/10.1016/j.hrthm.2016.03.003
https://doi.org/10.1155/2023/6401673

	Harnessing artificial intelligence of things for cardiac sensing: current advances and network-based perspectives
	1 Introduction
	2 Materials and methods
	3 Recent and current advances
	3.1 Global trends of publications
	3.2 Network analysis of countries or regions
	3.3 Network analysis of institutions
	3.4 Network analysis of authors
	3.5 Network analysis of keywords
	3.6 Network analysis of citations
	3.7 Dataset of harnessing AIoT for cardiac sensing
	3.8 Machine learning for harnessing AIoT for cardiac sensing

	4 Discussion

	References

