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Background: The Cardiometabolic Index (CMI) is a new metric used to assess an 
individual’s cardiovascular and metabolic status. Volatile Organic Compounds 
(VOCs) are common environmental pollutants associated with cardiovascular 
diseases and lipid metabolism disorders. This study aims to investigate the 
relationship between VOC exposure and CMI.

Methods: Data from NHANES (2011–2020) were used to assess the impact 
of VOC exposure on cardiometabolic function. Multivariable linear regression 
was used to analyze the association between VOCs and the CMI. Restricted 
cubic spline models were applied to model the nonlinear relationship between 
VOCs and CMI. BKMR (bayesian kernel machine regression), WQS (weighted 
quantile sum), and Q-gcomp (quantile g-computation) models were employed 
to explore the association between VOC mixture exposure and CMI. Subgroup 
analyses were conducted to investigate the relationship between VOCs and CMI 
across different subgroups.

Results: Multiple linear regression analysis confirmed the significantly positive 
associations between the highest quartile concentrations of CEMA, 3HPMA, 
MHBMA3, and HMPMA compared to the lowest quartile (β = 0.43, 95% CI = 0.20, 
0.67, P for trend < 0.001; β = 0.30, 95% CI = 0.05, 0.55, P for trend = 0.006; 
β = 0.37, 95% CI = 0.14, 0.61, P for trend < 0.001; β = 0.28, 95% CI = 0.01, 0.55, P 
for trend = 0.010). AAMC and SBMA showed a nonlinear relationship with CMI. 
Results from mixture exposure models indicated that CEMA contributed most 
significantly to the impact on CMI. BKMR, WQS, and Q-gcomp models showed 
a positive trend between overall VOC exposure and CMI. Subgroup analysis 
revealed significant interactions of BMI and diabetes status in the relationship 
between VOC exposure and CMI, especially among individuals with BMI ≥ 30 
and those with diabetes.

Conclusion: This study found significant positive associations between 
specific VOC exposures and CMI. Additionally, BMI and diabetes status play 
important roles in moderating the relationship between VOC exposure and 
CMI. These findings highlight the potential impact of environmental VOCs on 
cardiovascular and metabolic health which provides new evidence for public 
health interventions.
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1 Introduction

Normal cardiometabolic function dynamically regulates the balance 
between energy supply and demand, ensuring that the heart responds 
effectively to physical activity, metabolic changes, and environmental 
stressors (1). The Cardiometabolic Index (CMI) is an emerging composite 
indicator, providing an accurate assessment of the synergistic effects of 
lipid metabolism disorders and central obesity (2). Compared to 
traditional single biomarkers (such as TG and HDL-C) or isolated 
anthropometric indicators (such as BMI and waist circumference), CMI 
not only captures dyslipidemia (TG/HDL-C ratio) but also reflects 
visceral fat distribution (WHtR), providing a more comprehensive 
assessment of cardiometabolic dysfunction (3–5). The combination of 
high TG and low HDL-C exacerbates atherosclerosis, while central 
obesity further amplifies this risk through adipose tissue inflammation (6, 
7). Recent studies have demonstrated that CMI outperforms traditional 
markers (such as LDL-C or waist circumference alone) in predicting 
metabolic syndrome, insulin resistance, and cardiovascular events (8, 9). 
This predictive advantage arises from CMI’s ability to quantify the lipid-
obesity interaction, a core mechanism underlying cardiometabolic 
disease. Higher CMI levels are closely associated with a higher risk of 
developing these chronic diseases, highlighting the importance of regular 
CMI assessments for early detection and intervention. Monitoring CMI 
can thus enable healthcare providers to identify individuals at high risk of 
metabolic disorders and initiate personalized strategies to prevent or 
manage such conditions.

A variety of factors influence cardiac metabolic function, including 
genetic predisposition, lifestyle behaviors (such as alcohol consumption 
and smoking), age, gender, and the presence of chronic conditions like 
hypertension and diabetes (10–12). In recent years, environmental 
factors have gained significant attention as contributors to metabolic 
dysfunction (13, 14). Among these, exposure to chemicals found in 
everyday environments has emerged as a notable concern. Volatile 
organic compounds (VOCs) are a class of chemicals that can easily 
evaporate into the air at room temperature and are commonly found in 
household products, such as cleaning agents, paints, air fresheners, and 
cosmetics (15, 16). VOCs have been shown to have potential adverse 
effects on human health, particularly in relation to fat metabolism and 
lipid levels (17). Studies suggest that exposure to VOCs can alter 
metabolic pathways, leading to increased fat accumulation, particularly 
in the abdominal and visceral regions, which are strongly associated 
with metabolic disorders (18). VOCs exposure has been linked to an 
increased body fat percentage and symptoms like abdominal obesity, 
insulin resistance, and impaired glucose metabolism (19, 20). 
Additionally, VOC exposure has been shown to elevate concentrations 
of TG and LDL-C, while simultaneously decreasing HDL-C levels, 
which is detrimental to cardiovascular health (21). Furthermore, VOCs 
may interfere with liver lipid metabolism, impairing the synthesis of 
HDL-C and contributing to metabolic dysfunction (22, 23). These 
effects suggest that body composition indicators, such as waist 
circumference and body fat percentage, as well as lipid profiles, could 
serve as key markers for understanding the impact of VOCs on cardiac 
metabolic function (21, 22).

However, research on the effects of VOCs on cardiometabolic 
function is currently limited, and the potential impact of VOCs on 
cardiometabolic health remains unclear. To address this gap, 
we utilized data from the National Health and Nutrition Examination 
Survey (NHANES) collected between 2011 and 2020. This study will 

provide important epidemiologic evidence to elucidate the effects of 
environmental VOCs exposure on cardiometabolic health and provide 
a scientific basis for targeted protection strategies for high-risk 
populations (obese and diabetic patients), which is important for 
promoting environmental health risk assessment and public 
health interventions.

