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Objective: To construct a prediction model for the risk of depression in the 
obese population, aiming to facilitate the early identification of high-risk 
individuals and guide personalized preventive interventions.

Methods: This study was based on the data from the China Health and 
Retirement Longitudinal Study (CHARLS 2015), the Center for Epidemiologic 
Studies Depression Scale-10 (CES-D10) to assess the depression of obese 
patients, Lasso regression and multivariable logistic regression were used to 
select predictors, the construction of a nomogram model, and the use of the 
random splitting method divided into a training set (n = 974) and a validation set 
(n = 418) by the 7:3 method, and the model was evaluated by the ROC curves 
and the AUC, the H-L goodness-of-fit test, the calibration graphs, and the 
clinical decision-making curve to assess the model.

Results: A total of 1,392 obese patients were finally included, with a prevalence of 
depression of 32.68%. Age, respiratory function, renal disease, digestive disease, 
grip strength, rheumatism and arthritis, and sleep duration were selected to 
construct the predictive nomogram model of depression risk in obese patients, 
and the AUCs of the training set and validation set were 0.715 (95% CI = 0.681–
0.749) and 0.716 (95% CI = 0.665–0.767). This suggests that the model has 
moderate discriminatory power. Respectively, the H-L test was statistically 
insignificant (p > 0.05, H-L test; p > 0.05). Goodness of fit, calibration curves 
showed significant agreement between the model and actual observations, and 
clinical decision curves indicated good model calibration and net benefit.

Conclusion: The model constructed in this study has good efficacy in predicting 
the occurrence of depression in the obese population and can be used for the 
early identification of high-risk groups and the adoption of targeted preventive 
measures to reduce the risk of depression.
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1 Introduction

Currently, obesity has become a major public health problem in China and worldwide (1). 
With the rapid social and economic development, the lifestyle and dietary structure of the 
population have undergone significant changes, and the prevalence of overweight and obesity 
among Chinese residents has shown a significant upward trend (2). In China, more than 50% 
of adults have overweight or obesity problems (3). Studies have shown that obesity increases 
the risk of hypertension, diabetes mellitus, coronary heart disease, stroke, specific cancers, 
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osteoporosis, and many other chronic diseases (4–7), which seriously 
affects daily activities and quality of life. At the same time, obesity is 
closely associated with mood disorders, increasing the risk of 
depression and anxiety (8), and studies have shown that obese adults 
are 23–36% more likely to develop depression compared to non-obese 
people, and that an elevated body mass index (BMI) even predicts the 
chronic course of depression and anxiety symptoms (9). At the same 
time, obesity and depression are potentially linked in a 
multidimensional way. Current research has focused on inflammation, 
gut flora, GBA/microbiota-GBA, neuroplasticity and HPA axis 
abnormalities. Studies have shown that dysregulation of hormones 
such as leptin and adiponectin secreted by adipose tissue may affect 
brain neurotransmitters, leading to mood disorders (10, 11). Obesity-
associated chronic low-grade inflammation can cross the blood–brain 
barrier and trigger neuroinflammation (12), directly impairing mood 
regulation. At the same time, both are associated with reduced 
intestinal flora diversity, and flora metabolites may affect mood and 
appetite regulation through the ‘gut-brain axis’ (13). Both obese and 
depressed patients have hyperactivation of the HPA axis, which leads 
to elevated cortisol levels (14, 15). Chronic high cortisol levels can 
damage the hippocampus and exacerbate depressive symptoms (16). 
In addition, in terms of shared genetic risk, some genes may increase 
susceptibility to both obesity and depression, with NEGR1 identified 
as the most important functional gene and associated with both at a 
genome-wide significance level (17).

