
Frontiers in Public Health 01 frontiersin.org

The role of antioxidant nutrients 
in mitigating PM2.5-related health 
risks in young Indian children
Franciosalgeo George 1,2, Ekta Chaudhary 3, Sagnik Dey 4,5, 
Tinku Thomas 6, Harshpal Singh Sachdev 7, Anura Kurpad 8 and 
Santu Ghosh 6*
1 Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India, 2 Division of 
Epidemiology, Biostatistics, and Population Health, St. John’s Research Institute, Bengaluru, India, 
3 Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, 
United States, 4 Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, 
India, 5 Faculty of Adjunct, Department of Health, Policy and Management, Korea University, Seoul, 
Republic of Korea, 6 Department of Biostatistics, St. John’s Medical College, Bengaluru, India, 
7 Department of Pediatrics and Clinical Epidemiology, Sitaram Bhartia Institute of Science and 
Research, New Delhi, India, 8 Department of Physiology, St. John’s Medical College, Bengaluru, India

Introduction: Pollution (PM2.5) exposure can result in acute respiratory illness 
(ARI) and anaemia in children. We aimed to investigate if antioxidant nutrient 
intakes could mitigate the impact of PM2.5 on child health outcomes on a 
national scale in India.

Methods: We triangulated satellite-derived PM2.5 exposure data at the primary 
sampling unit level, with ARI and anaemia prevalence data from national district-
level survey, and antioxidant nutrient intakes from household food expenditure 
survey. Logistic mixed effects regression model was used to estimate the effect 
of PM2.5 at different levels of nutrient intake.

Results: This study included 208,782 children with valid ARI and 197,289 
children with valid hemoglobin measurements. The prevalence of ARI and 
anaemia were 2.8% (95% CI: 2.3, 3.2) and 57.6% (95% CI: 57.2, 57.9) respectively. 
The intake of selected antioxidant nutrients such as vitamin C, D, and selenium, 
when higher than their estimated average requirement (EAR), lowered the risk 
of ARI associated with high PM2.5 exposure, while intakes higher than the EAR 
of vitamins A, C, D, zinc, and selenium similarly lowered the risk of anaemia. In 
terms of foods, similar benefits were observed with daily consumption of small 
amounts of fruits and vegetables.

Conclusion: The result of this study highlights the importance of antioxidant rich 
balance diet for neutralizing adverse health effects of air pollution exposure to 
some extent till the environmental policy of the country could reduce emission 
of hazardous pollutants below safe level for human health.
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1 Introduction

Exposure to air pollution poses significant health risks, 
particularly to infants and young children. For example, air pollution 
contributed to 31% of mortality in infants under 28 days old, and was 
responsible for 30% of fatalities attributed to lower respiratory 
infections (1, 2). In 2021, air pollution ranked as the second leading 
global risk factor for premature mortality, surpassed only by high 
blood pressure. Among children under five, it also ranked second as 
a cause of death, falling behind malnutrition (1). Remarkably, within 
the spectrum of environmental and occupational risks, air pollution 
emerges as the primary contributor to adverse health impacts, globally 
(3). India stands at the 8th position among the world’s most polluted 
countries, registering an annual average PM2.5 concentration of 
53.3 μg/m3 in 2022, and over 10 times higher than the WHO PM2.5 
guideline (4). The 2017 India state-level global burden of disease study 
estimated that 0.67 (UI: 0.55–0.79) million deaths in India, 
constituting 12.5% of total deaths, were linked to ambient PM2.5 (5).

Acute respiratory infections (ARI) and anaemia are major 
contributors to childhood morbidity and mortality globally, 
particularly in low and middle-income countries (6). Children are 
highly susceptible to these conditions due to their developing 
immune systems and higher metabolic needs. A growing body of 
evidence highlights ambient and household air pollution, particularly 
fine particulate matter (PM2.5), as a critical environmental risk factor 
for both ARI and anaemia in children (7, 8). According to the 2023 
World Health Statistics, ARI stands as the leading cause of childhood 
mortality among all infectious diseases (9). Exposure to PM2.5 has 
also been shown to increase the risk of anaemia among children 
(6, 10).

