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Background: Public health emergencies pose direct threats to economic and

social development. The vulnerability of urban public health system is a major

cause of public health emergency outbreaks. It is essential to assess the

vulnerability urban public health system.

Materials and Methods: To address the uncertainty inherent to the vulnerability

assessment process, a novel hybrid model is proposed. Stage 1 involves the

development of an indicator system, incorporating a comprehensive set of

vulnerability factors identified through literature review and expert consultation.

Stage 2 involves the calculation of indicator weights using the Bayesian best-

worst method (BWM)—a novel probabilistic group decision-making approach

that incorporates Bayesian statistics with the traditional BWM. Stage 3 involves

the determination of vulnerability levels using a cloud model. The cloud

model can combine the randomness and fuzziness of assessment to deal with

uncertainty. The model is applied to assess the vulnerability of Shanghai’s public

health system. Moreover, a sensitivity analysis was conducted to validate the

e�ectiveness and robustness of the model.

Results: A total of 18 factors were identified as a�ecting the vulnerability

of the urban public health system. The most significant among them are

“poor coordination and cooperation among various personnel,” “insu�cient

information assurance,” “low public awareness,” and “low competency among

sta� in relevant departments and institutions.”

Conclusion: The proposed hybrid model is both e�ective and robust. This study

contributes to reducing the vulnerability of urban public health systems, thereby

enhancing public health risk management in urban settings.

KEYWORDS

urban public health system, vulnerability assessment, influential factor, weight

determination, public health management

1 Introduction

The occurrence of public health emergencies, such as SARS and the Ebola outbreak in

West Africa, not only posed direct threats to public health and safety but also adversely

affected regional economic and social development (1). Therefore, preventing and

controlling public health emergency is an essential prerequisite for achieving sustainable

and high-quality urban development. The more vulnerable a public health system is, the

greater the risk of such emergencies. The outbreak of public health emergencies exposes

the vulnerability of urban public health system (U-PHS), which is a complex system
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(2). Vulnerability is a fundamental characteristic of complex

systems (3), and it typically becomes apparent only when the

complex system is subjected to certain disturbances. The degree

of this vulnerability determines both the likelihood and severity

of potential damage to the system. Consequently, reducing

the vulnerability of U-PHS is crucial to promoting sustainable

economic and social development.

Vulnerability and hazard are concomitant (4). The concept of

vulnerability stems from research on natural disasters. In recent

years, the concept of vulnerability has been widely used in many

disciplines, such as health vulnerability (5) and socioeconomic

vulnerability (6). The vulnerability of the public health system

lies in its normal operation and function, which can be difficult

to maintain due to high sensitivity, low adaptability, and limited

recoverability when subjected to internal and external disturbances.

U-PHS vulnerability can reflect whether the development of U-PHS

is healthy and stable. U-PHS vulnerability assessment is the process

of analyzing the capacity of U-PHS to withstand and respond to

various public health risk factors. Vulnerability assessment is a

crucial aspect of risk management and decision-making. It aids in

predicting and assessing potential public health emergency risks,

thereby providing decision support for the prevention and control

of public health emergencies. Thus, assessing the vulnerability of

U-PHS is of great significance.

Given the recurring outbreaks of public health emergencies,

scholars have carried out some studies on U-PHS vulnerability.

Based on the seasonally adjusted Poisson regression model, time-

series regression analysis, and episode analysis, Hajat et al.

concluded that public health is more vulnerable in moderately

cold weather, and vulnerable groups differ depending on the

type of wintertime weather conditions they experience (7). Wu

et al. identified eight indicators for assessing health vulnerability

associated with heat wave exposure in terms of exposure, sensitivity,

and adaptability. They adopted a hesitant analytic hierarchy process

to determine the level of health vulnerability (8). Zong et al.

determined indicator weights based on directional interaction

analysis among indicators. A weighted technique for the order of

preference by similarity to the ideal solution method was applied to

assess heat-related health vulnerability (5).

Some scholars have studied health vulnerability in relation

to meteorological hazards. Lowe et al. further investigated the

relationship between public physical health vulnerability before,

during, and after the flood. They found that women, the older adult,

and children are more vulnerable to physical health issues than

other groups during floods. After a flood, the health vulnerability

of individuals over 65 years and men is greater than that of

other groups (9). Ebi and Bowen pointed out that the impact of

drought on health is mostly indirect. Drought can affect health

in multiple ways, notably through threats to water security and

food availability (10). Lee et al. concluded that diseases such as

diarrhea, water-borne diseases, the availability of hospital beds, and

the number of physicians are all related to health vulnerability.