The development of depression is reversible to some extent, 
including at the physical, psychological, and social support levels (18). 
Early screening and intervention in high-risk groups are essential to 
delay the onset and progression of depression. Risk prediction models 
are widely used in various diseases to identify the risk of developing 
depression in high-risk groups (19, 20). Previous studies have focused on 
investigating the status of depression and the factors that influence it, and 
little attention has been paid to developing risk prediction models to 
screen patients at high risk of depression in the obese population. This 
study aimed to identify factors associated with depression in obese 
patients and incorporate them into a nomogram constructed based on a 
model for predicting depression in obese patients. The constructed 
nomogram can help obese people to self-check whether they have high-
risk factors for depression and intervene on their own. At the same time, 
based on the predictive model of the nomogram, clinical staff can quickly 
screen out patients with a high risk of depression in the obese population, 
thus providing a basis for the development of mental health education 
and prevention strategies for the obese population.

2 Methods

2.1 Study design

We used data from the China Health and Retirement Longitudinal 
Study (CHARLS), which is publicly available at http://charls.pku.edu.
cn. It was approved by the Biomedical Ethics Committee of Peking 
University (Beijing, China). The data were of high quality and large 
sample nature, which provided real and effective data support for the 
analyses in this paper. Data from the CHARLS 2015 were selected for 
analysis in this study. Which included participants with a BMI ≥ 28 kg/
m2, no key variables missing from the data, and age ≥18 years, after 
excluding participants with >20% missing data. 1,392 patients were 

included in the analysis. Our study was conducted by the Declaration 
of Helsinki. The original CHARLS was approved by the Ethics Review 
Board of Peking University (IRB00001052-11,015), and all participants 
signed an informed consent form at the time of participation.

2.2 Data collection

2.2.1 Body mass index
Weight and height were collected at baseline and during follow-up 

interviews. BMI was calculated as weight (kg) divided by height 
squared (m2). Referring to the Chinese adult standard, underweight 
was defined as a BMI of less than 18.5 kg/m2, normal weight was 
defined as a BMI between 18.5 and 23.9 kg/m2, overweight was 
defined as a BMI between 24 and 27.9 kg/m2, and obesity was defined 
as a BMI of 28 kg/m2 or higher.

2.2.2 Depression assessment
The CES-D10 scores were obtained directly from the CHARLS 

2015 contains 10 items, each of which is scored as 0 (rarely or not at 
all), 1 (sometimes), 2 (most of the time), or 3 (all the time). The total 
score ranges from 0 to 30, with lower scores indicating lower levels of 
depressive symptoms. Studies have shown that the threshold of 10 has 
reasonable sensitivity and specificity for Chinese older adults (21). 
Therefore, we defined the CES-D10 score as 10 ≥ depression (22).

2.2.3 Socio-demographic factors
Socio-demographic factors included age, gender, education level, 

marital status, and place of residence. Gender was defined as male or 
female. Educational level was categorized as ‘illiterate’, ‘primary 
schools’, ‘middle/high school’, and ‘college and above’. Marital status 
was defined as married if the participant was currently married and 
living with a spouse or married but currently separated, and 
unmarried if the participant was divorced, widowed, or never married 
to a spouse. Residence was defined as urban or rural.

2.2.4 Behavioral factors
Behavioral factors included social activities, smoking history, 

alcohol consumption history, sleep quality status, and nighttime sleep 
duration. Drinking history, smoking history, and social interaction 
history were categorized as ‘yes’ or ‘no’. Sleep quality was assessed 
based on responses to ‘my sleep was restless’. Total nighttime sleep 
duration data were obtained from the question ‘In the past month, 
how much sleep you got at night (average number of hours in a night)’.

2.2.5 Health status
Based on previous studies and clinical expertise (23–29), the 

factors selected as possible predictors of depression were history of 
chronic disease [Hypertension (HTN), Cancer (CA), Chronic Lung 
Disease (CLD), Heart Disease (HD), Stroke (STK), Arthritis/
Rheumatism (AR), Liver Disease (LiverD), Chronic Kidney Disease 
(CKD), Digestive Disorders (DigestD), or asthma], waist 
circumference, grip strength, satisfaction with life, self-perceived 
health, ADL score, vision, Hearing, Pain.

2.2.6 Physical fitness
Physical fitness includes respiratory function (Average of three 

measurements of peak expiratory flow), grip strength, balance, 
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walking speed, and standing from the physical 
examination questionnaire.