PM2.5, which consists of aerodynamic particles with diameter less 
than 2.5 microns, penetrates deep into the respiratory tract and 
reaches the alveoli, causing inflammation, oxidative stress, and 
impaired lung function (11). Epidemiological studies have consistently 
shown that PM2.5 exposure increases the risk of lower respiratory tract 
infections such as pneumonia and bronchitis in children (12, 13). 
Moreover, chronic exposure to PM2.5 has been implicated in systemic 
inflammation and dysregulation of iron metabolism, contributing to 
anaemia (14).

Recent research is increasingly exploring nutritional interventions 
as potential modifiers of PM2.5

− related health risks. Antioxidant-rich 
micronutrients such as vitamins A, C, E, and trace elements like zinc, 
selenium, and iron have been shown to reduce oxidative stress and 
inflammation—key mechanisms underlying air pollution–related 
health outcomes (15). For example, vitamin C and E have protective 
roles in lung function through their reactive oxygen species (ROS)-
scavenging properties, while iron and zinc are essential for 
erythropoiesis and immune function, which can be compromised in 
polluted environments (16). In children exposed to biomass smoke or 
high ambient PM2.5, iron deficiency anaemia may be worsened by 
inflammation-induced hepcidin expression, leading to impaired iron 
absorption and recycling (17). Nutritional supplementation, 
particularly with iron and antioxidants, has shown promise in 
reducing the burden of both ARI and anaemia in pollution-exposed 
populations (18, 19). However, there is limited evidence on whether 
antioxidant nutrients can modify the impact of PM2.5 on these 
outcomes in children. Most existing studies focus on adult populations 
(20, 21).

To our knowledge there is no comprehensive study that has 
explored, on a national scale, the mitigating influence of antioxidant 
nutrient intake on the relationship between PM2.5 exposure and child 
health outcomes, nor has there been any attempt to define specific 
nutrient or food intake requirements for this situation. The present 
study used satellite-derived PM2.5 exposure, along with triangulated 
data from two national district-level surveys with high granularity (see 
Methods), that captured nutrient intake and child health, to evaluate 
if specific nutrient and/or food intakes could mitigate the impact of 
PM2.5 exposure on specific child health outcomes, and if so, to define 
the additional daily requirements of these nutrients or foods in this 
specific functional domain.

2 Materials and methods

2.1 Data and sample

We utilized two nationally representative and granular Indian 
datasets for this study. The first dataset was the National Family Health 
Survey-4 (NFHS-4) conducted during 2015–2016, which provided 
information on acute respiratory infections (ARI) in children aged 
6–59 months, as well as data on household sociodemographic and 
maternal characteristics. The second was the 68th round survey 
(2011–2012) of the National Sample Survey Office (NSSO), which 
provided information on household food and nutrient consumption.

The NFHS-4 was a nationally representative survey conducted 
between January 2015 and December 2016, covering both urban and 
rural areas at the district level, across 29 states and 6 Union Territories 
of India. A total of 221,858 children aged 6–59 months from 156,038 
households were included in the survey. The survey achieved a high 
response rate of 97.6% for households and 96.7% for eligible women. 
Information on socioeconomic status, reproductive health and family 
planning, maternal and child health, and the occurrence of 
ARI-related symptoms were obtained from these children and 
households (22).

The ninth quinquennial Household Consumer Expenditure 
survey of the NSSO, known as NSS 68, was conducted in the same 29 
states and 6 Union Territories, and included 59,683 rural households 
and 41,968 urban households. This survey collected data on the 
monthly per capita consumer expenditure, along with household food 
purchases of 223 food items, for a 30-day recall period (23). The 
quantities of food purchased were converted into nutrients using the 
Indian food composition table, with food items listed by number, or 
cost-converted into food weights (24). The per capita daily nutrient 
intake was calculated by dividing the total daily nutrient purchased by 
the household size. The rationale behind choosing NFHS-4 was to 
capture health data closer to NSSO 68th round and already validated 
mapping of NSSO 68th round on NFHS-4 (25).