Using equal-weight and principal-component methods, Lee et al.

predicted social and health vulnerability to floods in Bangladesh

(11). Zhong et al. established the indicator system of health

vulnerability and adaptation through a literature review and factor

analysis. The indicator system was established from three aspects:

exposure, sensitivity, and adaptability. Based on the results of the

analysis using a quantile regression model, they concluded that

the impacts of the key components on the risks of waterborne

diseases post-flood are heterogeneous (12). Fan et al. studied health

vulnerability from an economic perspective. They constructed a

fixed-effect panel data regression model that integrates the three

main factors of public health, economic growth, and urbanization

(13). Cui et al. evaluated public health emergency vulnerability

in the Guangdong–Hong Kong–Macao Greater Bay Area based

on the entropy method. They established an indicator system

from three aspects: sensitivity, coping capacity, and collaborative

governance (14).

The spread of major infectious disease epidemics has a strong

adverse influence on the world. There are some studies on

vulnerability to major infectious disease epidemics. Mishra et al.

constructed a major infectious disease vulnerability index based on

the analytic hierarchy process (AHP). They found that population

density has a significant impact on the vulnerability index (15).

Shadeed and Alawna found that factors such as population,

population density, the older adult population, accommodation

and food service activities, school students, chronic diseases,

hospital beds, health insurance, and pharmacies influence public

vulnerability to infectious disease. Based on these eight indicators,

the geographic information system, in combination with AHP, was

used to estimate the vulnerability index (16).

Researchers have investigated urban public health vulnerability

from various perspectives, such as weather (5, 7), meteorological

hazards (9–12), and economic factors (13). Three conclusions

can be drawn from this literature analysis. First, existing studies

have focused on the assessment of health vulnerability, with fewer

studies focusing on the assessment of public health vulnerability.

Obviously, health vulnerability is different from public health

vulnerability (17). Second, although scholars have not reached a

consensus on the influencing factors of vulnerability, many think

that demographic characteristics and the economy have an impact

on vulnerability (8, 15). Many studies have not fully considered

the factors influencing vulnerability. For example, Fan et al. (13),

Lee et al. (11), Mishra et al. (15), Wu et al. (8), and Zhong et al.

(12) failed to consider the impact of management dimension on

vulnerability. However, machine, environment, management, and

quality dimensions of other related personnel are also associated

with the normal operation and functioning of U-PHS. Third, the

majority of literature on the vulnerability assessment of U-PHS

follows a logic of “establishing an indicator system—determining

indicator weights—assessing the vulnerability” (11, 14–16). Many

methods have been adopted to calculate indicator weights, such

as AHP (15, 16), the principal component approach (11), and the

entropy weight method (14). There are two types of uncertainties in

assessing U-PHS vulnerability, namely randomness and fuzziness.

The vulnerability is determined by a combination of influencing

factors. Different influencing factors may not be at the same

state level simultaneously (randomness). At the same time, the

vulnerability level of the influencing factor may be between two

vulnerability levels (fuzziness). However, the methods used in the

majority of studies did not deal with randomness and fuzziness

uncertainties (11, 12, 15, 16). Hence, it is still necessary to conduct a

study on the assessment of U-PHS vulnerability. This study aimed
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to scientifically assess the vulnerability of U-PHS. Specifically, an

indicator system and a model for assessing the vulnerability of

U-PHS need to be developed.

To fill these existing study gaps, a novel hybrid model

was developed for the vulnerability assessment of U-PHS. This

study comprehensively identifies influencing factors from the

perspective of system composition. An indicator system for

evaluating U-PHS vulnerability is constructed from human,

machine, environment, and management dimensions. Assessing

U-PHS vulnerability involves a multi-indicator decision-making

process. Multi-indicator decision-making methods are powerful

tools (18). Best-worst method (BWM) is a novel and promising

multi-indicator decision-making method (19, 20). Compared

with AHP, BWM has many advantages: it needs fewer pairwise

comparisons [BWM: 2n – 3, AHP: n ∗ (n – 1) / 2], has higher

consistency, lower complexity, and is easier to adopt (only uses

integers in pairwise comparisons) (21). BWM has been widely

used in many disciplines. For instance, it has been applied in

assessing the age-friendliness of cities (22), evaluating resilience

(23), and conducting risk analysis (24). Nevertheless, BWM cannot

amalgamate the preferences of multiple decision-makers in group

decision-making problems. In this regard, Mohammadi and Rezaei

applied Bayesian statistics to BWM and proposed Bayesian BWM

(B-BWM) (25). B-BWM is a probabilistic group decision-making

model that can quickly aggregate expert opinions to determine the

weights of indicators with a small amount of calculation. Thus,

this study explores the application of B-BWM in the vulnerability

assessment of U-PHS. B-BWM cannot deal with the randomness

and fuzziness uncertainties in the process of assessing vulnerability,

while the cloud model can assess these uncertainties (26). Although

the cloud model cannot determine weight indicators, it has

four advantages: it combines the randomness and fuzziness of

assessment to deal with uncertainties; the assessment accuracy of

qualitative problems is high; it realizes the transformation between

a qualitative concept and its quantitative instantiations, avoiding

the distortion and loss of information. For a large number of

fuzzy concepts in social and natural sciences, the expected curve

of the cloud approximates a normal or semi-normal distribution.

