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This technical report addresses the predictive validity of long-term epidemiological 
forecasting based upon dynamic causal modeling. It uses complementary prospective 
and retrospective analyses. The prospective analysis completes a series of (annual) 
reports comparing predictions with subsequent outcomes (i.e., cases, deaths, 
hospital admissions and Long COVID) reported a year later. Predictive validity is 
then addressed retrospectively by examining predictions at various points during 
the pandemic, in relation to actual outcomes at three, six and 12 months after 
the predictions were evaluated. This analysis suggests that—with a sufficiently 
expressive dynamic causal model—three, six and 12 month projections can 
be remarkably accurate (to within 10% or less of observed outcomes) at certain 
phases of the epidemic: namely, the initial phase—before the emergence of 
highly transmissible variants—and toward the end of the pandemic, when slow 
fluctuations in transmissibility and virulence can be estimated more precisely. 
However, the predictive accuracy in the intervening periods are compromised, 
to the extent that some forecasts only remain within their Bayesian credible 
intervals for 3 months. We provide a quantitative analysis of predictive accuracy 
for future reference and discuss the implications for epidemiological modeling, 
and forecasting, of this sort.
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Introduction

A Dynamic Causal Model (DCM) of the COVID-19 outbreak in the UK in February 2020 
(1) was used to provide long-term forecasts—on a fortnightly basis—from February 2021 to 
November 2023 (2). Published reports using the DCM have examined the epidemic in 
different countries and regions, various mitigation strategies and the reliability of projections 
of the model in peer reviewed journals (3–10) and pre-prints (11–18). As promised—in a 
previous analysis of the predictive validity of long term projections (8)—this technical report 
assesses a further 12 month projection from November 2023 to October 2024 in the UK. It 
then presents a retrospective analysis of the predictive accuracy at 3, 6, and 12 months, at 
yearly intervals during the pandemic.

We first summarize a prospective analysis of predictive validity for the period covering 
November 2023 to October 2024. This complements analyses of previous years and reaffirms 
the predictive accuracy of certain projections; particularly the incidence of cases, Long COVID 
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and hospital admissions. Although earlier projections of COVID-
related deaths were underestimated by a factor of two, predictions for 
the last year were accurate to within 20%. These analyses are then 
repeated retrospectively, to assess the predictive accuracy of DCM in 
terms of projections a few months into the future—based upon 
retrospective data—throughout the pandemic.

Outcomes for November 2023 to 
October 2024

Methods and data

Since we published our projections for the year to October 2024 
some of the data sources have changed or have been deprecated. The 
Institute for Health Metrics and Evaluation (IHME)—which we had 
used as a comparison—stopped estimating incidence in April 2023 (19). 
The Office of National Statistics (ONS)—in conjunction with the UK 
Health Security Agency (UKHSA) set up in October 2023—reported on 
a Winter Covid Infection Survey in April 2024 (20). The UKHSA have 
published a pre-print of estimates of incidence using this survey data 
(21). While their estimates cover only the winter months, graphs of 
incidence can be compared to our incidence graph for the same period.

The only COVID-19 data published by UKHSA up to October 
2024 on testing are the number of people receiving a PCR test and the 
positivity of people receiving such a PCR test (22). While we published 
our projection to October 2024 of PCR and LFT tests combined 
we also estimated (but did not report) our projection of PCR tests 
alone, which we refer to in this report. We also separate out the PCR 
positive tests from confirmed cases by both PCR tests and LFTs to 
provide a fair comparison.

UKHSA also stopped reporting deaths within 28 days of a 
positive PCR test in July 2023 (23). The UKHSA have assessed the 
comparability of death registrations with this metric and found 
that in the second half of 2022 about 40% of deaths within 28 days 
of a positive test where registered deaths involving COVID-19 and 
30% being caused by COVID-19 (24). As with testing, we estimated 

projections of registered deaths as well as registered deaths within 
28 days of a test in November 2023 and provide these results.