2 Method

2.1 Study population

The NHANES is a comprehensive, ongoing study conducted by 
the Centers for Disease Control and Prevention to assess the health, 
nutrition, environmental exposures, and socio-economic conditions 
of the U.S. population. NHANES data are collected from a 
representative sample of individuals across different demographics, 
and socio-economic status, with the goal of providing valuable 
insights into public health trends, nutrition, and environmental 
factors influencing the population’s health. The survey combines 
interviews, physical examinations, and laboratory tests, which make 
it a key resource for assessing the health status of the U.S. population 
and guiding public health policy and clinical decision-making.

This study used data from a total of 45,462 participants from the 
NHANES 2011–2020 dataset. Participants were selected based on 
specific eligibility criteria, and those who did not meet these criteria were 
excluded. The criteria included: (1) detectable levels of VOCs in urine; 
(2) age over 20 years; (3) missing or incomplete serum cotinine data; (4) 
complete family income-to-poverty ratio information; (5) available body 
mass index (BMI) and waist circumference measurements; and (6) 
complete data on blood lipid profiles. A detailed flowchart summarizing 
the inclusion and exclusion process is provided in Figure 1.

2.2 Measurement of VOCs

VOCs in urine were measured using ultra-performance liquid 
chromatography coupled with electrospray tandem mass 
spectrometry, which is a highly sensitive and accurate technique for 
detecting and quantifying various volatile organic compounds. In this 
study, VOCs were assessed as either parent compounds or their 
metabolites, based on their prevalence and detectability in the sample 
population. VOCs that were detected in at least 70% of the participants 
were included in the analysis to ensure robust and reliable results. A 
list of the VOCs and their abbreviations included in this study is 
presented in Supplementary Table S1. For VOC levels that were below 
the limit of detection (LOD), we assigned values using a substitution 
method where the recorded value was set to the square root of the 
LOD divided by two to account for missing data.

2.3 Outcomes and covariates

The primary outcome in this study is the CMI, a novel metric 
designed to evaluate visceral fat distribution and associated 
dysfunction. CMI is a composite measure that provides valuable 
insights into cardiometabolic health by combining lipid levels 
(triglycerides and high-density lipoprotein cholesterol) with the 
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waist-to-height ratio, a known indicator of abdominal adiposity. The 
formula for calculating CMI is as follows (24):

 

( )
( )

( )

= −
− ×

=

/   

 /

CMI Triglycerides TG High density lipoprotein
cholesterol HDL C WHtR
WHtR waist circumference height

In addition to CMI, various covariates were included in the 
statistical models to adjust for potential confounding factors. These 
covariates encompassed demographic characteristics and behavioral 
factors. Clinical factors such as hypertension, diabetes, and BMI, as 
well as lipid profiles including TG and LDL, were also included. 
Hypertension and diabetes were assessed based on self-reported 
diagnoses from a structured questionnaire administered to participants.

2.4 Statistical analysis

Descriptive statistics were used to summarize the data. For 
continuous variables, means and standard deviations were reported, while 
categorical variables were summarized with counts and percentages. VOC 
concentrations were log-transformed to normalize their distributions and 
reduce the skewness often observed in environmental exposure data. To 
explore the relationships between VOC exposure and CMI, we applied 
multiple linear regression models. Model 1 was adjusted for basic 
demographic factors. Model 2 included additional adjustments for 
lifestyle factors, disease status and clinical conditions, as well as BMI and 
lipid levels. Effect estimates from these models were presented as β values 
with 95% confidence intervals. To assess the nonlinear relationship 
between VOCs and CMI, we employed restricted cubic splines (RCS) 
model with three knots. This flexible approach allowed us to model 
potential non-linearities in the data and better capture the complex 

associations between VOC exposure and CMI. The x-axis represented the 
natural logarithm of VOC concentrations, and the y-axis depicted the 
estimated effect of CMI. Given the potential for mixed VOC exposures in 
real-life environments, we utilized several advanced statistical models to 
assess the combined effects of VOCs on CMI. These models included the 
Bayesian kernel machine regression (BKMR), weighted quantile sum 
(WQS) regression, and quantile g-computation (Q-gcomp) models. The 
BKMR model enabled us to estimate both the overall and individual 
effects of each VOC exposure, along with the dose–response relationships. 
The WQS model quantified the relative contribution of each VOC to the 
overall health effect, while the Q-gcomp model allowed for the estimation 
of the linear relationship between the combined VOC exposure and 
CMI. We also conducted subgroup analyses to investigate potential effect 
modifications by various demographic and health-related factors. These 
subgroup analyses helped to identify whether the associations between 
VOCs and CMI varied across different population groups. In order to 
explain the problem of multiple comparisons, we use Benjamin Hochberg 
method to adjust the p value of multiple comparisons by applying error 
detection rate (FDR) correction. All statistical analyses were performed 
using R software (version 4.3.2). A p-value of less than 0.05 was considered 
statistically significant. The “bkmr,” “gWQS” and “qgcomp” R packages 
were used to conduct mixed exposure analyses and assess the combined 
effects of VOCs on CMI.

3 Results

3.1 Basic description of participants

Table 1 displays the baseline features of the study population. A 
total of 2,619 participants were included in the analysis of the 
association between VOCs and CMI. Baseline information was 
described based on quartile groupings of CMI. The average age of 

FIGURE 1

Flow chart for inclusion and exclusion of study participants.
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TABLE 1 Characteristics of the population based on quartile groupings of CMI.