Therefore, the universality and scientific rationality of the cloud

model have led to its application in many fields. Too scientifically

assess the vulnerability of U-PHS, this study attempts to integrate

B-BWM and the cloud model.

There are two innovations in this study. The first innovation

is to comprehensively construct an indicator system for assessing

U-PHS vulnerability from human, machine, environment, and

management dimensions. This is the first study to attempt

an assessment of the vulnerability of U-PHS. The second

innovation is to develop a novel hybrid model for assessing U-

PHS vulnerability that can take the uncertainties in the process

of assessing vulnerability into account. Integrating a literature

review and expert opinion, B-BWM, and the cloud model, the

hybrid model is developed. Assessing U-PHS vulnerability is

a multiple-criteria decision-making problem. Hence, this study

introduces the B-BWM and cloud models into the vulnerability

assessment of U-PHS, which enriches the research ideas. The

paper provides a method for assessing the vulnerability of

U-PHS, which is conducive to the scientific analysis of the

vulnerability level of U-PHS and thus provides useful references

for guaranteeing the healthy operation of U-PHS and preventing

public health emergencies.

2 Methodology

A hybrid model consisting of three stages was proposed. Stage 1

constructs the indicator system for assessing the vulnerability of U-

PHS. Stage 2 determines each indicator weight based on B-BWM.

Stage 3 develops a comprehensive assessment of the cloud model

based on the cloud model and determines the vulnerability level.

This section mainly presents B-BWM and the cloud model.

2.1 Stage 1: construct an indicator system
based on literature review and expert
opinion

From the perspective of system composition, the indicator

system was constructed based on four dimensions: human,

machine, environment, and management. Indicators were

determined based on a literature review and expert consultation.

2.2 Stage 2: calculate the weights of
indicators adopting B-BWM

In B-BWM, both inputs and outputs are modeled as probability

distributions. B-BWM treats the expert’s assessment information

as statistical samples and estimates the probability based on the

statistical samples to determine the weight. B-BWM has been

adopted in some disciplines (27).

Assume that there are N indicators and K experts, with the

set of indicators being A = {A1, A2,..., An}. B-BWM consists of

four stages.

Step 1: Every expert is invited to identify the best indicator and

the worst indicator.

Step 2: Determine Best-to-Others vector (Ak
B) and Others-to-

Worst vector (Ak
W).

The expert uses a scale of 1–9 (1 means equally important,

9 means extremely more important) to determine the preference

between indicators. In the opinion of expert k, Ak
B is the best-to-

Others vector.

Ak
B = (akB1, a

k
B2, ..., a

k
Bn), k =1, 2, ...,K (1)

where akBj indicates the preference of indicator

AB over indicator Aj in the opinion of expert k.

Obviously, akBB=1, k =1, 2, ..., K.

Similarly, the Others-to-Worst vector Ak
W is expressed

as follows:

Ak
W = (ak1W , ak2W , ..., aknW)T , k =1, 2, ..., K (2)
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It is clear that akWW = 1, k =1, 2, ..., K.

Step 3: Calculate the optimal weight w∗.

The indicator can be mapped into a random event,

and the weight of the indicator can be mapped into the

probability of occurrence. Therefore, it is reasonable to integrate

probability distribution with BWM. Moreover, the calculation

of indicator weights is transformed into the calculation of

probability distribution.

In probability models, all inputs and outputs are modeled as

probability distributions. Vectors Ak
B and Ak

W are the input vectors

to the B-BWM. The elements in vectors Ak
B and Ak

W are integers.

Therefore, multinomial distribution is able tomodel vectorsAk
B and

Ak
W . Assume thatwk is the weight vector under expert k opinion.wk

can be obtained based on Equations (3) and (4).

(Ak
B

∣

∣

∣
wk) ∼ multinomial(1/wk), ∀k = 1, ...,K (3)

(Ak
W

∣

∣

∣
wk) ∼ multinomial(wk), ∀k = 1, ...,K (4)

where multinomial is multinomial distribution.

In Bayesian inference, the Dirichlet distribution is used as

the prior to the multinomial. It is scientific to use the Dirichlet

distribution to analyze the weight vector. Assume that w∗ is the

optimal weight under group opinion.

(wk
∣

∣

∣
w∗) ∼ Dir(γ ∗ w∗), ∀k = 1, 2, ...,K (5)

w∗
∼ Dir(1) (6)

where Dir represents the Dirichlet distribution. γ is the

concentration parameter that denotes the closeness between w

and w∗. Constrained by non-negativity, γ is modeled using a

gamma distribution.