2.2 Ambient PM2.5 exposure

We used the satellite-derived ambient PM2.5 concentration at the 
primary sampling unit (PSU) level as the air pollution exposure for all 
children residing in that PSU as identified by geocodes reported by 
NFHS-4 (22). PSUs refer to villages in rural regions and Census 
Enumeration Blocks (CEBs) in urban settings. These were identified 
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using data from the 2011 Census, and any PSU with fewer than 40 
households was merged with the nearest PSU to maintain sufficient 
sample sizes (22). Monthly average PM2.5 concentrations at PSU level 
were used to construct long term exposure due to lack of resolution at 
daily scale during the study period. The daily reported level-2 aerosol 
optical depth (AOD) from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) at a 1 × 1 km2 spatial resolution was 
converted to daily surface PM2.5 using a dynamic scaling factor from 
Modern-Era Retrospective analysis for Research and Applications 
Version 2 (MERRA-2) reanalysis data. The instantaneous PM2.5 was 
then converted to a 24 h average using the diurnal scaling factor from 
MERRA-2. These scaling factors were calibrated against existing 
ground-based measurement by network of the Central Pollution 
Control Board of India (CPCB). The satellite-derived PM2.5 showed a 
high correlation (r2 = 0·97) and a root mean square error of 7·2 μg/m3 
with values reported from coincident monitoring sites (26). For 
determining the risk for ARI and anaemia, we calculated the average 
early-life exposure from birth to interview month, to capture the life-
course PM2.5 exposure of children who were 6–59 months old at the 
time of assessment. For example, if a child was born on January 2014 
and the NFHS-4 interview took place on December 2015, 
we computed the average of the daily PM2.5 values from January 2014 
through December 2015 for the PSU where the child resided.

2.3 ARI and anaemia outcomes

ARI was identified in children aged 6–59 months old based on 
maternal reports in the NFHS-4 Children’s Recode (KR) file. Specifically, 
children were considered to have ARI if they had symptoms such as 
coughing, along with quick or troubled breathing in the 2 weeks before 
the survey. Anaemia status was also obtained from the KR file. The 
presence of anaemia in these children was diagnosed from the 
hemoglobin (Hb) concentration in capillary blood samples collected by 
the finger or heel prick technique, which was measured immediately on 
site using the HemoCue Hb 201 + analyzer (27). Children were classified 
as anaemic if their Hb concentrations were below 11 g/dL (28). Both ARI 
and anaemia was treated as a binary variable (yes/no) for the analysis.

2.4 Data triangulation

The household-level data from the NFHS-4 and NSSO surveys 
were combined for the same district in a state using triangulation. 
Here, the NSSO-68 data on food and nutrient intake served as the 
donor dataset, while the NFHS-4 household survey data was the 
recipient. To match the datasets, a set of common variables, including 
family size, religion, locality (rural/urban), and socioeconomic status, 
which were available in both NFHS4 and NSS68 surveys were selected, 
and the nearest-neighbour hot deck method was employed for 
triangulation. This triangulation method has been validated 
earlier (25).

2.5 Selection of nutrients

The micronutrients were selected based on their anti-oxidant 
property and scientific evidence for protective effects on incidence of 

ARI and anaemia along with existing mitigation effects on adverse 
health effects of air pollution in the literature. According to above 
criteria we chose vitamin D, selenium, vitamin B12, vitamin C, zinc 
and vitamin A (26–29). The per capita intakes of these nutrients were 
extracted from the triangulated data set, as described above, for 
analysis of their potential effect mitigation on the risk of ARI and 
anaemia related to PM2.5 exposure.

2.6 Confounding covariates

The analyses included a set of potential individual-level and 
household-level covariates. The individual-level variables included the 
child’s sex (boy or girl) and the mother’s education level (no education, 
primary, secondary, or higher). The household-level covariates 
included socioeconomic status, which was categorized into five wealth 
quintiles (poorest, poor, middle, rich, and richest), the type of 
residence (rural or urban), the type of cooking fuel (categorized as: (1) 
clean fuels – including electricity, liquefied petroleum gas (LPG)/
natural gas, and biogas; (2) solid fuels  – including coal/lignite, 
charcoal, wood, crop residues, dung cakes, and other biomass; and (3) 
kerosene), Frequency of smoking within household and 
household size.