2.2.7 Blood tests
The blood test indicators were selected from those that have been 

shown to be  more important and relevant in the prediction of 
depression (30–34), hemoglobin (bl_hgb, g/L), C-reactive protein 
(bl_crp, mg/L), uric acid (bl_ua, μmol/L), creatinine (bl_crea, 
μmol/L), blood urea nitrogen (bl_bun, mmol/L), cystatin C (bl_cysc, 
mg/L), total cholesterol (bl_cho, mmol/L), triglycerides (bl_tg, 
mmol/L), and low-density lipoprotein cholesterol (bl_ldl, mmol/L).

2.2.8 Variable definition criteria
Chronic diseases and pain were based on self-reported diagnoses 

and were defined as ‘yes’ or ‘no. Life satisfaction, self-perceived health, 
vision, and hearing were categorized as ‘good’, ‘fair’, and ‘poor’. 
Activities of daily living were measured using the Index of 
Independence in Activities of Daily Living (35) (KatzADL), the 
CHARLS questionnaire consists of 6 items: eating, dressing, 
transferring, going to the toilet, bathing, and grooming; ‘No, I do not 
have any difficulties’ and ‘I have difficulties but I can still do it!’ scored 
1, and ‘Yes, I have difficulties and need help’ and ‘I cannot do it’ scored 
0; therefore, the total KatzADL score indicates the degree of 
dependence, with lower scores indicating a higher degree 
of dependence.

2.3 Statistical methods

SPSS 26.0 software was used to process the data, and normally 
distributed measures were (x¯ ± s)The data were processed using 
SPSS 26.0 software, with normally distributed measures expressed 
as (x¯ ± s), non-normally distributed measures expressed as 
M(P25, P75), and qualitative data expressed as frequency counts 
and percentages (%). LASSO regression was used to screen for the 
most valuable characteristic variables first, and then multifactorial 
logistic regression analysis was used to screen for the relevant 
influencing factors and to construct the prediction model of the 
nomograms, and to plot the subjects’ work characteristics (ROC) 
curves, the calibration curves, and the clinical The predictive 
ability of the nomogram model was assessed by drawing the ROC 
curve, calibration curve and clinical decision curve. The 
maximum missing values of all variables extracted did not exceed 
20%, and multiple interpolation was used to deal with missing 
data (36).

3 Results

3.1 Participant characteristics

A total of 1,392 obese patients were included in this study. The 
demographic and clinical characteristics of the participants are listed 
in Table 1. There were 303 (21.8%) male patients and 1,089 (78.2%) 
female patients. The prevalence of depression in the obese population 
was 32.68% (455/1392). Several factors including gender, marriage, 
pain, grip strength, respiration, bl_crea, health status, chronic liver 

disease, chronic kidney disease, arthritis and rheumatism, heart 
disease, digestive disorders, ADLs, hearing, vision, and hours of sleep 
differed significantly between depressed and non-depressed patients 
(p < 0.01).

3.2 Baseline comparisons results for the 
training and validation sets

The training (n = 974) and validation (n = 418) sets showed 
balanced baseline characteristics for most variables, including age, 
gender, education, chronic diseases (e.g., hypertension, diabetes), 
and key predictors like grip strength and respiratory function 
(p > 0.05). Minor differences were observed in alcohol (validation: 
27.8% vs. training: 22.2%, p = 0.03) and hearing/vision slightly 
higher in validation, p < 0.05, likely due to random sampling 
variability. Sensitivity analyses confirmed these differences did not 
affect model performance. Overall, the cohorts are sufficiently 
comparable, and the model’s validity remains robust. Baseline 
comparisons and results for the training and validation sets are 
shown in Table 2.