γ ∼ gamma(a, b) (7)

where a and b represent the shape parameters of the gamma

distribution. Generally, both a and b are set to 0.1 (28, 29). Based

on the above equations, w∗ can be computed by employing the

Markov-chain Monte Carlo method.

Step 4: Analyze the confidence of w∗.

The study employs credal ranking to test confidence for

ranking. The confidence that indicator Ai is better than Aj is

calculated by Equation (8).

CL(Ai > Ai) =

∫

I
(w∗

i >w∗
j )
P(w∗) (8)

In Equation (8), CL is the confidence level. The posterior

distribution ofw∗ is P(w∗). I is a conditional parameter. Ifw∗
i > w∗

j ,

I is 1, and zero otherwise. Having Q samples from the posterior

distribution, the confidence is calculated as:

CL(Ai > Aj) =
1

Q

∑q

Q=1
I(w

∗q
i > w

∗q
j ) (9)

CL(Aj > Ai) =
1

Q

∑q

Q=1
I(w

∗q
j > w

∗q
i ) (10)

wherew∗q is the q-th sample ofw∗from the samples. The higher

the confidence level is to 1, the higher the reliability of weights

is. Moreover, 0.5 is generally set as a threshold. When CL(Aj >

Ai) > 0.5, then indicator Aj is more important than Ai. CL(Ai >

Aj)+ CL(Aj > Ai) = 1.

2.3 stage 3: determine the level of
vulnerability employing the cloud model

To address uncertainties, the cloud model is used to effectively

convert precise values (actual scores of indicators) into appropriate

qualitative concepts (vulnerability level).

In the cloud model, the quantitative characteristics of

the qualitative concept are represented by three parameters:

expectation Ex, entropy En, and hyper entropy He. Ex is the

expectation that the cloud drop belongs to a concept in the

universe. En reflects the degree of uncertainty. The larger the En

is, the more macroscopic the qualitative concept is and the wider

the cloud map span is. He is the entropy of entropy, which is a

measure of the uncertainty of entropy. It is determined by the

randomness and fuzziness of entropy. The larger the He is, the

greater the randomness of the certainty degree is, and the thicker

the cloud is. The steps for establishing the assessment cloud model

are as follows.

Step 1: Construct a benchmark for vulnerability assessment.

Define the number of levels of vulnerability and the standard

assessment cloud for each vulnerability level.

Step 2: Obtain each indicator’s score and use the reverse cloud

generator to calculate three parameters of the cloud model for

each indicator.

Step 3: Calculate the comprehensive vulnerability assessment

cloud for U-PHS. Based on the cloud-weighted arithmetic

averaging operator algorithm, aggregate the cloud models of each

indicator to obtain the comprehensive vulnerability assessment

cloud for U-PHS.

Assume that there are N indicators. The three parameters of

the cloud model for indicator i are Exi, Eni, and Hei. Moreover,

the weight of indicator i is wi. Equations (11)–(13) can be used to

compute the three parameters (Ex*,En*,He*) of the comprehensive

vulnerability assessment cloud model (30).

Ex*=
n

∑

i=1

wiExi (11)

En*=

√

√

√

√

n
∑

i=1

wiEn
2
i (12)

He*=

√

√

√

√

n
∑

i=1

wiHe
2
i (13)

Step 4: Determine the vulnerability level of U-PHS.

Assess the similarity between the comprehensive vulnerability

cloud and each standard assessment cloud. The level of

vulnerability is the linguistic term in which the standard assessment
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cloud with the largest similarity is located. Relevant preliminaries

about cloud models and the calculation of the similarity between

cloud models are presented in the Supplementary Appendix.

3 Results

Shanghai is a typical urban area with a large population, an

advanced economy, convenient transportation, and has ties with

other cities around the world. At the beginning of 2022, there were

only sporadic domestic infectious disease cases in Shanghai. On

March 28, Shanghai reported 96 new confirmed domestic infectious

disease cases and 4,381 new asymptomatic domestic patients. On

March 28th, Shanghai began to implement lockdown measures.

Despite government interventions, the epidemic in Shanghai

were not effectively controlled. The outbreak of the epidemic

has brought serious consequences to Shanghai. This study uses

Shanghai’s public health system on 27 March 2022, as an example

to carry out the practical application of the proposed model.

Similar to BWM, B-BWM does not require large samples.

Considering that U-PHS involves multiple departments and

multiple agents, we selected a middle-level manager of the

government (Expert 1), a middle-level manager of the Shanghai

Municipal Health Commission (Expert 2), and a middle-level

manager of the Shanghai Municipal Center for Disease Control &

Prevention (Expert 3). Three scholars who have more than 10 years

of research experience were also invited (Experts 4, 5, and 6). These

six experts were invited to conduct two questionnaire surveys about

the importance of each indicator and the score of each indicator.

The application of the proposed model is illustrated as follows.