At the time of writing, hospital admissions are still being 
provided on the UKHSA dashboard. The Winter Covid Infection 
Survey has published estimates of post COVID-19 syndrome (Long 
COVID of more than 12 weeks) UK prevalence and estimates of 
duration (20). These can be used to calculate incidence which can 
be  used to compare with our projections. The model used in 
November 2023 modified a test and trace parameter from 0.29 to 
0.25 on 1st October 2023. This model was used to estimate projected 
values to September 2024.

Results

Table  1 of our previous report (8) is provided to show our 
projections (in the far right column) of the year to October 2024 of 
cumulative results provided by the Nov2023 model.

Table 2 shows the actual values of the data items that are still available 
and alternative entries chosen to replace, as near as possible, items that 
no longer are available. We now consider the key metrics in turn.

Incidence
The Nov2023 model estimate of incidence in the twelve months 

suggested that 60% of the UK population would have had COVID-19 
infection. The subsidiary analysis published by UKHSA provides a 
graph of their estimate of incidence in England and Scotland 
(Figure 1A). This suggests a peak incidence on 19 December 2023 of 
498 cases, adjusted to 538 for the UK population. The corresponding 
DCM projection (Figure 1B) was remarkably consistent with a peak 
incidence of 494 on 29th December 2023.

The left panel of Figure 1 is adapted from Figure 4 of the UKHSA 
publication (21) showing their estimate of incidence of COVID-19 
over the winter months of 2023/2024 with a peak in December. The 
right panel shows a section of Figure 1 of our previous publication 
(10) covering the same winter months with a similar peak in terms of 
value and timing.

TABLE 1 Cumulative numbers of COVID-19 cases, deaths, tests, hospital admissions and post COVID-19 syndrome—1st February 2020—1st October 
2023 and 12 month projected numbers for 1st October 2023–2024—UK with projection using the November 2023 model.

Scenario assuming 
FTTIS is 25% effective

DCM 2022 projection Actual Data source DCM 2023 projection

Cumulative totals 
from 1st February 
2020 to 1st October 2023 1st October 2023

1st October 2023 to 
1st October 2024

Estimated incidence 485,603,813 131,242,140 IHME—1 Apr 2023 40,692,662

Confirmed cases by PCR and LFT 53,409,837 24,743,787

Our World in Data—30 

Sep 2023 524,351

Deaths within 28 days of a 

positive PCR test 330,957 229,765

Our World in Data—30 

Sep 2023 24,100

Tests (both PCR and LFD) 821,181,901 602,512,524

UK Covid-19 dashboard—30 

Sep 2023 14,080,675

Hospital admissions 1,867,580 862,553

UK Covid-19 dashboard—30 

Sep 2023 175,303

Post Covid-19 Syndrome 

incidence 4,726,602 1,734,000

ONS Infection survey—30 Mar 

2023 3,139,699
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Cases
Based on the Nov2023 model our estimate of confirmed cases is 

over double the number of actual cases counted by UKHSA. Free 
Lateral Flow Tests stopped being available, except to health staff and 
selected individuals on 1st April 2022. However, many people stopped 
testing themselves when their free test kits ran out or tested but did 
not report the result (25). This may explain the limited number of 
cases identified by UKHSA.

Deaths
The model has always estimated registered as well as deaths 

within 28 days of a positive PCR test and the cumulative number 
for the 12 months under study is shown in Table 2. The Nov2023 
model over-estimated registered deaths involving COVID-19 by 
about 20%. This may be due to individuals—hospitalized with a 
positive COVID-19 test—who are likely to have COVID-19 as an 
incidental finding, rather than the primary reason for admission. 
In addition, those who die are usually registered with COVID-19 
mentioned as involved in the death certificate (26). COVID-19 
vaccination coverage had also changed for those over 64 years of 
age from 90% in January 2022 to 79% after the autumn booster 
program in January 2023 to 70% after the autumn booster program 
in January 2024. This could increase the chance of severe disease 
and death in this vulnerable age group.