Characteristics Q1 Q2 Q3 Q4 p value

Age (mean (SD)) 45.25 (17.81) 50.36 (17.79) 50.62 (16.60) 51.93 (16.03) <0.001

Gender (%) <0.001

  Male 266 (40.6) 320 (48.9) 339 (51.8) 407 (62.1)

  Female 389 (59.4) 335 (51.1) 315 (48.2) 248 (37.9)

Race (%) <0.001

  Mexican American 48 (7.3) 81 (12.4) 75 (11.5) 117 (17.9)

  Other Hispanic 52 (7.9) 54 (8.2) 77 (11.8) 83 (12.7)

  Non-Hispanic White 229 (35.0) 253 (38.6) 238 (36.4) 280 (42.7)

  Non-Hispanic Black 188 (28.7) 168 (25.6) 152 (23.2) 87 (13.3)

  Other Race 138 (21.1) 99 (15.1) 112 (17.1) 88 (13.4)

Education (%) <0.001

  Less than 9th grade 26 (4.0) 51 (7.8) 50 (7.6) 76 (11.6)

  9–11th grade 56 (8.5) 71 (10.8) 92 (14.1) 97 (14.8)

  High school Graduate/GED or equivalent 126 (19.2) 146 (22.3) 166 (25.4) 165 (25.2)

  Some college or AA degree 219 (33.4) 196 (29.9) 199 (30.4) 194 (29.6)

  College graduate or above 227 (34.7) 191 (29.2) 147 (22.5) 122 (18.6)

  Unknown 1 (0.2) 0 (0.0) 0 (0.0) 1 (0.2)

Family income ratio (mean (SD)) 2.76 (1.68) 2.63 (1.65) 2.41 (1.63) 2.32 (1.54) <0.001

BMI (mean (SD)) 24.77 (4.98) 28.65 (6.35) 30.79 (6.79) 32.81 (7.06) <0.001

  <25 381 (58.2) 193 (29.5) 116 (17.7) 67 (10.2)

  25–29.9 183 (27.9) 248 (37.9) 231 (35.3) 191 (29.2)

  ≥30 91 (13.9) 214 (32.7) 307 (46.9) 397 (60.6)

Smoke (%) <0.001

  Yes 251 (38.3) 277 (42.3) 291 (44.5) 337 (51.5)

  No 404 (61.7) 378 (57.7) 362 (55.4) 318 (48.5)

  Unknown 0 (0.0) 0 (0.0) 1 (0.2) 0 (0.0)

Drink (%) 0.525

  Yes 73 (13.5) 79 (15.0) 84 (15.8) 99 (17.2)

  No 468 (86.3) 446 (84.8) 449 (84.2) 476 (82.8)

  Unknown 1 (0.2) 1 (0.2) 0 (0.0) 0 (0.0)

Hypertension (%) <0.001

  Yes 145 (22.1) 229 (35.0) 266 (40.7) 291 (44.4)

  No 510 (77.9) 425 (64.9) 387 (59.2) 363 (55.4)

  Unknown 0 (0.0) 1 (0.2) 1 (0.2) 1 (0.2)

Diabetes (%) <0.001

  Yes 31 (4.7) 67 (10.2) 98 (15.0) 169 (25.8)

  No 606 (92.5) 570 (87.0) 531 (81.2) 467 (71.3)

  Unknown 18 (2.7) 18 (2.8) 25 (3.8) 19 (2.9)

Cotinine [mean (SD)] 56.23 (126.06) 50.98 (123.20) 64.07 (128.82) 67.47 (166.35) 0.121

Total cholesterol [mean (SD)] 177.79 (37.71) 185.23 (38.99) 191.24 (40.92) 198.61 (41.49) <0.001

LDL [mean (SD)] 97.28 (30.32) 111.79 (33.63) 119.03 (36.46) 118.73 (36.92) <0.001

Triglyceride [mean (SD)] 52.05 (15.79) 80.59 (19.16) 112.90 (26.01) 193.48 (65.63) <0.001

HDL [mean (SD)] 70.11 (17.19) 57.32 (11.35) 49.63 (9.28) 41.18 (8.08) <0.001

Q, quartile; BMI, body mass index; LDL, low density lipoprotein; HDL, high density lipoprotein.
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participants increased gradually from Q1 to Q4. The proportion of 
females was higher in the lower quartiles. The percentage of 
non-Hispanic white participants was the highest in all four groups. 
The average BMI of participants increased from Q1 to Q4, and the 
proportion of obese individuals also increased. The proportions of 
smokers, drinkers, and individuals with a history of hypertension and 
diabetes increased as the quartile number increased. Serum cotinine, 
total cholesterol, triglycerides, and LDL levels increased across 
quartiles, while high-density lipoprotein levels decreased.

3.2 Distribution of VOC

Supplementary Table S2 presents the distribution of VOCs in 
urine. Apart from BPMA and CYMA, the detection rates for the 
remaining VOCs exceed 90%. Among them, the detection rates of 
DHBMA and HMPMA reached 100% in the study population. The 
Spearman correlation coefficients between VOCs varied widely, 
ranging from 0.02 to 0.92 (presented in Supplementary Figure S1).

3.3 Associations between VOC and CMI

The association between VOC quartiles and CMI is shown in 
Table 2. These models were adjusted for demographic characteristics 
and other covariates. In the fully adjusted Model 2, we  found 
significant positive associations between the highest quartile 
concentrations of CEMA, 3HPMA, MHBMA3, and HMPMA 
compared to the lowest quartile (β = 0.43, 95% CI = 0.20, 0.67, P for 
trend < 0.001; β = 0.30, 95% CI = 0.05, 0.55, P for trend = 0.006; 
β = 0.37, 95% CI = 0.14, 0.61, P for trend < 0.001; β = 0.28, 95% 
CI = 0.01, 0.55, P for trend = 0.010). No association was observed 
between other VOCs and CMI estimates.