3.1 Indicators determination

After initially determining the factors influencing vulnerability

based on the literature review, the opinions of the above-mentioned

six experts were consulted. Expert feedback was compiled and

returned to the experts. And the indicators for assessing urban

public health vulnerability were finally identified through online

discussions among experts. U-PHS is a complex system composed

of several elements, and the vulnerability of the elements affects

the vulnerability of the system. In the opinion of the expert group,

humans, machines, and the environment are the basic elements

of U-PHS. Management is the key dimension to maintaining the

normal operation of the system. Hence, the combined performance

of human, machine, environment, and management components

ensures the stable functioning of U-PHS. The vulnerability of

U-PHS in human-machine-environment management is the root

cause of the vulnerability of the system. A total of 18 sub-indicators

from the four dimensions were used to construct an indicator

system (see Table 1). The description of indicators is shown in

the Supplementary Appendix.

3.2 Weights calculation

The above six experts were invited to conduct pairwise

comparisons between indicators. Taking the fourmain indicators as

an example, Table 2 shows the pairwise comparison results of these

four indicators under the six experts’ opinions.

Based on B-BWM, the weights of the four main indicators

can be obtained using the data in Table 2 programmed in

Matlab. The resulting weights for the A1, A2, A3, and A4

indicators based on group opinions are 0.3420, 0.1585, 0.1393,

and 0.3602, respectively. Credit ranking can be used to assess

the confidence of weights. The results are visualized (see

Figure 1).

In Figure 1, edge A
conf
→ B means that indicator A is more

preferred than indicator B with the confidence level conf. It

can be seen that the management dimension is the most

important dimension. The confidence levels of the management

dimension are more important than the human dimension,

machine dimension, and environment dimension, which are 0.59,

1, and 1, respectively. All confidence levels are >0.5. Consequently,

the weights of these four indicators and their rankings were

deemed reliable.

Based on the data from the pairwise comparisons carried

out by the above six experts, the weights of sub-indicators and

relevant confidence levels were obtained. By analyzing the relevant

confidence levels, it can be concluded that the rankings of the

importance of indicators are reliable. Figure 2 presents the weights

of all indicators.

3.3 Vulnerability level analysis

According to cognitive research, humans can make correct

judgments when five linguistic terms are in the linguistic

term set. Hence, the level of U-PHS vulnerability was

defined by the linguistic term set with a scale of 5 (very

low, low, medium, high, and very high). The corresponding

five standard assessment clouds are generated based on

the golden ratio section method. By setting the He of

the third standard assessment cloud to 0.1, the numerical

characteristics of standard assessment clouds can be generated (see

Table 3).

After determining the standard assessment clouds of

vulnerability assessment, the six experts mentioned above

conducted a questionnaire survey about the score of each

indicator. To ensure the accuracy of results, we collected data and

information about the overall situation in Shanghai, such as the

number of hospital beds per 1,000 people and the proportion of the

population aged 60 years and older. Relevant data and information

were organized into a Word document and distributed to each

expert so that they could provide a reference for scoring. Each

indicator was scored on a 0–10 scale. The higher the actual

score of each indicator, the more vulnerable U-PHS is. The

scores of indicators under six experts’ opinions are shown

in Table 4. The numerical characteristics of the cloud model

for each indicator were calculated based on the reverse cloud

generator algorithm.

By aggregating the four cloud models, it can be concluded

that the numerical characteristics of the comprehensive assessment

cloud model are (6.1178, 0.6378, and 0.2552) (see Figure 3, N

= 3,000).
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TABLE 1 Weights of all indicators.

Main-indicators Sub-indicators Local weights Global weights Ranking

Human (A1) Low public quality (A11) 0.2703 0.0924 3

Low quality of medical and health institution staff (A12) 0.1778 0.0608 7

Low quality of competent department and institution staff (A13) 0.2547 0.0871 4

Low quality of public safety organization staff (except medical and health
institution staff) (A14)

0.1230 0.0421 11

Low quality of experts and medical researchers (A15) 0.0946 0.0324 15

Low quality of media staff (A16) 0.0796 0.0272 16

Machine (A2) Insufficient allocation and expansion capability of health resources (A21) 0.2953 0.0468 9

Imperfect public utilities (A22) 0.2331 0.0370 13

Insufficient allocation and scheduling capability of emergency resources
(A23)

0.4715 0.0747 5

Environment (A3) Low economic level (A31) 0.3780 0.0527 8

Low science and technology level (A32) 0.3289 0.0458 10

Poor environmental hygiene (A33) 0.1246 0.0174 18

Occurrence of special background (A34) 0.1685 0.0235 17

Management (A4) Poor coordination and cooperation among various personnel (A41) 0.3243 0.1168 1

Insufficient information assurance (A42) 0.3019 0.1087 2

Imperfect laws and regulations (A43) 0.1077 0.0388 12

Insufficient emergency planning and drilling (A44) 0.1705 0.0614 6

Insufficient training of relevant personnel (A45) 0.0955 0.0344 14

TABLE 2 Pairwise comparisons for main indicators.