3.3 Depression risk in obese patients: 
LASSO regression results

In the LASSO regression model, variables were selected using 
the 1seλ criterion of cross-validation with MSE. The LASSO 
regression model was used in Figures 1A,B for demographic and 
clinical feature selection. Based on the logarithmic (lambda) 
sequence, a coefficient distribution is generated, and the optimal 
lambda generates non-zero coefficients. The best parameters 
(lambdas) in the LASSO model are selected by tenfold cross-
validation using the minimum criteria. A partial likelihood bias 
(binomial bias) curve is plotted relative to the logarithmic 
(lambda). Draw a virtual vertical line at the optimal value using 
one SE (1-SE standard) of the minimum standard.

3.4 Logistic regression results of depression 
risk in obese patients

Then, we further used a multivariate logistic regression model 
for final variable screening. Finally, seven key predictors were 
identified: age, respiratory function, kidney disease, grip strength, 
rheumatism and arthritis, ADL score, and sleep duration. See 
Table 2.

3.5 Results of the depression risk prediction 
model for obese patients

The predictive model consists of variables with a p value of 
less than 0.05 in multivariate logistic regression. These variables 
include age, respiratory function, kidney disease, grip strength, 
rheumatism and arthritis, ADL, and sleep duration as predictors. 
The predictive model is represented using a nomogram. For each 
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TABLE 1 Baseline characteristics of the study population.

Variable Overall Non-depression Depression p

n 1,392 937 455

Age [mean (SD)] 54.5(12.2) 54.4(11.5) 54.6(13.5) 0.785

Gender (%)

Female 1,089(78.2) 687(73.3) 402(88.4) <0.001

Male 303(21.8) 250(26.7) 53(11.6)

Marital (%)

Married 1,270(91.2) 877(93.6) 393(86.4) <0.001

Unmarried 122(8.8) 60(6.4) 62(13.6)

Education (%)

Illiterate 86(6.2) 56(6.0) 30(6.6) 0.07

Primary 133(9.6) 84(9.0) 49(10.8)

Second/high school 76(5.5) 61(6.5) 15(3.3)

College/Uni+ 1,097(78.8) 736(78.5) 361(79.3)

Residence (%)

Rural 1,107(79.5) 729(77.8) 378(83.1) 0.027

URBAN 285(20.5) 208(22.2) 77(16.9)

Pain (%)

No 950(68.2) 754(80.5) 196(43.1) <0.001

Yes 442(31.8) 183(19.5) 259(56.9)

Balance (%)

Fail 285(20.5) 157(16.8) 128(28.1) <0.001

Pass 1,107(79.5) 780(83.2) 327(71.9)

Stands (%)

Fail 21(1.5) 8(0.9) 13(2.9) 0.008

Pass 1,371(98.5) 929(99.1) 442(97.1)

grip_strength [mean (SD)] 27.8(9.8) 29.1(10.0) 25.0(8.9) <0.001

bl_crp [mean (SD)] 3.5(5.8) 3.5(6.3) 3.6(4.5) 0.71

bl_ua [mean (SD)] 5.1(1.4) 5.2(1.4) 4.9(1.3) 0.003

bl_crea [mean (SD)] 0.7(0.2) 0.8(0.2) 0.7(0.2) 0.001

bl_bun [mean (SD)] 14.7(4.0) 14.7(3.9) 14.7(4.0) 0.944

bl_cysc [mean (SD)] 0.8(0.2) 0.8(0.2) 0.8(0.2) 0.027

bl_cho [mean (SD)] 187.8(35.6) 186.5(36.0) 190.4(34.8) 0.056

bl_tg [mean (SD)] 181.2(100.2) 181.3(100.5) 180.9(99.6) 0.933

bl_ldl [mean (SD)] 104.2(29.3) 103.5(29.3) 105.7(29.3) 0.189

bl_hgb [mean (SD)] 13.6(1.9) 13.7(1.9) 13.5(1.9) 0.056

breath [mean (SD)] 293.5(110.8) 308.2(113.3) 263.1(98.9) <0.001

Hypertension (%)

No 872(62.6) 593(63.3) 279(61.3) 0.514

Yes 520(37.4) 344(36.7) 176(38.7)

Diabetes (%)

No 1,366(98.1) 923(98.5) 443(97.4) 0.205

Yes 26(1.9) 14(1.5) 12(2.6)

Health (%)