2.7 Statistical analyses

We assigned the PSU-level average (over time) ambient PM2.5 
concentration as the air pollution exposure for the children who lived 
in the PSU. We applied a logistic mixed effects model to account for 
cluster effects at PSU. We  emphasised on modification of the 
association between child health and PM2.5 air pollution by per capita 
intake of six nutrients with anti-oxidant properties as listed above. The 
following regression model was used for analysis:
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where ijY  represented the binary outcome (ARI/anaemia) for the 
jth individual in ith PSU, ( )2.5 ijPM was the average life course exposure 
of the child, ( )ijNutrient  was the per capita nutrient intake of 
household of ith child of jth PSU, ui was a random intercept 
corresponding to ith PSU with ( )σ∼ 2

u0,iu N , ( )β β β0 1 2, ,  were intercept 
and slopes of interest, respectively, and γ  represented regression 
coefficients corresponding to confounders adjusted in the respective 
model. β1 was interpreted as the slope of PM2.5 at the lower selected 
nutrient intake while β2 was interpreted as the change in slope of 
PM2.5 at the higher selected level of nutrient intake against the lower 
level intake. Mitigation of risk by the higher intake of nutrient was 
considered significant if the estimate of β2 was negative and 
statistically significant (p < 0.05).

To define the “adequate intake” of selected nutrients that might 
mitigate the effects of PM2.5 on ARI and anaemia, the intake of these 
nutrients was categorized into intervals of <10th, 10–25th, 25–50th, 
50–75th, 75–90th and >90th percentiles. The percentile of nutrient 
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intake above which there was a decline in slope of the relation between 
the OR of anaemia or ARI and PM2.5 exposure was considered to be an 
“adequate” intake. The change in the slope of the relation between OR 
of anaemia or ARI and PM2.5 exposure as the nutrient intake further 
increased above the adequate intake was also examined. The nutrient 
intake levels retained for this analysis was based on the presence of an 
adequate (>10% change against the previous category, assumed to 
be adequate) and statistically significant change in slope as nutrient 
intake increased.

A similar exercise was carried out with the per capita fruit and 
vegetable intake (since these are sources of antioxidant micronutrients 
in the normal Indian diet (29)), to translate our findings with the 
nutrient associations with mitigation of PM2.5 effects, if any, into 
food-based recommendations. To visualize the risk of anaemia/ARI 
with increasing PM2.5 exposure at different levels micronutrient 
intake the above logistic regression model was used to predict the risk 
at selected level of micronutrient intakes. R version 4.3.3 ((55), 
Vienna, Austria) was used for all statistical analyses.

3 Results

Out of the original 221,858 observations on 6–59 month old 
children in the NFHS-4 dataset, the data of 208,782 children with 
valid ARI information and 197,289 children with valid Hb 
measurements were extracted. The baseline characteristics of the study 
participants included in the ARI and anaemia analyses are 
summarized in Table 1. The majority of children resided in rural areas 
(76.1%), with nearly 70% of households using unclean cooking fuel 
and over one-third reporting daily indoor smoking exposure. The 
estimated prevalence of ARI was 2.8% (95% CI: 2.3, 3.2) and 57.6% 
(95% CI: 57.2, 57.9) children were anaemic. The prevalence of ARI 
and anaemia across different levels of confounders is reported in 
Supplementary Figure 1. The mean life course exposure to PM2.5 for 
6–59 month old children was estimated to be 67.7±16.6 μg/m3 and the 
distribution varied from 20 to ~100 μg/m3. The unadjusted and 
adjusted logistic regression models estimated OR of ARI as 1.12 (95% 
CI: 1.10–1.14) and 1.17 (95% CI:1.16–1.18) respectively, for every 10 
µ 3/mg  increase in ambient PM2.5 exposure. Similarly, the estimated 
OR of anaemia for every 10 µ 3/mg  increase in ambient PM2.5 
exposure was estimated as 1.18 (95% CI: 1.17–1.18) for the unadjusted 
model and 1.14 (95% CI: 1.13–1.14) for the adjusted model. The 
confounders that were adjusted for included child age and sex, 
mother’s education, locality, wealth quintile, household size, type of 
cooking fuel, passive smoking indicator, along with cluster effects at 
PSU level. The per capita daily iron intake was also adjusted for in 
analyses of anaemia.