We treated VOCs as continuous variables and performed multiple 
linear regression analysis to explore their relationships. The findings, 
presented in Supplementary Table S3, revealed significant positive 
associations between AMCC, CEMA, 3HPMA, MHBMA3, HMPMA, 
and CMI (β = 0.07, 95% CI = 0.02, 0.13, p = 0.01; β = 0.15, 95% 
CI = 0.09, 0.20, p < 0.01; β = 0.08, 95% CI = 0.03, 0.14, p < 0.01; 
β = 0.10, 95% CI = 0.05, 0.15, p < 0.01; β = 0.08, 95% CI = 0.02, 0.14, 
p = 0.01). These results are generally consistent with the findings 
mentioned above.

3.4 Non-linear relationship

We applied the RCS model to investigate the nonlinear association 
between VOCs and CMI. As shown in Figure 2, we found significant 
nonlinear relationships between AAMC, SBMA, and CMI 
(P-overall = 0.028, P-nonlinearity = 0.040; P-overall = 0.096, 
P-nonlinearity = 0.035). Additionally, no other significant nonlinear 
relationships were observed between VOCs and CMI.

3.5 Combined effect of VOCs on CMI

We used multiple models to analyze the effects of mixed 
exposure. The results show that, compared to the 25th percentile, 

the effect estimates of other percentiles first increased and then 
decreased, with an overall positive trend, although the differences 
were not statistically significant (Figure  3). Additional results 
from the BKMR model are shown in Supplementary Figures S2, 
S3. In the WQS model, we  found that CEMA dominated the 
mixed effects on CMI (Figure 4). The positive WQS index did not 
show a significant association with CMI (Supplementary Table S4). 
The results from the Q-gcomp analysis were generally consistent 
with those from the BKMR and WQS models 
(Supplementary Figure S4). CEMA had the highest weight. The 
linear association between mixed VOCs and CMI showed a 
positive trend.

3.6 Subgroup analysis

We conducted subgroup analyses stratified by variables such as 
age, gender, race, education level, smoking status, alcohol 
consumption, hypertension, diabetes, and BMI to examine the effects 
of VOCs on CMI. The results showed significant interactions between 
DHBMA, MA, MHBMA, and HMPMA with CMI based on BMI 
(Table 3). Specifically, MHBMA3 and HMPMA were significantly 
positively associated with CMI in participants with a BMI ≥ 30 
(β = 0.18, 95% CI = 0.09, 0.27, p < 0.01; β = 0.15, 95% CI = 0.05, 0.25, 
p < 0.01). There were also significant interactions between 2MHA, 
3-4MHA, AAMA, AMCC, BPMA, CYMA, MA, MHBMA3, PGA, 
and HMPMA with CMI based on diabetes status. Notably, 2MHA, 
MA, MHBMA3, and HMPMA were significantly positively associated 
with CMI in participants with diabetes (β = 0.14, 95% CI = 0.00, 0.27, 
p = 0.04; β = 0.19, 95% CI = 0.00, 0.38, p = 0.05; β = 0.23, 95% 
CI = 0.06, 0.39, p = 0.01; β = 0.24, 95% CI = 0.07, 0.41, p = 0.01). The 
results of subgroup analyses for other variables are presented in 
Supplementary Table S5.

Subsequently, for VOCs that demonstrated interaction effects in 
the stratified analysis, we applied restricted cubic splines (RCS) to 
model the dose–response relationships between VOCs and CMI 
stratified by BMI and diabetes status. Significant results were 
visualized in Figures 5, 6. The results showed a positive dose–response 
relationship between MHBMA3 and HMPMA with CMI in 
individuals with BMI ≥ 30 (p = 0.001; p = 0.011, respectively). 
Similarly, among individuals with diabetes, MHBMA3 and HMPMA 
exhibited positive dose–response relationships with CMI (p = 0.006; 
p = 0.021, respectively), while BPMA demonstrated a negative dose–
response relationship with CMI (p = 0.011). These findings are 
generally consistent with the earlier results.

3.7 Multiple comparison

After rigorously controlling for the risk of false positives due to 
multiple comparisons using the Benjamini-Hochberg FDR correction, 
the results are presented in Supplementary Figure S6. Notably, CEMA 
(β = 0.141, 95% CI: 0.088–0.195, FDR < 0.001) and MHBMA3 
(β = 0.096, 95% CI: 0.044–0.149, FDR = 0.002) were significantly 
associated with elevated CMI. In addition, 3HPMA (FDR = 0.016), 
AMCC (FDR = 0.026), and HMPMA (FDR = 0.026) exhibited 
suggestive associations. All other detected VOCs did not reach the 
threshold for statistical significance (FDR > 0.05).
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TABLE 2 Multiple linear regression between individual VOCs and CMI.