Fair 685(49.2) 491(52.4) 194(42.6) <0.001

(Continued)
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TABLE 1 (Continued)

Variable Overall Non-depression Depression p

Good 345(24.8) 290(30.9) 55(12.1)

Poor 362(26.0) 156(16.6) 206(45.3)

HTN (%)

No 850(61.1) 588(62.8) 262(57.6) 0.072

Yes 542(38.9) 349(37.2) 193(42.4)

CA (%)

No 1,362(97.8) 923(98.5) 439(96.5) 0.025

Yes 30(2.2) 14(1.5) 16(3.5)

CLD (%)

No 1,259(90.4) 867(92.5) 392(86.2) <0.001

Yes 133(9.6) 70(7.5) 63(13.8)

HD (%)

No 1,125(80.8) 780(83.2) 345(75.8) 0.001

Yes 267(19.2) 157(16.8) 110(24.2)

STK (%)

No 1,357(97.5) 920(98.2) 437(96.0) 0.027

Yes 35(2.5) 17(1.8) 18(4.0)

AR (%)

No 912(65.5) 670(71.5) 242(53.2) <0.001

Yes 480(34.5) 267(28.5) 213(46.8)

DL (%)

No 1,077(77.4) 738(78.8) 339(74.5) 0.087

Yes 315(22.6) 199(21.2) 116(25.5)

LiverD (%)

No 1,315(94.5) 882(94.1) 433(95.2) 0.505

Yes 77(5.5) 55(5.9) 22(4.8)

CKD (%)

No 1,309(94.0) 902(96.3) 407(89.5) <0.001

Yes 83(6.0) 35(3.7) 48(10.5)

DigestD (%)

No 1,107(79.5) 777(82.9) 330(72.5) <0.001

Yes 285(20.5) 160(17.1) 125(27.5)

Asthma (%)

No 1,337(96.0) 907(96.8) 430(94.5) 0.056

Yes 55(4.0) 30(3.2) 25(5.5)

ALQ (%)

No 1,060(76.1) 692(73.9) 368(80.9) 0.005

Yes 332(23.9) 245(26.1) 87(19.1)

Smoking (%)

No 1,239(89.0) 817(87.2) 422(92.7) 0.003

Yes 153(11.0) 120(12.8) 33(7.3)

Sleep quality (%)

Rarely or none of the time 722(51.9) 618(66.0) 104(22.9) <0.001

Some or a little of the time 200(14.4) 139(14.8) 61(13.4)

(Continued)
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feature in the nomogram, find the corresponding value. Draw a 
vertical line from that value to the top ‘Points’ scale to determine 
the score for that characteristic. Calculate Total Score: Add up all 
the scores for each characteristic to get a ‘total’ score. Estimate 
Risk: Match the total score with the ‘Risk’ scale at the bottom of 
the chart to get an estimated probability of risk. For example, a 
50-year-old patient with respiratory dysfunction (PEF = 300 L/
min), a grip strength of 60 kg, arthritis and renal disease, an ADL 
score of 4, and 8 h of sleep for a total score of 180 equates to a 
50% risk of depression which can be  used to quantitatively 
predict the risk of depression in obese patients (Figure 2).

3.6 Validation of depression risk prediction 
model for obese patients

AUC values were calculated to assess the discriminatory 
performance of the predictive model by examining the occurrence 
of depression in obese patients in the training set and validation 
set. As shown in Figures 3A,B, the area under the ROC curve of 
the predicted model in the training set was 0.715 
(95% CI = 0.681–0.749), specificity was 0.672, sensitivity was 
0.680, AUC = 0.716 (95% CI = 0.665–0.767), specificity was 
0.739, and sensitivity was 0.616, in the validation set. These data 

TABLE 2 Multifactor logistic regression model.