PCR tests
Over the 4 years of the epidemic—for each confirmed case—

there have been 6.5 positive PCR tests recorded. In the 12 months 
of the analysis there have been 7.2 tests to each case. The Nov2023 
model underestimated the PCR test positive number four-fold. 1 in 

10 PCR tests recorded on the UKHSA dashboard were positive as 
compared to the model projection of 1 in 13 PCR tests. The use of 
tests changed quite markedly in the later years.

Hospital admissions
The Nov2023 model over estimated hospital admissions by 

about 20%.

Long COVID
For the first time since the epidemic began, we can estimate 

with some confidence the incidence of Long COVID as we now 
have 4 years of experience of Long COVID and can estimate its 
average duration. Taking data from the Winter COVID-19 
Infection Survey carried out by ONS in collaboration with UKHSA 
the average duration of Long COVID is 118 days. The prevalence 
found in March 2024 was 1.1 million individuals with post 
COVID-19 syndrome (symptoms of more than 12 weeks). The 
incidence was therefore 9,600 new cases per day or 3.5 million in 
the 12 months. This is similar to our projected value of 3.1 million 
provided by the Nov2023 model.

Summary of findings
The Nov2023 model offered projections which closely matched 

what transpired in respect of the incidence of cases and Long 
COVID; with predictions within 3 to 10% of yearly outcomes, 
respectively. The model projections of deaths and admissions were 
accurate to within about 20%. Projections of PCR tests were way 
off, plausibly due to changes in testing practice and availability. 
These findings provide a quantitative assessment of predictive 
accuracy that is consistent with previous reports applying similar 

TABLE 2 Cumulative numbers of COVID-19 cases, deaths, tests, hospital admissions and post COVID-19 syndrome—for 12 months from 1st October 
2023 to 30th September 2024 UK using November 2023 DCM with and without test & trace parameter change.

DCM 2023 projection Actual UK

Model with change in test trace parameter Yes No

Outcomes
Data source of 
actual data 1st October 2023 to 30th September 2024

Estimated incidence Not available 40,692,662 Not available

Peak incidence per 100,000

Winter Covid-19 Infection 

Survey 494 538

Peak incidence date

Winter Covid-19 Infection 

Survey 29-Dec-23 19-Dec-23

Confirmed cases by PCR and LFT UKHSA Dashboard 524,351 364,000 240,569

Deaths within 28 days of a positive PCR 

test Not available 24,100 16,211 Not available

Deaths registered involved with 

COVID-19 ONS 14,940 9,857 14,023

Tests (both PCR and LFD) Not available 14,080,675 13,439,509 Not available

PCR tests UKHSA Dashboard 4,033,429 3,812,731 12,686,548

PCR pos tests UKHSA Dashboard 306,967 290,171 1,245,849

Hospital admissions UKHSA Dashboard 175,303 118,491 143,984

Post Covid-19 syndrome incidence

Winter Covid-19 Infection 

Survey 3,139,699 2,227,846 3,513,010

Alternative metrics have been chosen to replace those which are no longer available.
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analyses over the preceding years. These reports have used a 
prospective analysis comparing outcomes with predictions made 
in the past. We  now consider a retrospective analysis—of the 
predictive validity of DCM—by evaluating the accuracy of 
predictions—based upon historical data—in relation to 
actual outcomes.