Q1 Q2 Q3 Q4 P for trend

2MHA

Model 1 Ref 0.08 (−0.03, 0.20) 0.05 (−0.08, 0.18) −0.10 (−0.37, 0.18) 0.835

Model 2 Ref 0.10 (−0.01, 0.21) 0.06 (−0.08, 0.19) 0.04 (−0.22, 0.31) 0.453

3-4MHA

Model 1 Ref 0.16 (−0.02, 0.35) 0.11 (−0.08, 0.30) 0.16 (−0.09, 0.42) 0.719

Model 2 Ref 0.13 (−0.04, 0.31) 0.10 (−0.08, 0.29) 0.13 (−0.12, 0.39) 0.610

AAMA

Model 1 Ref 0.23 (0.03, 0.44) 0.22 (0.01, 0.42) 0.19 (−0.08, 0.46) 0.438

Model 2 Ref 0.20 (0.01, 0.39) 0.24 (0.04, 0.43) 0.19 (−0.07, 0.45) 0.145

AMCC

Model 1 Ref 0.08 (−0.11, 0.27) 0.16 (−0.03, 0.35) 0.30 (0.04, 0.55) 0.008

Model 2 Ref 0.01 (−0.17, 0.19) 0.08 (−0.10, 0.27) 0.22 (−0.05, 0.48) 0.055

ATCA

Model 1 Ref 0.07 (−0.07, 0.20) 0.09 (−0.06, 0.23) 0.20 (−0.07, 0.46) 0.142

Model 2 Ref 0.04 (−0.09, 0.17) 0.06 (−0.08, 0.20) 0.16 (−0.09, 0.41) 0.234

SBMA

Model 1 Ref 0.13 (−0.08, 0.33) 0.16 (−0.05, 0.38) −0.02 (−0.30, 0.26) 0.785

Model 2 Ref 0.14 (−0.05, 0.34) 0.19 (−0.01, 0.40) 0.00 (−0.27, 0.26) 0.602

BPMA

Model 1 Ref 0.02 (−0.09, 0.13) −0.07 (−0.20, 0.07) 0.11 (−0.14, 0.36) 0.870

Model 2 Ref 0.01 (−0.09, 0.11) −0.04 (−0.16, 0.09) 0.16 (−0.08, 0.40) 0.728

CEMA

Model 1 Ref 0.28 (0.10, 0.45) 0.42 (0.24, 0.59) 0.52 (0.28, 0.76) < 0.001

Model 2 Ref 0.22 (0.06, 0.39) 0.38 (0.21, 0.55) 0.43 (0.20, 0.67) < 0.001*

CYMA

Model 1 Ref 0.04 (−0.11, 0.19) 0.09 (−0.05, 0.23) 0.03 (−0.17, 0.22) 0.322

Model 2 Ref 0.08 (−0.07, 0.23) 0.06 (−0.15, 0.26) 0.02 (−0.24, 0.28) 0.649

DHBMA

Model 1 Ref 0.12 (−0.07, 0.31) 0.23 (0.04, 0.42) −0.01 (−0.28, 0.26) 0.119

Model 2 Ref 0.06 (−0.12, 0.24) 0.19 (0.01, 0.37) −0.07 (−0.32, 0.19) 0.100

2HPMA

Model 1 Ref 0.01 (−0.12, 0.14) −0.02 (−0.17, 0.13) −0.11 (−0.37, 0.15) 0.451

Model 2 Ref 0.00 (−0.12, 0.12) −0.03 (−0.18, 0.11) −0.07 (−0.32, 0.18) 0.513

3HPMA

Model 1 Ref 0.25 (0.08, 0.42) 0.29 (0.11, 0.47) 0.31 (0.07, 0.54) 0.015

Model 2 Ref 0.25 (0.09, 0.41) 0.32 (0.14, 0.49) 0.30 (0.05, 0.55) 0.006*

MA

Model 1 Ref 0.19 (0.00, 0.39) 0.26 (0.07, 0.46) 0.16 (−0.12, 0.43) 0.063

Model 2 Ref 0.12 (−0.07, 0.30) 0.19 (0.01, 0.38) 0.00 (−0.27, 0.27) 0.223

MHBMA3

Model 1 Ref 0.18 (0.05, 0.31) 0.24 (0.07, 0.40) 0.33 (0.13, 0.54) < 0.001

Model 2 Ref 0.21 (0.09, 0.34) 0.28 (0.11, 0.46) 0.37 (0.14, 0.61) < 0.001*

(Continued)
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4 Discussion

This study aimed to explore the association between VOCs and 
the CMI using data from 2,619 participants. The findings from this 
research provide significant new insights into the role that VOCs 
might play in influencing cardiovascular and metabolic health. Our 
results suggest a clear association between certain VOCs and 
CMI. Specifically, the higher concentrations of CEMA, 3HPMA, 
MHBMA3, MPAH, and PFNA in urine were significantly positively 
associated with CMI in fully adjusted models. This supports the 
hypothesis that exposure to specific VOCs could potentially influence 
cardiovascular metabolic dysfunction, which is often reflected in the 
CMI (24). In addition, a linear relationship was observed between 
AMCC, CEMA, 3HPMA, MHBMA3, HMPMA, and CMI, further 
confirming that VOCs contribute to altered metabolic outcomes.

With the ongoing urbanization process, VOC concentrations in 
work and living environments continue to rise. These chemicals enter 
the human body through the air, posing serious health risks, 
particularly to the cardiovascular system (25, 26). Recent studies have 
shown that long-term exposure to high concentrations of VOCs is 
closely associated with the development of various cardiovascular 
diseases. A national study in the United States found that urinary 
VOC levels were significantly related to CVD (27). In another 
prospective cohort, individual and combined exposure to VOCs was 
found to increase the risk of CVD mortality, while reducing exposure 
to VOCs decreased overall and cardiovascular disease-related 
mortality (28). In a cross-sectional study involving 49,504 participants, 
VOCs were confirmed to be significantly associated with CVD after 
full adjustment (22). Furthermore, a case–control study provided 
evidence linking exposure to certain household and commercial 
VOCs with coronary artery disease. A study from China found that 
increased concentrations of specific VOCs were significantly 
associated with higher emergency hospital admission rates for 
cardiovascular diseases (29). In this study, the observed effect size 
between CEMA, 3HPMA, and CMI suggests that VOC exposure may 
substantially elevate CMI levels, potentially pushing individuals 
beyond established high-risk thresholds. Given that higher CMI 
values have been associated with increased risk of metabolic syndrome 
and cardiovascular disease, this association highlights the clinical 
relevance of VOC exposure in contributing to adverse cardiometabolic 
outcomes. Even at lower levels of VOCs in the environment, 
cardiovascular damage was still evident. Most of the current research 
focuses on the direct relationship between VOC exposure and 
cardiovascular diseases; however, the potential effects on 
cardiovascular metabolic function remain unclear. This study provides 

evidence on the association between VOC exposure and CMI, which 
is one of the highlights of this research. Further research is warranted 
to explore these findings in longitudinal cohorts to assess long-term 
risk trajectories.