Variable Multivariate analysis OR(95%CI) p

Age 0.975(0.963–0.987) <0.001

Grip_strength 0.971(0.953–0.99) 0.003

Breath 0.998(0.996–0.99) 0.013

AR

Yes 1.676(1.22–2.31) 0.001

No Reference

CKD

Yes 2.077(1.12–3.84) 0.019

No Reference

DigestD

Yes 1.349(0.93–1.94) 0.109

No Reference

ADL_score 0.647(0.41–0.99) 0.053

Sleep hour 0.8(0.74–0.87) <0.001

TABLE 1 (Continued)

Variable Overall Non-depression Depression p

Occasionally or a moderate 

amount of the time

206(14.8) 85(9.1) 121(26.6)

Most or all of the time 264(19.0) 95(10.1) 169(37.1)

Life_satisfy (%)

Fair 722(51.9) 424(45.3) 298(65.5) <0.001

Good 638(45.8) 506(54.0) 132(29.0)

Poor 32(2.3) 7(0.7) 25(5.5)

ADL_score [mean (SD)] 5.9(0.4) 5.9(0.3) 5.9(0.5) <0.001

Waist [mean (SD)] 99.1(11.5) 99.4(10.9) 98.4(12.6) 0.112

Hearing (%)

Fair 720(51.7) 453(48.3) 267(58.7) <0.001

Good 544(39.1) 430(45.9) 114(25.1)

Poor 128(9.2) 54(5.8) 74(16.3)

Vision (%)

Fair 517(37.1) 312(33.3) 205(45.1) <0.001

Good 641(46.0) 490(52.3) 151(33.2)

Poor 234(16.8) 135(14.4) 99(21.8)

Sleep hour [mean (SD)] 6.5(1.9) 6.8(1.8) 5.9(1.9) <0.001
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FIGURE 1

(A) LASSO regression model. (B) LASSO regression model.

FIGURE 2

Nomogram of the prediction model.

FIGURE 3

(A) AUC curve of the training set. (B) AUC curve of the test set.
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suggest that nomograms have good discriminative ability and 
predictive value and can correctly identify depressed and 
non-depressed patients.

3.7 Calibration of depression risk prediction 
model for obese patients

The nomogram were evaluated using calibration plots and the 
Hosmer-Leme show goodness-of-fit test (p > 0.05 indicating that 
the model exhibited a very good fit). The test results show that 
the calibration curve is a straight line close to 1 and that the 
model fits very well for both the training (χ2 = 5.44, df = 8, 
p = 0.931) and validation sets (χ2 = 13.45, df = 8, p = 0.926). The 
calibration plots of the training and validation sets based on the 
multifactor Logistic regression model are shown in 
Figures 4A,B. The calibration curves of the columnar plots show 
a high degree of agreement between the predicted probability of 
depression in training and the actual probability of Figure 4A, 
and validation sets (Figure 4B).

3.8 Evaluation of the clinical validity of the 
depression risk prediction model in obese 
patients

The clinical validity of the models was assessed using the DCA 
method, and the results are shown in Figures  5A,B. From the 
decision curves, the net gain of the predictive model for the internal 
validation set was significantly higher than the two extreme cases, 
indicating that the nomogram graph model has better net gain and 
predictive accuracy.

4 Debate

In this study, the prevalence of depression in the obese population 
was 32.68% (455/1392), which was significantly higher than the 
prevalence among the general population in China (37), which may 
be due to the existence of common biology between the two (8), thus 
increasing the prevalence of depression in the obese population. In the 
present study, variables were screened by LASSO regression and 

FIGURE 4

(A) Training set calibration curve. (B) Test set calibration curve.

FIGURE 5

(A) Training set decision curve. (B) Test set decision curve.
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multifactorial logistic regression, and the results showed that age, 
respiratory function, ability to perform activities of daily living, grip 
strength, arthritis and rheumatism, renal disease, and sleep duration 
were independent influences on depression in the obese population. 
While the nomogram includes variables accessible in clinical settings 
(e.g., grip strength, sleep duration), some indicators (e.g., renal 
function) require medical evaluation. Therefore, this tool is primarily 
intended for clinicians to screen high-risk obese patients, rather than 
self-assessment by individuals.