3.1 Risk reduction by dietary intake of 
select micronutrients

The geometric mean of the per capita daily dietary intake of 
vitamin D (D2, D3 and 15(OH)2D) was estimated at 23.2 μg. Similarly, 
the mean per capita daily dietary intake of selenium was estimated at 
87.7 μg, vitamin B12 at 0.68 μg, vitamin C at 43.1 mg, zinc at 9.8 mg 
and vitamin A at 162.5 μg (Supplementary Figure 2). To avoid undue 

variation, the lower and upper 0.5% of the intake measurements 
were excluded.

Significant negative effects of nutrient intake in the OR for PM2.5 
exposure on anaemia or ARI were considered as evidence of mitigation 
of risk by the selected nutrients. The different cut-off intake levels for 
<5y children, that were estimated for a functional effect on the PM2.5 
exposure relationship, are provided in Table 2. The adjusted OR of ARI 
for every 10 μg/m3 increase in PM2.5 was mildly reduced by selenium, 
vitamin C and vitamin D intake, with a significant negative (meaning a 
mitigation effect) interaction. The estimated OR of ARI for every 10 μg/
m3 increase in PM2.5 at different daily intakes of selenium, of <160 μg, 
160–200 μg and >200 μg, showed a declining dose response of 1.15, 1.14 
and 1.13, respectively. At a vitamin C intake of <100 mg/day the OR of 
ARI was estimated at 1.23, versus 1.08 when the intake was >100 mg/
day and the estimated OR at a vitamin D intake >45 μg/day also was 
slightly lower (1.13 vs. 1.15) than at a daily intake <45 μg/day 
(Supplementary Table 1; Figures 1, 2).

TABLE 1 Characteristics of the study population (children aged 
6–59 months).

Variable Frequency (%)a

Sex of child

Male 102,774 (52.1%)

Female 94,515 (47.9%)

Education of mother

Illiterate 61,651 (31.2%)

Primary 29,262 (14.8%)

Secondary 88,401 (44.8%)

Higher 17,975 (9.1%)

Wealth index

Q1 52,249 (26.5%)

Q2 46,373 (23.5%)

Q3 39,247 (19.9%)

Q4 32,831 (16.6%)

Q5 26,589 (13.5%)

Urban/Rural

Rural 150,069 (76.1%)

Urban 47,220 (23.9%)

Household size 6 (5.0, 8)a

Cooking fuel

Clean fuel 57,993 (29.4%)

Kerosine 1,342 (0.7%)

Unclean fuel 137,954 (69.9%)

Frequency of smoking within household

Never 96,083 (48.7%)

Less than monthly 7,042 (3.6%)

Monthly 6,997 (3.5%)

Weekly 18,789 (9.5%)

Daily 68,378 (34.7%)

aMedian (Q1, Q3).
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The mitigation by per capita daily nutrient intake was more 
uniform in the association between anaemia and PM2.5 exposure, 
where all selected nutrient intakes showed a significant negative 
interaction. The adjusted ORs of anaemia for every 10 μg/m3 increase 

in PM2.5 were estimated as 1.09 and 1.05 at daily per capita intakes of 
vitamin D of <45 μg and >45 μg, respectively. Similarly, at daily 
selenium intakes of <160 μg, 160–200 μg and >200 μg, the estimated 
ORs were 1.10, 1.09 and 1.07, respectively. The ORs at a daily vitamin 
C intake of <100 mg and >100 mg were estimated as 1.08 and 1.07, 
respectively. The estimated ORs at daily zinc intake levels of <10 mg, 
10–15 mg and >15 mg were 1.10, 1.07 and 1.05, respectively. A similar 
pattern of OR estimates were observed (1.09, 1.07, 1.06) for different 
levels of daily vitamin A intake at <100 μg, 100–200 μg and >200 μg 
(Supplementary Table 2; Figures 3, 4).

When similar associations were explored with per capita daily 
fruit and vegetable intake, higher intakes were associated with a 
reduced impact of PM2.5 on anaemia and ARI, but these were relatively 
weak compared to nutrient associations. A significant effect 
modification was observed with daily per capita vegetable intake of 
more than 150 g for ARI (OR 1.23 vs. 1.43) but not with fruit intake. 
For anaemia, a daily per capita fruit intake that was more than 18 g 
showed a significant effect modification (OR: 1.09, 1.08 and 1.08 for 

TABLE 2 Cut off intakes for mitigation effects of nutrients calculated for 
<5y children and the corresponding estimated average requirements 
(EAR).