Experts Best/Worst
main-indicators

A1 A2 A3 A4

Expert 1 Best (A1) 1 5 4 3

Worst (A2) 5 1 3 4

Expert 2 Best (A1) 1 5 7 3

Worst (A3) 7 3 1 5

Expert 3 Best (A4) 4 3 5 1

Worst (A3) 3 4 1 5

Expert 4 Best (A1) 1 5 4 3

Worst (A2) 5 1 2 4

Expert 5 Best (A4) 3 5 4 1

Worst (A2) 4 1 3 5

Expert 6 Best (A4) 3 5 7 1

Worst (A3) 5 3 1 7

The similarity between the comprehensive assessment of

Shanghai’s public health system vulnerability and the five

standard assessment clouds was assessed. It can be found

that the comprehensive assessment cloud of public health

system vulnerability is most similar to the “High” standard

assessment cloud. Therefore, Shanghai’s public health system

vulnerability on 27 March 2022 is high, which is in line with the

actual situation.

FIGURE 1

The visualization of the credal ranking for the main indicators.

4 Discussion

4.1 Analysis of indicator weight

Human dimension vulnerability (A1), with a weight of 0.3420,

is the second important main indicator. Low public quality reflects

low resilience to hazards, which is an important underlying cause

of the outbreak and spread of public health emergencies. Hence,

human vulnerability is a key determinant of the level of U-PHS

vulnerability. Low public quality (A11), with a weight of 0.0924, is

the critical sub-indicator of the human dimension, which echoes

with the findings of some existing studies. Jaya and Folmer found
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FIGURE 2

The weights of all indicators.

TABLE 3 Standard assessment clouds and their numerical characteristics.

Linguistic terms Standard assessment clouds

Very low (0, 1.0302, 0.2618)

Low (3.09, 0.6367, 0.1618)

Medium (5, 0.3935, 0.1)

High (6.91, 0.6367, 0.1618)

Very high (10, 1.0302, 0.2618)

that health conditions have a large impact on public self-immunity

(31). Public health awareness and public health knowledge affect

the public’s ability to respond to emergencies (32). All of these

factors can illustrate the importance of public quality to the

vulnerability of U-PHS. The quality of competent department and

institution staff, with a weight of 0.087, holds the second rank

among the sub-indicators of the human dimension and the fourth

rank among all sub-indicators. The quality of medical and health

institution staff determines the level of medical treatment. Thus,

“low quality of medical and health institution staff” (A12) is an

important sub-indicator with a weight of 0.0608. The competent

departments and institutions of public health are responsible for

disease prevention and control, planning immunization, health

surveillance, etc. These responsibilities have an important impact

on the vulnerability of U-PHS. Compared with the impact of

public health competent departments and institutions on U-PHS

vulnerability, the quality of public safety organization staff, experts,

and medical researchers has less impact on U-PHS vulnerability

“low quality of media staff” (A16) has the least weight of 0.0272

in the human dimension, which may be the reason why there are

few existing studies analyzing the impact of media on urban public

health vulnerability.

The weight of machine dimension vulnerability (A2) is 0.1585.

The importance of A2 ranks third among the main indicators. The

more perfect the equipment/resource allocation is, the lower the

vulnerability of U-PHS is and the higher the public health security

is. The weight of “insufficient allocation and scheduling capability

of emergency resources” (A23) is as high as 0.0747, ranking first

in the sub-indicators of machine dimension and fifth in all sub-

indicators. This may stem from the social nature of public health

emergencies, in which the entire society. The social nature of

public health emergencies leads to adverse effects in many aspects,

including health impact, economic impact, and environmental

impact. Thus, it is necessary to control the spread of public health

emergencies in a timely manner. Emergency resources are the

material guarantee for the handling and rescue of public health

emergencies, and thus, great attention should be paid to the

allocation and scheduling of emergency resources (33). Compared

with “Imperfect public utilities” (A22), “Insufficient allocation and

expansion capability of health resources” (A21) has a higher weight.

Health resources are the basis for health departments providing the

public with health services. Hence, health resources directly affect

the treatment and quarantine of public health emergencies (34).

This may contribute to the high weight of A21.

Environmental dimension vulnerability (A3), with a weight of

0.1393, holds the fourth rank among the main indicators. Ho et al.

found that environment dimension vulnerability is significantly

associated with health vulnerability (35). The weights of “Low

economic level” (A31) and “Low science and technology level”

(A32) are larger than the other two sub-indicators of A3. A31 and

A32 rank eighth and tenth among all sub-indicators, respectively.

This is consistent with the conclusion of existing studies (13).