Predictive accuracy of dynamic 
causal modeling

Methods and data

To assess predictive accuracy over the entire pandemic, 
we used the model structure used in November 2023 and available 
on the DCM website (27). This model emerged via a process of 
Bayesian model selection as more data became available, and as 
reported in the literature. The priors over model parameters were 
based on expert consensus in the early phases of the epidemic. 
Posterior estimates of these parameters are based upon fitting the 
model to data. Because DCM is based upon a generative model, 
one can then use the posterior parameter estimates to generate 
data in the future. The ensuing projections are compared to what 
actually transpired, based on UKHSA and ONS data. The 
outcomes assessed were limited to those that were available 
throughout the reporting period. These outcomes are registered 
deaths involving COVID-19, cases confirmed by a positive PCR 
or LFT test, hospital admissions of patients with a positive test 
and Long COVID, defined as post COVID-19 syndrome (self-
reported of more than twelve weeks duration). We focus on (i) 
peaks and troughs of incidence and (ii) cumulative values (area 
under the curve) to assess the overall morbidity and 
mortality predictions.

In brief, for each analysis of predictive accuracy, we estimated 
model parameters using data up until a reference point in time, 
under the same model structure. The resulting posterior estimates 
of the parameters were used to project three, six and 12 months 

into the future, to provide expected outcomes and their Bayesian 
credible intervals. We then assessed predictive accuracy in terms 
of when the empirical outcomes fall outside the Bayesian credible 
intervals. We report the results graphically for visual interpretation 
and in tabular format, by listing the percentage deviation between 
outcomes at each of the three time points in the future and their 
predictive posterior expectations. This procedure was repeated 
using data from the first, second, and third years, respectively. 
These yearly reference points were chosen as canonical stages in 
the pandemic; ranging from the second wave of the epidemic 
through to later stages foreshadowing endemic equilibrium. 
Specifically, the DCM were fitted to data from February 2020 to 
30th September 2021, 2022, and 2023.

Data
Data sources are those used in the first section of this report. 

The incidence of Post COVID-19 syndrome was calculated using 
the findings of a global meta-analysis, with defined clusters of self-
reported symptoms occurring 3 months after initial infection (28). 
This analysis found that the risk of long COVID—following 
symptoms—in the community is 7.9%, in hospital admissions is 
27.9% and ARDS (acute respiratory distress syndrome) is 41.4%.

Priors
The Nov2023 DCM uses 60 parameters and calculates posterior 

parameters for each (Supplementary Table 1). These parameters are 
estimated under priors specified in terms of their mean and prior 
variance. Priors over seven illustrative parameters are listed in 
Table  3. For comparison, Table  3 also provides some recent 
empirical priors (with references), which were also evaluated 
(results not shown).

Results

With limited data of just 8 months from February 2020 to 
September 2020 the DCM provided very accurate predictions for up 

FIGURE 1

A comparison of the trend in incidence of new COVID-19 cases in the winter months of 2023 and 2024 between a UKSHA (A) (left panel) estimate and 
our projection (B) (right panel).
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TABLE 3 Selected priors used in the models—original model parameters used in this analysis.

Parameters used in November 2023 
DCM Covid model

Original model parameters Recent empirical based priors

Model 
code

Name Description Prior Lower 
bound

Upper 
bound

Posterior Lower 
bound

Upper 
bound

Prior Lower 
bound

Upper 
bound

Posterior Lower 
bound

Upper 
bound

tin Infected period 

(days)

Latent period 

(between day 

infected and day 

infectious)

3 2.9 3.1 2.6 2.6 2.7 5.5 5.3 5.7 4.4 4.3 4.5

tcn Infectious 

period (days)

Infectious period—

presymptomatic 

and symptomatic 

infectious period

4 3.9 4.1 4.1 4.0 4.2 4.3 4.2 4.4 4.0 3.9 4.1

tim Loss of natural 

immunity (days)

Loss of antibody 

immunity induced 

by Covid-19 

infection

128 117.9 138.9 139.4 131.5 147.8 128 117.9 138.9 104.9 98.6 111.6

tic Asymptomatic 

period (days)

Incubation period 

in days

4 3.7 4.3 2.2 2.1 2.2 6.5 6.3 6.7 5.1 4.9 5.2

tsy Symptomatic 

period (days)