This study identified a nonlinear relationship between certain 
VOC exposures and CMI, with AMCC and SBMA exhibiting J-shaped 
and inverted U-shaped associations, respectively. At low 
concentrations, AMCC is likely metabolized into less toxic products 
via detoxification pathways mediated by hepatic CYP450 enzymes, 
resulting in minimal impact on cardiometabolic function, reflected by 
the relatively flat curve on the left side of the inflection point (8). 
However, when exposure exceeds the metabolic capacity, 
unmetabolized AMCC may induce ROS production through NADPH 
oxidase, thereby disrupting energy metabolism, leading to a sharp 
increase on the right side of the curve (27, 30, 31). Moreover, although 
this study observed an inverted U-shaped association between SBMA 
and cardiometabolic function, no established mechanisms currently 
explain the effects of SBMA. Our findings underscore the need for 
further research in this area. Although some nonlinear patterns are 
biologically reasonable, unmeasured confounding factors or exposure 
misclassification may affect the observed curves (32). Future research 
should incorporate longitudinal exposure assessments and multi-
omics data to validate these thresholds and further elucidate the 
underlying mechanisms. These studies can partly explain the 
interactive relationship between obesity or diabetes and VOC 
and CMI.

Based on the subgroup analysis results, we suggest that VOCs may 
influence metabolic risk factors such as obesity and diabetes, directly 
or indirectly, further impacting the CMI. Studies have shown that 
exposure to specific VOCs is positively correlated with an increased 
BMI (33). Elevated BMI may affect heart metabolic function by 
increasing blood glucose, lipid levels (such as TG and LDL), and 
insulin resistance (34–36). Therefore, obesity could amplify the 
negative effects of VOCs on metabolic health, making VOC exposure’s 
impact on CMI more pronounced. Adipose tissue in obese individuals 
continuously releases pro-inflammatory cytokines, which may 
enhance VOC toxicity through increased oxidative stress (37). 
Inflammatory signaling upregulates, which, in combination with ROS 
generated from VOC metabolism, causes vascular endothelial damage. 
Inflammatory factors downregulate hepatic CYP450 enzyme activity, 
slowing VOC metabolism and prolonging systemic exposure (38, 39). 
Furthermore, exposure to VOCs can induce insulin resistance and 
glucose homeostasis disruption, leading to the onset of diabetes (40). 
The effects of VOCs on fat metabolism may also be closely related to 
the development of diabetes. Studies have shown that the accumulation 

TABLE 2 (Continued)

Q1 Q2 Q3 Q4 P for trend

PGA

Model 1 Ref 0.02 (−0.17, 0.21) 0.02 (−0.16, 0.21) −0.02 (−0.28, 0.24) 0.966

Model 2 Ref −0.04 (−0.21, 0.14) −0.01 (−0.19, 0.17) −0.08 (−0.33, 0.18) 0.947

HMPMA

Model 1 Ref 0.24 (0.04, 0.45) 0.36 (0.14, 0.57) 0.41 (0.15, 0.67) 0.001

Model 2 Ref 0.18 (−0.01, 0.38) 0.29 (0.08, 0.50) 0.28 (0.01, 0.55) 0.010*

Q, quartile; Ref, reference. Model 1 adjusted for age, gender, race, education, family income ratio. Model 2 further adjusted for serum cotinine, alcohol, smoke, hypertension, diabetes, TC and 
LDL. *means significant results.
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FIGURE 2

Non-linear relationships between VOCs and CMI. The model was adjusted for age, gender, race, education, family income ratio, serum cotinine, 
alcohol, smoke, hypertension, diabetes, TC and LDL.

FIGURE 3

BKMR analysis of the overall effect of VOCs mixed exposure on CMI. The BKMR model uses Gaussian radial basis function kernel, and different 
percentile chemicals are compared with those in the 25th percentile. “est” can be interpreted as the relationship between VOCs and CMI. The model 
was adjusted for age, gender, race, education, family income ratio, serum cotinine, alcohol, smoke, hypertension, diabetes, TC and LDL. The sample 
size in the BKMR model is consistent with the sample size of the linear regression.
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of adipocytes and liver fat, along with increased visceral fat, can impair 
insulin metabolism, leading to uncontrolled blood glucose levels (41). 
Diabetic individuals, due to insulin resistance, unstable blood glucose, 
and metabolic abnormalities, often exhibit higher CMI values. VOC 
exposure may exacerbate this metabolic disorder, affecting the balance 
between glucose and lipid metabolism. VOC metabolites may directly 
inhibit tyrosine phosphorylation of insulin receptor substrate 1, 
worsening IR (42). IR-related mitochondrial dysfunction may impair 
cellular repair mechanisms, reducing the ability to mitigate 
VOC-induced oxidative damage (43). VOC exposure experiments in 
high-fat diet or diabetic mice to measure inflammatory markers and 
insulin signaling proteins (44). These results suggest that VOCs may 
exacerbate cardiometabolic risk by promoting metabolic disturbances 
associated with obesity and diabetes, such as insulin resistance, 
inflammation, and oxidative stress. Individuals with obesity and 
diabetes are more vulnerable to the adverse effects of VOCs due to 
their pre-existing metabolic abnormalities and inflammatory states. 
However, further research is needed to elucidate the 
underlying mechanisms.