Impairment of respiratory function may lead to cerebral 
hypoxia and metabolic disorders (38), which in turn triggers an 
inflammatory state in which the body releases a large number of 
pro-inflammatory factors and the level of systemic inflammatory 
response increases, leading to the development of depressive 
symptoms (39). Relevant studies have shown that a good state of 
respiratory function is conducive to the prevention of depression 
(40), at the same time, the risk of depression in people with 
abnormal respiratory function is significantly higher (41, 42), in 
addition, respiratory training for respiratory function can 
effectively improve the respiratory function and depressive 
symptoms, reducing the risk of depression (43–45). Therefore, 
obese patients should pay attention to respiratory function, and 
patients with decreased respiratory capacity should undergo 
respiratory training as early as possible to reduce the risk of 
depression and help prevent depression.

The results of this study showed that lower grip strength was 
associated with depression, which is consistent with the results of 
several related studies (46). Grip strength reflects muscle strength 
to some extent. When a muscle contracts, the body releases a 
variety of bioactive substances, including irisin. Irisin is a peptide 
hormone secreted by muscles, which can act on the brain to 
regulate the neuroendocrine system and promote neurogenesis in 
the hippocampus, a brain region closely related to emotion 
regulation and memory. The hippocampus of depressed patients 
often suffers from atrophy and dysfunction, and appropriate grip 
strength training can increase irisin secretion, which helps to 
improve the function of the hippocampus, which may be one of 
the potential mechanisms for its improvement of the depressive 
state (47). Meanwhile, changes in grip strength may also affect the 
activity of the hypothalamic–pituitary–adrenal (HPA) axis (48). 
Prolonged stress or depression can lead to dysfunction of the HPA 
axis, resulting in abnormal secretion of stress hormones such as 
cortisol. Exercise training can regulate the body’s stress response, 
make the secretion of cortisol more rational, and alleviate 
depression-related neuroendocrine abnormalities (49), and grip 
strength, as a manifestation of muscle strength, may have a similar 
regulatory effect. Meanwhile, since HGS is a simple, non-invasive 
and inexpensive measure, it can be easily used in clinical practice 
to test patients help to identify those at higher risk of mental 
health problems early (50), and grip strength training for obese 
people with low grip strength to effectively reduce the risk of 
developing depression.

The results of this study showed that age was associated with the 
incidence of depression, i.e., age was negatively correlated with 
depression in the obese population, which may be due to the fact 
that adolescents are in the stage of rapid physical and mental 
development and are highly concerned about their self-image 
compared with the middle-aged and older adult population. In the 

face of pressure brought by obesity, such as social discrimination 
and health problems, they are prone to depression due to external 
evaluations, and several systematic evaluations have confirmed that 
obesity significantly increases the risk of depression in adolescents 
(51, 52). In contrast, middle-aged and older adults may be more 
likely to view others’ perceptions of their obese body size more 
favorably, thus reducing the likelihood of obesity-induced 
dysphoria. Studies have confirmed that among middle-aged and 
older adults, obese patients are relatively more likely to suffer from 
depressive symptoms (21, 53). This is consistent with our findings.

Our predictive model showed that low ADL scores were also 
associated with depression. Several studies have shown that limited 
physical functioning leads to an increased prevalence of depression 
(54–56). Individuals with low ADL scores tend to be less socially 
active as a result of limited physical activity, have less contact and 
communication with the outside world, and tend to fall into 
loneliness and self-isolation, which is one of the important risk 
factors for depression. A previous cross-sectional study also 
demonstrated the relationship between loss of functioning and 
depression and further confirmed that the ADL score is a predictor 
of depression (55). ADL reflects an individual’s ability to take care of 
him/herself. Individuals with impaired ADL usually feel helpless and 
frustrated and have low self-esteem, and being in this state for a long 
period tends to trigger depressive moods. In addition, a large number 
of studies have included ADL scores in risk prediction models for 
depression (57–59), which reinforces that ADL scores are an 
important predictor of depression risk.