Symptomatic 

period in days

5 4.6 5.4 6.3 6.2 6.5 5 4.6 5.4 10.7 10.5 10.9

ttt FTTI efficacy Effectiveness of 

Find Test Trace 

Isolate system

0.036 0.029 0.045 0.036 0.029 0.045 0.25 0.20 0.31 0.29 0.26 0.32

iso Self-isolation 

(days)

Days people isolate 

if a case or a 

known contact

8 7.8 8.2 8.7 8.4 8.9 6.7 6.5 6.9 7.4 7.1 7.6

References for this table: tin (31); tcn (32); tic (31); ttt (33) in line with international contact tracing with a successful tracing of 0.51 and assume HPTs have half this for non-household contacts 1/2/21; iso (34).
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FIGURE 2

Model run using data from February 2020 to 30th September 2020.
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to 12 months into the future for positive cases, certified deaths and 
hospital admissions (Figure 2). Projections of certified deaths remained 
within the 90% credible intervals through to October 2024. This high 
level of predictive accuracy was not surprising and is consistent with 
an early post-hoc analysis described in the epilog of (4).

Using 20 months of data, from February 2020 to September 
2021, DCM predictions were reasonable only for 3 months 
(Figure 3). This might be due to the huge peak of cases in the 
winter months of 2020/2021 related to the delayed tightening of 
lockdown rules and, crucially, the arrival of the alpha variant.

FIGURE 3

Model run using data from February 2020 to 30th September 2021.

https://doi.org/10.3389/fpubh.2025.1573783
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Bowie and Friston 10.3389/fpubh.2025.1573783

Frontiers in Public Health 08 frontiersin.org

The models, using data from February 2020 to September 
2022, overestimated cases, deaths admissions and long covid after 
3 months (Figure  4). Deaths remained within the credible 
interval range through to October 2024 and hospital admission 
for 6 months.

The final model used data from the start of the epidemic to 
September 2023 (Figure 5). DCM accurately predicted cases and 
deaths, offering a reasonable hospital admissions estimate and a 
long covid projection within the credible interval of the UKHSA 
estimate of December 2023.

Note that in our graphical reporting we  have provided 
predictions after the long term (12 month) forecast, up until a 
common endpoint (October 2024). In some cases, projections 
beyond 12 months are clearly implausible but illustrate some 
interesting features; namely, periodic fluctuations that speak to 
recurrent waves of infection that inherit from the interaction 
between epidemiological factors (e.g., prevalence) and 
sociobehavioural responses (e.g., self-isolation). However, for the 
purposes of the current analysis we operationally define long-
term forecasts as forecasts at three, six and 12 months into the 
future—and do not consider projections beyond one year.

Table  4 shows the percentage deviation [(p-a)/a %] of the 
number of cases, deaths and hospital admissions predicted by the 
model (p) from the numbers which actually occurred from the 
start of the epidemic (a).

Summary

In the first year of the analysis from February to September 
2020 the model provided very accurate predictions at three, six 
and twelve months (i.e., to within 5%). Furthermore, the actual 
outcomes for all key metrics considered were comfortably within 
the 90% Bayesian credible intervals. As noted above, this is 
consistent with early experience with the model during the first 
phase of the pandemic, prior to the emergence of highly 
transmissible variants. In the second year of the analysis from 
February 2020 until September 2021, the projections retained 
reasonable accuracy for three-month forecasts (less than 13% 
deviation) but were less accurate thereafter; on occasion actual 
outcomes transcending the Bayesian confidence intervals at six 
and 12 months in the future.

By the third year—using estimates based upon data from 
February 2020 until September 2022—the model offers 
reasonable estimates for three months but not at six or twelve 
months. This may well relate to the emergence of the Omicron 
variants and changes in population behavior at that time. In the 
final year the model based upon data from February 2020 until 
September 2023 appeared to regain predictive accuracy, in the 
sense that cumulative cases, deaths and hospital admissions were 
predicted accurately with 12-month predictions all less than 30% 
deviations and well within the Bayesian confidence intervals.