Disruption of cardiac metabolic function is often closely 
associated with cardiovascular diseases such as metabolic syndrome, 
diabetes, hypertension, and atherosclerosis (45). The potential 
mechanisms by which VOCs lead to abnormal cardiac metabolic 
function are not yet fully understood. VOCs may affect cardiac 
metabolic function directly or indirectly by activating oxidative stress. 
There is evidence suggesting that long-term exposure to certain VOCs 
leads to increased levels of oxidative stress markers in the body, which 
in turn damages cardiovascular endothelial cells, promotes lipid 
oxidation, and contributes to atherosclerosis (46). Evidence shows that 
longer working hours are associated with higher levels of MDA and 
glutathione S-transferase (GST) in workers exposed to benzene, 
indicating an increased risk of oxidative damage (47). In vitro studies 

have also validated the effectiveness of these biomarkers and provided 
deeper insights into the potential molecular mechanisms underlying 
VOC-induced toxicity. For example, oxidative stress was activated in 
normal human cell lines, with ROS levels increasing in a dose-
dependent manner and NAD(P)H quinone dehydrogenase 1 
(NQO-1) levels decreasing. This demonstrated that exposure to 
1,4-benzoquinone (a benzene metabolite) induces autophagy and 
apoptosis, leading to hematotoxicity (48). Moreover, oxidative stress 
caused by VOCs may also influence lipid metabolism by inducing 
LDL oxidation, thus increasing the risk of atherosclerosis (49). VOC 
exposure can also trigger chronic low-grade inflammation in the body, 
which is considered one of the underlying factors of CVD and 
metabolic disorders. Studies have shown that VOCs activate the 
immune system by stimulating T-cells to release inflammatory 
mediators, such as tumor necrosis factor-alpha (TNF-α) and 
interleukins-4 (IL-4) and interleukins-13 (IL-13), damaging 
endothelial cells and impairing vascular function, which increases the 
risk of arteriosclerosis (50). Exposure to acrolein induces increased 
secretion of IL-6 and TNF-α in human vascular endothelial cells 
(HUVECs), mediated through the NF-κB pathway (51). Animal 
experiments have shown that VOC exposure increases CD4 + and 
CD8 + T cell populations in mice and induces gene expression 
changes associated with apoptosis, oxidative stress, and inflammatory 
cytokine production (52, 53). VOCs may also cause chronic 
inflammation in liver tissue, leading to lipid metabolism disorders 
(54). Abnormal lipid metabolism may be a key factor in impaired 
cardiac metabolic function. Some studies have used breath analysis to 
map the VOC profile in human adipocytes, suggesting that adipose 
tissue enzymes may play an important role in metabolic regulation 
(55). Certain VOC exposures may lead to the accumulation of fat 
tissue in the body, especially an increase in visceral fat, which is 
associated with abdominal obesity (56). While existing studies suggest 

FIGURE 4

WQS model regression index weights for CMI. The model was adjusted for age, gender, race, education, family income ratio, serum cotinine, alcohol, 
smoke, hypertension, diabetes, TC and LDL.
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a potential link between VOCs and disruption of cardiac metabolic 
function, mechanistic research in this area remains limited, and 
larger-scale population studies combined with more in-depth in vivo 
and in vitro experimental research are needed.

Our findings highlight the need for effective public health 
strategies to mitigate the impact of VOC exposure on cardiometabolic 
health. For source control, mandatory VOC emission standards 
should be established for building materials and furniture, with the 
promotion of low-emission alternatives. In high-risk areas, enhanced 
ventilation and real-time air quality monitoring should 
be  implemented to reduce indoor VOC levels. For metabolically 
sensitive populations (BMI ≥ 30 and diabetes), urinary VOC 
metabolites should be  included as optional tests during annual 
check-ups to facilitate early detection and timely intervention. For 

public education and protection of vulnerable groups, awareness of 
VOC-related risks should be raised, emphasizing proper ventilation 
and the use of low-VOC products. Regular screening of vulnerable 
populations, such as pregnant women, the older adult, and children, 
should be  conducted to enable early detection of exposure. 
Additionally, a national VOC monitoring system should be established 
to track exposure trends and assess the effectiveness of implemented 
policies, ensuring timely improvements.

This study has several innovative aspects. First, while many 
existing studies focus on the relationship between common metabolic 
risk factors and the CMI, this study innovatively centers on the 
relationship between VOC exposure and CMI. Second, most existing 
studies directly examine the relationship between VOCs and CVD, 
while our research incorporates data on blood lipid status, HDL-C, 

TABLE 3 Subgroup analysis for associations between VOC and CMI.

Variables BMI Diabetes

<30 ≥30 Yes No

Estimate 
(95% CI)

p 
value

Estimate 
(95% CI)

p 
value

P-int Estimate 
(95% CI)

p 
value

Estimate 
(95% CI)