Nutrient intake aCut off intake EAR

Vitamin D (μg/day) 22.5 10

Selenium (μg/day) 80 40

Vitamin B12 (μg/day) 0.125 1.5

Vitamin C (mg/day) 50 25.5

Zinc (mg/day) 5 3.25

Vitamin A (μg/day) 50 210

aHalf of the per capita cut off assuming consumption unit of 0.5 for under 5y children.

FIGURE 1

Adjusted OR (with 95% CI) of ARI among <5y Indian children over different levels of per capita daily intake of selected micronutrients with antioxidant 
properties.
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FIGURE 2

Exposure-response figure of the prevalence of ARI and ambient PM2.5 exposure for children with different household per capita intakes of antioxidant 
micronutrients.

<18 g, 18–50 g and >50 g daily intake, respectively), while a daily per 
capita vegetable intake of more than 80 g had a significant reduction 
in the impact of PM2.5 on anaemia. The estimated ORs of anaemia, for 
every 10 μg/m3 increase in PM2.5, were 1.1, 1.09, 1.09 and 1.08 for daily 
per capita vegetable intakes of ≤80 g, 81–110 g, 110–150 g and >150 g, 
respectively (Figure 5).

4 Discussion

This study explored the potential mitigation of the effects of PM2.5 
on child health outcomes such as ARI and anaemia by what we have 
termed an adequate intake of selected nutrients that had antioxidant 
properties. The normal required daily nutrient intake for a population 

is defined by its estimated average requirement (EAR). This is usually 
defined in biochemical terms as the average amount required to 
replace daily losses in a healthy population (30); typically, a functional 
or clinical approach to these requirements is not followed. The EAR 
of the selected nutrients is provided in Table 2. In comparison, for 
mitigation of adverse effects on ARI or anaemia, the adequate intake 
of each of these micronutrients, based on the statistical framework 
defined below, is also provided in Table 2. These statistical cut-offs of 
requirement were used to evaluate a functional benefit. Thus, an 
adequate daily per capita intake of vitamin C (>100 mg), vitamin D 
(>45 μg) and selenium (>160 μg), but no other micronutrient, showed 
a significant reduction in effects of PM2.5 on ARI prevalence (Figure 1). 
The highest benefit with these adequate nutrient intakes was observed 
in anaemia. Here, an adequate intake of all six selected micronutrients 
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significantly reduced the effects of PM2.5 anaemia prevalence 
(Figure 3). Subsequently, adequate intake of fruits and vegetables, 
which are primary source of these micronutrients also demonstrated 
potential mitigation of the effects of PM2.5 on child health outcomes 
(Figure 5).

4.1 Mechanistic pathway

The link between antioxidant nutrients and inflammation is 
complex. Inflammation is at the heart of the adverse effects of PM2.5 
exposure. Many studies that have shown a relation between PM2.5 
exposure and risk of cardiac morbidity (31), altered respiratory 
responses to physical activity (32) and all cause mortality (33, 34), and 
the mechanism by which these associations occur, appear to be related 
to an inflammatory response with accompanying functional effects. 
For example, in a controlled human 4 h PM2.5 exposure (to a mean 
value of 37.8 μg/m3), a significant increase occurred in vascular 
inflammation and acute phase injury markers like serum amyloid A, 

C-reactive protein, soluble intercellular adhesion molecule-1, and 
soluble vascular cell adhesion molecule-1. Some of these remained 
elevated for almost a day after the acute PM2.5 exposure, and this was 
accompanied by a decreased pulmonary function. This is relevant to 
the aetiology of ARI. Systemic effects of inflammation include the 
suppression of intestinal iron absorption (35), which is an important 
erythropoietic nutrient, and can also suppress the erythropoietic 
activity of the bone marrow (36), leading to anaemia. It should 
be noted that these effects occurred with an acute exposure to a PM2.5 
concentration that was not overly high, and close to the Indian 
national ambient air quality standard (NAAQS) value of 40 μg/
m3 (37).