Discussion

In summary, the prospective and, in particular, retrospective 
analyses speak to a nontrivial predictive validity of the dynamic 

causal model used for forecasting, nowcasting and scenario 
modeling during the recent COVID pandemic. In brief, key metrics 
such as daily deaths, hospital admissions and morbidity—reflected 
in the incidence of Long COVID—can generally be predicted with 
about a 20% accuracy, one year into the future. A more fine-grained 
(retrospective) analysis suggests that the long-term forecasting over 
3 and 6 months can be  remarkably accurate under certain 
conditions. The current analysis suggests that in the early phases of 
the epidemic—before the arrival of highly transmissible strains of 
the coronavirus—predictive accuracy is remarkably high, in many 
cases less than 5% deviation. This high accuracy re-emerges toward 
the end of the pandemic, when there is sufficient data to estimate 
parameters controlling slow fluctuations in factors that control viral 
spread. In the DCM, these factors include things like seasonal 
variations and slow declines in virulence, set against progressive but 
diminishing increases in transmissibility.

This speaks to an important trade-off among the factors that 
determine predictive validity. Put simply, in the early phases of the 
pandemic, slow fluctuations in transmissibility and virulence have yet to 
be  expressed and therefore do not confound model predictions. 
However, there is less data available to provide precise estimates of key 
epidemiological and sociobehavioural model parameters, which are 
necessary for confident and accurate predictions. Conversely, when the 
available timeseries covers several years, more precise estimates of 
changes in transmissibility, virulence, and long-term sociobehavioural 
responses can be estimated.

It could be  argued that the recent coronavirus pandemic 
represents an unprecedented opportunity for complex system 
modeling, in the sense that there is a wealth of data to constrain 
model selection and the parameterisation of selected models. In a 
similar vein, this means that the opportunity for assessing the 
predictive validity of different models is itself unprecedented. This 
may explain why the current report cannot refer to any comparative 
analyses of predictive validity in epidemiology; largely, because 
there are none. This may also reflect the fact that dynamic causal 
modeling is in a unique position to offer long-term forecasts due 
to its construction: unlike other forms of epidemiological 
modeling, dynamic causal models come equipped with a reliable 
measure of their quality in the form of (variational bounds on) 
model evidence or marginal likelihood. This means that one can 
compare different models; thereby not just optimizing the 
parameters of any given model but optimizing the structure and 
expressiveness of these models as data is assimilated (5).

This casts our retrospective analysis of predictive validity in a 
certain light: we have used a model that was selected over a four-
year period to model data generated prior to model selection. This 
might explain the high levels of predictive accuracy when compared 
to conventional models; e.g. (7). A detailed description of the 
differences between the DCM and conventional epidemiological 
models can be found in the foundational papers introducing the 
DCM for COVID: e.g. (8). In brief, the DCM can be regarded as an 
extension of conventional (SEIR) models to incorporate 
sociobehavioural responses—at the population level—that enable 
the model to generate a wide variety of timeseries data; ranging 
from data reporting the prevalence and pathogenicity through to 
measures of socio-economic activity. The ensuing generative model 
allows one to identify the latent states that best explain viral spread 
through Bayesian model inversion and subsequent model 
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FIGURE 4

Model run using data from February 2020 to 30th September 2022.
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FIGURE 5

Model run using data from February 2020 to 30th September 2023.
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comparison. Crucially, DCM uses variational procedures for model 
inversion—thereby eschewing sampling schemes such as Monte 
Carlo Markov chain—and, crucially, furnishing a measure of model 
evidence (a.k.a., marginal likelihood) in terms of a variational free 
energy bound on log evidence. This enables the model to be updated 
via Bayesian model selection, as new data become available; a 
process that was documented in the literature and at the following 
website (29).1