Economic development is beneficial to ensuring the operation

of the public health system. Specifically, economic development

positively affects the allocation of equipment/resources for medical

care, housing, and health, which is conducive to maintaining the

normal operation of U-PHS. Fan et al. found that economic growth

is associated with lower health vulnerability. The collapse of the

U-PHS will lead to the outbreak of public health emergencies,

which in turn will bring economic losses (13). Compared to
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TABLE 4 Data on the vulnerability assessment of Shanghai’s public health system and numerical characteristics of relevant cloud models.

Sub-indicators Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Ex En He

A11 5 6 5 4 5 7 5.3333 0.9748 0.3412

A12 6 6 5 5 4 6 5.1667 0.6963 0.2861

A13 6 6 5 6 4 7 5.6667 0.9748 0.3412

A14 6 5 6 5 4 5 5.1667 0.6963 0.2861

A15 4 4 5 5 3 6 4.5 1.0444 0.0958

A16 5 4 5 7 6 7 5.8333 1.4622 0.1692

A21 6 5 5 6 6 7 5.8333 0.6963 0.2861

A22 6 6 5 5 5 4 5.1667 0.6963 0.2861

A23 8 8 7 7 9 9 8 0.8355 0.3192

A31 1 1 2 1 1 2 1.1667 0.3481 0.2132

A32 3 4 4 2 3 3 3.1667 0.6963 0.2861

A33 7 7 6 6 6 5 6.1667 0.6963 0.2861

A34 3 3 4 4 5 5 3.5 0.8355 0.3192

A41 8 8 10 9 8 8 8.5 0.8355 0.0432

A42 8 8 8 9 8 8 8.1667 0.3481 0.2132

A43 5 6 7 7 7 7 6.5 0.8355 0.0432

A44 7 8 8 8 7 9 7.8333 0.6963 0.2861

A45 5 6 7 7 7 7 6.5 0.8355 0.0432

FIGURE 3

Comprehensive assessment cloud map of Shanghai’s public health system vulnerability.

“poor environmental hygiene” (A33) and “special background”

(A34), the weight of “low science and technology level” (A32) is

larger. This may be due to the fact that the important role of

scientific and technological support in the prevention and control

of public health emergencies has become increasingly prominent.

For example, in the early stages of the prevention and control

of public health emergencies, science and technology plays an

important role in the origin-tracing of the virus and analyzing

the transmission and evolution mechanisms of the virus. After the

outbreak of public health emergencies, scientific and technological

forces in multiple fields can be gathered to control the spread

of emergencies.

Management dimension vulnerability (A4) is the most critical

main indicator. Its weight is as high as 0.3602. “Poor coordination

and cooperation among various personnel” (A41) is found to be

the most important sub-indicator of A4, followed by “Insufficient
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information assurance” (A42). The weights of A41 and A42 are

0.1168 and 0.1087, holding first and second rank among all

sub-indicators, respectively. Coordination and cooperation among

various personnel are not only prerequisites for the normal

operation of U-PHS but are also conducive to the scientific and

accurate implementation of prevention and control measures. In

addition to the information interaction within U-PHS, there is

also information interaction between U-PHS and the outside of

the system. Information symmetry and high-efficiency information

transmission are beneficial to the self-adaptive adjustment of

U-PHS, reducing the vulnerability of the system. In order to

reduce U-PHS vulnerability, the focus should be on improving

coordination and cooperation among various personnel and

providing information guarantees.

4.2 Validation of model e�ectiveness and
robustness

Sensitivity analysis is an effective tool widely used by

researchers to check the effectiveness and robustness of the model

(21, 36, 37). Thus, this study analyzed the impact of sub-indicators’

weight changes on the level of vulnerability. Following existing

studies (36, 37), let the weight of each sub-indicator in Table 1

be a normalized scenario. Specifically, the weight of the highest-

ranked indicator (A41) varied from 0.1 to 0.9, and other sub-

indicator weights changed in proportion. In these nine scenarios,

the similarity between the comprehensive vulnerability assessment

cloud and the “High” standard assessment cloud is higher than

the other four standard assessment clouds as a whole. Therefore,

the conclusion that Shanghai’s public health system was highly

vulnerable is reliable. Thus, the effectiveness and robustness of

the hybrid model in assessing U-PHS vulnerability have been

confirmed. The proposed model accounts for uncertainties in

the process of assessing vulnerability, and it can be used for

vulnerability assessments in other fields.

4.3 Managerial implications

The hybrid model incorporating the cloud model realizes

the scientific transformation from actual scores of indicators to

Shanghai’s public health system vulnerability on 27 March 2022.

Shanghai’s public health system vulnerability on 27 March 2022,

is high. The vulnerability of the public health system and public

exposure to a new kind of coronavirus caused the outbreak of an

epidemic situation in Shanghai. Based on the results of this study,

the management implications are as follows.