Arthritis and rheumatic diseases are a large group of diseases that 
involve the joints and their surrounding tissues, and there is a 
complex association between them and depression. They cause 
chronic pain that constantly stimulates nerves, which are transmitted 
via peripheral nerves to the central nervous system. The constant 
pain signaling affects the balance of neurotransmitters and leads to 
depression. In addition, chronic pain in patients with arthritis and 
rheumatism often causes sleep problems. Sleep deprivation or sleep 
disruption interferes with the neuroendocrine system, affecting the 
normal secretion of hormones, such as cortisol, and causing the 
production of adverse moods. A large cohort study from Canada (60) 
showed that 1  in 10 people with arthritis had a level of major 
depression and that people with arthritis had higher levels of 
depression compared with people without arthritis. Therefore, it is 
important to pay particular attention to the mood of patients with 
arthritis and rheumatism in the obese population to reduce the risk 
of depression.

Kidney disease is a common chronic disease; depression is 
especially common in chronic kidney disease (61–63). In different 
stages of kidney disease development, there are different degrees of 
depression and anxiety changes (64). The development of the disease 
will increase the related complications, which will seriously affect the 
quality of life of the patients and bring a great impact on the mental 
health of the patients, thus developing into depression.

Sleep duration: At present, studies in several countries have 
shown that a short sleep duration is significantly associated with an 
increased risk of developing depression (65, 66). Sleep is crucial for 
the regulation of neurotransmitters, and the lack of sleep causes 
abnormal expression of neurotransmitters such as GABA, NPY, and 
5-HT, and when inhibitory neurotransmitters are at low levels, it 
causes the patient’s brain to be in a depressed state, reducing the 
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patient’s expression of emotion and the emergence of a depressive 
state. In addition, sleep has an important regulatory role in the 
function of the hypothalamic–pituitary–adrenal (HPA) axis (67). 
Normal sleep helps to maintain the normal rhythm of the HPA axis 
and keeps the secretion of stress hormones, such as cortisol, at a 
reasonable level. Reduced sleep duration leads to dysfunction of the 
HPA axis and an abnormal increase in cortisol secretion. Prolonged 
exposure to high cortisol can have adverse effects on the brain, such 
as damaging brain areas related to memory and mood regulation, 
such as the hippocampus, thereby increasing the risk of depression. 
Therefore, when dealing with obese patients with sleep problems, it 
is necessary to keep an eye on their mental health and be alert to 
negative emotions to prevent the development of depression.

Nomograms are commonly used as predictive models in many 
clinical areas of research. Predictive models based on nomograms 
have the characteristics of high accuracy, simplicity, and practicality. 
In this study, LASSO regression was used in combination with 
multifactor logistic regression analysis to screen seven variables that 
were highly correlated with depression, which reduced the problem 
of multicollinearity among factors and further improved the accuracy 
of model prediction. Although the AUC values (0.715–0.716) indicate 
moderate discrimination, the model achieves a balanced sensitivity 
(68.0%) and specificity (73.9%). The calibration curves show that 
there is significant agreement between the nomogram model and the 
actual observations. Furthermore, the DCA curve and net gain curve 
of the model indicate that the model has a high gain in predicting 
depression, supporting its utility in clinical screening.

There are also some limitations of this study. First, although 
the CES-D-10 is a commonly used tool for assessing clinically 
meaningful depressive symptoms, the CES-D-10 was used to 
examine the number of self-reported depressive symptoms in the 
past week, which may introduce recall bias. Second, the nomogram 
was developed based on data from China, and whether the results 
of this study can be extended to other regions and countries needs 
to be  further validated using data from external cohorts. This 
study did not account for genetic predisposition or acute 
psychosocial stressors, which may influence depression risk. 
Future models should integrate these factors to validate the model 
in a multicenter cohort to improve predictive accuracy.

5 Conclusion

This study developed and validated a nomogram model that can 
predict the risk of depression in obese patients, conclusively 
identifying age, respiratory function, renal disease, digestive disease, 
grip strength, rheumatism and arthritis, and sleep duration as risk 
factors for the development of depression in the obese population. 
This may provide assistance to clinicians in screening at-risk 
populations and optimize personalized prevention strategies for 
healthcare professionals.
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