The DCM has been used for modeling the pandemic in other 
countries, with published results (3, 6, 13, 29). In terms of 
predictive validity, we could find only one published study. This 
report used the median absolute percent error (MAPE) scores of 
conventional model forecasts to three months (30). The study 
compared the models of six institutions and found MAPE results 
looking at cumulative deaths for the same period considered in our 
analysis (Table 4), starting in October 2020 and looking forward 
3 months. They reported an average of 32% MAPE ranging from 
45 to 18%. This compares to our MAPE of 3.1%, which represents 
an order of magnitude improvement in predictive accuracy. 
However, this comparison should not be overinterpreted, as our 
model was more mature and expressive, and looked at the UK only 

1 Technically, the variational procedure used for model inversion—i.e., 

optimising posteriors over model parameters determining the transitions among 

different states of infection, symptomatology, location, et cetera—is called 

variational Laplace. This provides an analytic form of approximate Bayesian 

inference—using natural gradient descent—that is afforded by assuming a 

functional form for the (approximate) posteriors over model parameters. This 

functional form was a Gaussian density, specified in terms of posterior 

expectations and covariances; hence, variational Laplace.

(as opposed to their estimates, based on a composite score of high-
income countries).”

However, our results beg the question whether this is a useful 
assessment. The answer to this question depends upon whether the 
next pandemic can be  explained under the structure identified 
using data from the previous pandemic. Clearly, one cannot know 
this in advance. However, having the current model in place [with 
its reduced variants (30)] means that one can assess its suitability 
using the model evidence or marginal likelihood of data from the 
next pandemic. If the DCM described in this, and the supporting, 
literature is apt, then one would anticipate a similar predictive 
validity described above.

One could argue that it is important to establish the predictive 
validity of this kind of modeling—using the retrospective analysis 
presented above—for future deployment of DCM in other outbreaks, 
or application domains (e.g., climate change, food insecurity, et 
cetera). In principle, one could use the current structure of the 
DCM—and accompanying posterior estimates—as priors for a 
subsequent outbreak. The advantage of having a valid generative 
model of this sort is that one can rollout into the future and predict 
what would happen under different scenarios or interventions. This 
was one of the motivations for the current application of DCM to 
help with situational awareness (e.g., nowcasting) and, more 
importantly, help decision-making through scenario modeling 
equipped with uncertainty quantification.

Another possible advantage of the use of a DCM model is the 
wide range of parameters optimized that could be used to provide 
estimates for use in other models and studies. The current model used 
60 parameters which together generate the outcomes shown in the 
figures and tables. Infectious disease epidemiology research units may 
wish to add the DCM to their portfolio of models, to provide estimates 
of these parameters that could be incorporated into other models.

TABLE 4 The percentage deviation between the number of cases, deaths and hospital admissions at 3, 6, and 12 months and their cumulative predictive 
posterior expectations each year since 1st February 2020.

Model and outcome measures Percentage deviation from actual

Projected 3 months Projected 6 months Projected 12 months

Model run from 1st October 2020

Positive cases (both PCR and LFD) per day 3.9% 1.9% 5.2%

Certified deaths per day 3.1% 2.3% 3.3%

Hospital admissions per day with COVID-19 −1.0% −0.5% 1.4%

Model run from 1st October 2021

Positive cases (both PCR and LFD) per day 12.8% 39.0% 50.3%

Certified deaths per day 5.4% 6.1% 14.5%

Hospital admissions per day with COVID-19 1.8% 8.0% 31.1%

Model run from 1st October 2022

Positive cases (both PCR and LFD) per day 0.0% −27.3% −63.5%

Certified deaths per day 4.2% −0.8% −11.7%

Hospital admissions per day with COVID-19 −0.8% −19.2% −57.3%

Model run from 1st October 2023

Positive cases (both PCR and LFD) per day 13.9% 14.0% 14.2%

Certified deaths per day 14.1% 15.4% 17.1%

Hospital admissions per day with COVID-19 23.9% 25.9% 28.8%
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