p 
value

P-int

2MHA
0.01 (−0.04, 

0.05)
0.81

0.05 (−0.02, 

0.12)
0.19 0.46

0.14 (0.00, 

0.27)
0.04*

0.00 (−0.04, 

0.04)
0.91

<0.01*

3-4MHA
0.00 (−0.04, 

0.04)
0.90

0.05 (−0.03, 

0.12)
0.22 0.32

0.13 (−0.01, 

0.28)
0.07

0.00 (−0.04, 

0.04)
0.93

<0.01*

AAMA
0.03 (−0.02, 

0.09)
0.25

0.05 (−0.05, 

0.14)
0.34 0.59

0.14 (−0.04, 

0.32)
0.12

0.03 (−0.02, 

0.08)
0.30

<0.01*

AMCC
0.03 (−0.02, 

0.09)
0.25

0.05 (−0.05, 

0.14)
0.34 0.59

0.14 (−0.04, 

0.32)
0.12

0.03 (−0.02, 

0.08)
0.30

<0.01*

ATCA
−0.01 (−0.07, 

0.04)
0.60

0.03 (−0.06, 

0.11)
0.53 0.76

−0.02 (−0.16, 

0.11)
0.74

0.00 (−0.05, 

0.05)
0.97 0.79

SBMA
−0.03 (−0.08, 

0.01)
0.16

0.05 (−0.03, 

0.12)
0.23 0.11

0.08 (−0.06, 

0.21)
0.26

−0.02 (−0.07, 

0.02)
0.26 0.06

BPMA
−0.02 (−0.06, 

0.01)
0.24

−0.01 (−0.07, 

0.05)
0.77 0.98

−0.13 (−0.24, 

−0.03)
0.01*

0.00 (−0.03, 

0.03)
0.87 <0.01*

CEMA
0.05 (0.00, 

0.11)
0.07

0.17 (0.07, 

0.26)
<0.01* 0.24

0.09 (−0.08, 

0.26)
0.29

0.06 (0.01, 

0.11)
0.01* 0.33

CYMA
−0.02 (−0.06, 

0.02)
0.35

0.07 (0.01, 

0.14)
0.03* 0.18

0.10 (−0.03, 

0.23)
0.11

0.01 (−0.02, 

0.05)
0.43 0.03*

DHBMA
−0.06 (−0.13, 

0.01)
0.07

0.10 (−0.02, 

0.22)
0.09 0.04*

0.08 (−0.14, 

0.30)
0.49

−0.04 (−0.10, 

0.02)
0.22 0.11

2HPMA
−0.07 (−0.11, 

−0.02)
0.01*

0.04 (−0.04, 

0.12)
0.36 0.13

−0.09 (−0.23, 

0.06)
0.23

−0.02 (−0.07, 

0.02)
0.25 0.87

3HPMA
0.01 (−0.05, 

0.06)
0.83

0.13 (0.04, 

0.22)
<0.01* 0.09

0.10 (−0.07, 

0.27)
0.24

0.04 (−0.01, 

0.09)
0.11 0.11

MA
−0.06 (−0.12, 

0.00)
0.06

0.08 (−0.03, 

0.19)
0.16 0.03*

0.19 (0.00, 

0.38)
0.05*

−0.05 (−0.10, 

0.01)
0.10

<0.01*

MHBMA3
0.00 (−0.05, 

0.06)
0.98

0.18 (0.09, 

0.27)
<0.01* 0.03*

0.23 (0.06, 

0.39)
0.01*

0.04 (−0.01, 

0.09)
0.09

<0.01*

PGA
−0.07 (−0.14, 

−0.01)
0.02*

0.04 (−0.08, 

0.15)
0.55 0.24

0.13 (−0.08, 

0.34)
0.23

−0.06 (−0.12, 

0.00)
0.05 0.01*

HMPMA
−0.01 (−0.07, 

0.05)
0.75

0.15 (0.05, 

0.25)
<0.01* 0.04*

0.24 (0.07, 

0.41)
0.01*

0.02 (−0.04, 

0.07)
0.50 <0.01*

The model was adjusted for age, gender, race, education, family income ratio, serum cotinine, alcohol, smoke, hypertension, diabetes, TC and LDL. *means significant results.
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FIGURE 5

The dose–response relationship curve stratified by BMI using RCS. (A) MHBMA3; (B) HMPMA.

FIGURE 6

The dose–response relationship curve stratified by diabetes using RCS. (A) BMMA; (B) MHBMA3; (C) HMPMA.
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TG, and waist-to-height ratio, using CMI as a comprehensive health 
indicator. This allows for a more precise assessment of the potential 
impact of VOC exposure on metabolic function, providing a more 
detailed analysis of the effects of environmental pollution on cardiac 
metabolic health. Finally, this study utilized various statistical models 
and data analysis methods to conduct a comprehensive and systematic 
analysis of the influence of individual and mixed VOCs on CMI, 
thereby expanding the research area on the impact of VOCs on 
cardiac metabolic health.

However, this study also has some limitations. This study is based 
on cross-sectional data from NHANES, which limits the ability to 
establish causality between VOC exposure and cardiometabolic 
function. Temporal ambiguity prevents us from determining whether 
VOC exposure precedes changes in cardiometabolic health or vice 
versa. Additionally, the possibility of reverse causality cannot 
be excluded, where pre-existing cardiometabolic dysfunction may 
influence VOC metabolism or retention. To further verify our 
findings, prospective cohort studies or clinical trials are needed. 
Second, participants may not have accurately recalled or reported their 
VOC exposure history or other health conditions, leading to recall 
bias. Third, the study can only provide information on the relationship 
between chemicals and health status at a single time point, and it 
cannot assess the cumulative effects of long-term exposure on health. 
Fourth, while several known confounders can be adjusted for, it is not 
possible to fully adjust for all potential confounders. Fourth, using a 
single spot urine sample may not fully capture long-term VOC 
exposure, potentially leading to exposure misclassification. To mitigate 
this, future studies should consider repeated measurement to improve 
exposure assessment accuracy. Furthermore, although our statistical 
models accounted for mixture effects, we acknowledge that potential 
synergistic or antagonistic biological interactions among VOCs were 
not comprehensively explored. We emphasized the need for future 
mechanistic studies to investigate these complex interactions.

Our findings underscore the importance of understanding the role 
of environmental exposures, such as VOCs, in influencing 
cardiovascular and metabolic health. The results of this study can 
inform public health policies aimed at reducing VOC exposure, 
particularly in urban and occupational settings where VOC 
concentrations tend to be higher. Further research into the mechanisms 
by which VOCs affect metabolic health will help to identify more 
effective interventions to mitigate the harmful effects of these pollutants.

In conclusion, this study adds to the growing body of evidence 
linking VOC exposure to metabolic dysfunction. By highlighting the 
significant relationship between VOCs and CMI, particularly in 
individuals with higher BMI or diabetes, we  provide crucial 
information that can inform future research, public health strategies, 
and policy interventions aimed at reducing VOC-related health risks.

5 Conclusion

This study reveals a significant association between specific VOCs 
and the CMI. We found that known risk factors, such as obesity and 
diabetes, may play an important role in the relationship between these 
chemicals and CMI. This finding provides new epidemiological 
evidence to help us understand the potential mechanisms through 

which VOCs influence cardiovascular and metabolic function. More 
importantly, these results lay the foundation for further toxicological 
and mechanistic studies.
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