4.2 Role of select dietary micronutrients in 
mitigating impact of air pollution

The mitigating effects of antioxidants on the association between 
air pollution exposure and human health have been studied before 

FIGURE 3

Adjusted OR (with 95% CI) of anaemia among <5y Indian children over different levels of per capita intake of selected micronutrients with antioxidant 
properties.
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FIGURE 4

Exposure-response figure of the prevalence of anaemia and ambient PM2.5 exposure for children with different household per capita intakes of 
antioxidant micronutrients.

(38–42). Antioxidant nutrients reduce inflammation by inducing the 
suppression of pro-inflammatory cytokines, affecting the expression of 
transcription factors involved in the immune response, and inhibiting 
key signalling pathways and enzymes involved in immune processes 
(43). For example, vitamin C, through its antioxidant properties, can 
neutralize free radicals through different mechanisms including the 
elimination of free radicals and reactive oxygen or nitrogen species, the 

down-regulation of enzymes producing free radicals, and the 
modulation of Nuclear Factor Erythroid 2-Related Factor and Nuclear 
Factor Kappa B (NF-κB), which are important mediators in oxidative 
stress (44). Selenium has antioxidant properties through selenoproteins 
that can protect against reactive oxygen species (45). Vitamin A and 
carotenoids can also be  effective antioxidants. Their antioxidant 
activity is conferred by the hydrophobic chain of polyene units that can 

https://doi.org/10.3389/fpubh.2025.1575950
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


George et al. 10.3389/fpubh.2025.1575950

Frontiers in Public Health 09 frontiersin.org

quench singlet oxygen, neutralize thiyl radicals and combine with and 
stabilize peroxyl radicals, being most effective at low physiological 
tissue oxygen tension levels (46). Zinc supplementation has been 
shown to increase plasma antioxidant capacity, decrease plasma 
inflammatory cytokines and oxidative stress biomarkers, as well as 
NF-κB activation (47). B vitamins and vitamin D can also mitigate the 
detrimental health effects of exposure to air pollution to some extent 
(48). Low levels of 25-hydroxy vitamin D enhanced adverse respiratory 
effects associated with indoor PM2.5 levels in obese urban children with 
asthma (49). Conversely, higher 25-hydroxy vitamin D levels had a 
protective role against asthma symptoms in homes with increased 
PM2.5, with estimated OR of 0.87. Vitamin B12 has potent antioxidant 
properties, including the direct scavenging of reactive oxygen species, 
preservation of glutathione levels, and the reduction of homocysteine-
induced oxidative stress (50).

4.2.1 Comparison with previous studies
Shin and Kim (20) found that higher intake of vitamin C and 

β-carotene attenuated the impact of long-term PM2.5 exposure on 
diabetes risk in Korean adults. Another study by Govindaraju et al. 
(21) showed that better overall diet quality moderated the long-term 
respiratory effects of PM2.5 exposure following the Hazelwood 
coalmine fire in Australia, further supporting the protective role of 
diet in pollution-related respiratory. In addition, Wang et  al. (51) 
reported that adherence to a plant-based dietary pattern reduced the 
risk of COPD associated with long-term exposure to PM2.5, NO₂, and 
NOx. However, these studies primarily focus on adult populations. To 
our knowledge, no study has evaluated the nutrient-specific 

moderating effects on PM2.5-related risks in children using nationally 
representative data. Our study addresses this gap by identifying 
specific intake thresholds of antioxidant nutrients that may mitigate 
the risks of ARI and anaemia in Indian children under five.

4.3 Recommended dietary allowance 
under high air pollution exposure

The “adequate” nutrient intakes that were identified for a putative 
mitigating benefit on the risk of ARI or anaemia from PM2.5 exposure 
were almost double those of the EAR for vitamin D, C, selenium and 
zinc, but a fraction of the vitamin B12 and vitamin A EAR (Table 1). 
The EAR is usually based on the replacement of the daily nutrient loss 
in healthy individuals with no environmental stress, but frameworks 
can be defined for the prevention of specific morbidities or disease 
management. There are several challenges and uncertainties in this 
process (52), and key scientific challenges encountered in the use of 
chronic disease endpoints to establish nutrient requirement values 
have been reviewed (53). However, the specific framework of nutrient 
requirements for risk mitigation from environmental exposures, 
particularly in this instance, of conditions emanating from 
deficiencies, has not been explored.