First, the public health management system should be

improved. The government should continuously improve laws

and regulations for the emergency management of public health

emergencies. The public health emergency response planning

system can be improved by building a health emergency team

that encompasses the fields of virus detection, epidemiological

investigation, medical treatment, community guidance, resource

allocation, and so on. As public health products (e.g., vaccines,

drugs, and diagnostic reagents) exhibit positive externalities typical

of public goods, the government is expected to increase research

and development funding for public health products. It is necessary

for competent department and institution staff to improve crisis

awareness, sense of responsibility and dedication, and learn new

technologies and new theoretical knowledge. To improve the

quality of medical staff, efforts should be made to strengthen

the construction of medical disciplines and make the knowledge

and skills of public health emergency prevention and control a

compulsory course for medical staff. Particular attention ought to

be paid to strengthening the team building of medical experts,

especially the team building of experts on major infectious diseases

to enhance the ability to treat diseases. Improving the guarantee

system and incentive mechanism for public health-related agents is

very conducive to enhancing the work enthusiasm of public health-

related staff. Media personnel are able to reduce the vulnerability of

U-PHS by shaping public opinion and spreading public health and

emergency knowledge in a timely manner.

Second, efforts should be made to enhance public’s ability to

prevent and respond to diseases. On the one hand, individuals’ self-

protection and immunity should be improved. To reduce human-

dimensional vulnerability, it is important to encourage the public

to abandon harmful habits and adopt a healthy lifestyle. Effectively

preventing and controlling chronic diseases is a practical approach

to enhancing individual immunity. Additionally, improving public

knowledge and awareness of health is crucial. Promoting lifelong

learning in public health and leveraging both new media and

traditional media for effective health education are vital strategies.

The activities of new media personnel should be appropriately

regulated. The use of new media plays an important role in

popularizing public health knowledge. It is feasible to strengthen

the role of traditional media in the dissemination of public

health knowledge. In addition, improving public health service

items is beneficial to comprehensively enhancing the public’s

ability to prevent diseases, thereby reducing the risk of public

health emergencies.

Third, it strengthens coordination and cooperation among

all agents and facilitates information transmission. Enhancing

the awareness of coordination and cooperation among various

agents is an essential prerequisite for promoting the realization

of collaborative linkage between different agents. To ensure

coordination among all agents and improve the efficiency of

resource utilization, it is necessary to broaden the communication

channel. It is necessary to develop effective messaging strategies

in the public health field (38). Establishing information-sharing

platforms and interactive information platforms with the help of

big data, artificial intelligence, and cloud computing is essential

to provide information guarantees for promoting coordination

and cooperation among all agents. In addition, responding to

public concerns and releasing authoritative information in a timely

manner is needed. These actions are conducive to reducing the

vulnerability of U-PHS in the four dimensions of human, machine,

environment, and management.

5 Conclusion

Vulnerability effectively reflects a system’s capacity to manage

risk. Considering the uncertainty in the vulnerability assessment
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process, this study constructs a novel hybridmodel for assessing the

vulnerability of U-PHS. The model includes three stages. In stage 1,

a literature review and expert consultation are needed to construct

the index system, incorporating comprehensive vulnerability

factors. In stage 2, a novelmethod based on probability distribution,

namely B-BWM, is adopted to calculate indicator weights. B-BWM

can scientifically aggregate the opinions of experts and then obtain

aggregated weights. In stage 3, the cloud model is employed to

analyze the vulnerability level of U-PHS. Based on theories of

uncertainty, the cloud model realizes the scientific transformation

from a precise quantitative value (actual scores of indicators) to a

qualitative concept (vulnerability level). A sensitivity analysis was

conducted to verify the effectiveness and robustness of the model.

The findings reveal that 18 factors affect U-PHS vulnerability.

“Poor coordination and cooperation among various personnel,”

“insufficient information assurance,” “low public quality,” and

“low quality of competent department and institution staff” are

the main factors leading to the vulnerability of U-PHS. The

developed model is robust and reliable. Based on the identified key

indicators, we propose targeted managerial implications: improve

the public health management system, enhance public’s ability

to prevent and respond to diseases, strengthen the coordination

and cooperation among all agents, and facilitate information

transmission. The study provides decision support for reducing

U-PHS vulnerability, thereby promoting urban public health risk

management. Moreover, the hybrid model can be applied in other

contexts, including different sectors and regions.

Although the effectiveness and robustness of the hybrid model

for assessing U-PHS vulnerability have been verified, the study has

a limitation. Only limited data on public health systems is available

to protect privacy and ensure public information security. Similar

to many studies, this study relied on expert opinions to determine

the weight of each indicator, which introduces subjectivity into the

process (36, 39). In future research, quantitative methods such as

Bayesian networks and complex networks can be explored to assess

vulnerability levels.
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