It seems logical that the mitigating effect of antioxidant nutrients 
on risk may be  observed at intakes that are higher than their 
EAR. However, the lower than EAR cutoff values for the mitigating 
effects of vitamin B12 and vitamin A indicate that even small intakes 
of some nutrients (within their “healthy” EAR) may be adequate. Of 

FIGURE 5

Adjusted OR (95% CI) of ARI and anaemia among children over different per capita fruit and vegetable intakes.
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interest, these particular nutrients (vitamin B12 and preformed 
vitamin A) are found in animal foods. This analysis also identifies, 
for the first time, a possible approach to define the adequate 
requirement of nutrients under adverse environmental exposures. 
This is particularly relevant in countries like India where the 
prevalence of micronutrient deficiencies and air pollution are 
very high.

4.4 Balanced diet, a potential defender for 
adverse effects of air pollution

The other noteworthy finding was that all nutrients were 
protective for the risk of anaemia, indicating that the best way for 
mitigation would be  a balanced, diverse diet with high-quality 
foods that deliver adequate nutrients for this purpose. Thus, single 
nutrient approaches are unlikely to be  helpful, and food-based 
approaches may be best. When analysed by food groups however, 
these associations were much attenuated. This is not altogether 
surprising, as the major contributor to the fruit group is banana, 
and not coloured fruits that contain the most antioxidants, although 
some fruits are eaten generously during their season (54). Similarly 
for vegetables, the major food contributors are potato and onion. 
Tomato is also eaten in high quantities depending on the season and 
can offer a significant intake of antioxidants. Nevertheless, there 
was a mitigating effect of about 80–150 g of vegetables for the 
impact of PM2.5 on ARI and anaemia, while there was some 
modification of the impact on anaemia with 18 g of fruits or more. 
This is significant given the usual intake of vegetables and fruits in 
India, of 145 and 15 g, respectively, for rural India, and 155 and 29 g 
for urban India (54). However, when suggesting the increase of 
fruits and vegetables, even in small amounts, it is best to be more 
specific about those that might be  beneficial through their 
antioxidant content.

A key strength of this study is the use of large, nationally 
representative datasets—NFHS-4 and NSSO-68—that provide 
information on child health, household sociodemographic 
characteristics, and food consumption patterns across diverse 
regions in India. This broad coverage enhances the generalizability 
of our findings and allows for nuanced analysis of environmental 
and dietary exposures. One of the limitations of the study was that 
daily per capita intake was estimated from the household 
expenditure on monthly food consumption, rather than by direct 
individual food intake recall. In addition, since the food intake of 
children varies by age, the per capita intake attributed to them 
might only be a crude indicator that may result in an inaccurate 
estimation of true modification effects. Additionally, the ARI 
outcome was based on maternal self-report of symptoms, which 
may introduce recall bias. Since we  assigned the same PM2.5 
exposure value to all children residing within a given PSU, there 
is potential for exposure misclassification due to within-PSU 
variability in actual exposure that could not be  accounted for. 
We also assumed that the child’s place of residence remained the 
same from birth until the time of the survey when calculating 
PM2.5 exposure. To protect subject confidentiality, NFHS displaces 
geolocations by up to 2 km in urban and up to 5 km in rural areas, 
with 1% displaced up to 10 km, which may contribute to exposure 

misclassification. In addition, due to lack of adequate temporal 
resolution of satellite derived PM2.5 data at daily scale, the 
potential mitigation effects of micronutrient could not 
be  examined for short term effects of PM2.5 exposure on 
child health.

5 Conclusion

The finding from this study should be  treated as qualitative 
evidence of potential moderation of the air pollution and health 
association by antioxidants and antioxidant rich food groups. Using 
nationally representative data, we identified specific intake thresholds 
of micronutrients such as vitamin C, vitamin D, selenium, and others, 
that may reduce the risk of PM2.5-related ARI and anaemia in children 
under five. These results highlight the potential of dietary strategies 
in mitigating the adverse effects of air pollution. However, the 
evidence now needs validation by community-based invention studies 
or randomized control trials with select antioxidants. While long-
term solutions must focus on reducing the root causes of air pollution, 
such structural changes may take time, especially in developing 
countries like India. In this context, food-based approaches—
particularly increasing the intake of fruits and vegetables—may offer 
a feasible and complementary pathway to protect vulnerable  
populations.
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