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Introduction: This study investigates the impact of AI-driven smart city policies 
on green economic efficiency and public health. It further explores how 
industrial structure rationalization, upgrading, and technological innovation 
capacity moderate these effects, aiming to provide actionable insights for 
sustainable urban governance.

Methods: To account for potential policy spillover effects, the study adopts 
a Difference-in-Differences (DID) approach integrated with a Spatial Durbin 
Model (SDM). The analysis incorporates AI-enabled smart city renewal strategies 
into the empirical framework, focusing on their influence on green economic 
efficiency and public health across varying levels of industrial structure and 
innovation capacity. Data were sourced from the World Health Organization 
Global Health Observatory.

Results: Empirical findings demonstrate that AI-driven smart city strategies 
significantly enhance green economic efficiency (coefficient  =  0.098, p  <  0.01) 
and public health outcomes (coefficient = 0.085, p < 0.01). The positive effects are 
amplified by rationalized and upgraded industrial structures. Notably, the gains in 
green economic efficiency are more substantial in regions with lower technological 
innovation capacity, while regions with higher innovation capacity benefit more in 
terms of improved public health.

Discussion: The results underscore the strategic importance of aligning AI 
applications with industrial and innovation policy to foster sustainable urban 
development. Policymakers are encouraged to leverage AI in optimizing 
industrial structures, promoting green growth, and integrating health policy 
with technological innovation to improve urban residents’ quality of life.
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1 Introduction

With the rapid acceleration of global urbanization, cities are increasingly facing complex 
challenges related to escalating resource consumption, worsening environmental pollution, and 
growing public health concerns (1, 2). In response to these pressing issues, many countries have 
initiated the development of smart cities, which leverage advanced digital technologies and 
artificial intelligence (AI)-driven management systems to optimize resource allocation, improve 
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environmental quality, and enhance residents’ overall quality of life. At 
the heart of smart cities lies the integration of AI, the Internet of Things 
(IoT), and big data, which collectively elevate urban management to 
unprecedented levels of intelligence. This enables cities to achieve 
critical objectives, such as fostering a green economy and promoting 
sustainable development (3, 4). The application of AI in smart cities 
demonstrates remarkable potential, particularly in advancing green 
economic efficiency and improving public health outcomes. Through 
the deployment of intelligent decision-support systems, smart cities 
can manage energy consumption more effectively, minimize carbon 
emissions, and address public health challenges more proactively (5). 
These systems not only optimize resource use but also strengthen 
urban resilience, thereby providing robust and dynamic support for 
realizing green economic objectives. The effectiveness of smart city 
renewal strategies varies significantly across different socioeconomic 
contexts. Economically developed regions typically benefit from 
advanced digital infrastructure (6), higher technological adoption 
capacity, and greater financial resources, enabling them to leverage 
smart city initiatives more effectively to drive green economic 
development and enhance public health. In contrast, economically 
underdeveloped areas, constrained by limited technological resources 
and weaker policy implementation, may struggle to fully harness the 
potential of AI. Moreover, the digital divide in these regions could 
exacerbate social inequality, further widening disparities in access to 
smart city benefits. City size also plays a crucial role in the application 
of AI-driven smart city renewal. Large cities, characterized by high data 
density and strong policy support, are more likely to maximize the 
potential of AI technologies. In contrast, small and medium-sized cities 
may encounter greater implementation challenges due to resource 
constraints and lower technological adoption rates. Additionally, while 
smart city renewal strategies enhance healthcare accessibility and 
optimize public health management, they may also contribute to health 
disparities. Low-income groups, the older adult, and individuals with 
lower educational attainment may face barriers to accessing the 
benefits of smart healthcare and green mobility due to economic 
constraints, digital literacy gaps, and insufficient social support. By 
aligning technological innovation with environmental and social goals, 
smart cities significantly contribute to enhancing the well-being of 
urban populations and ensuring a more sustainable future.

In the existing literature, numerous studies have explored the impact 
of smart city development on green economic efficiency and residents’ 
health. Regarding green economic efficiency, Liu et al. (7) analyzed data 
from 279 Chinese cities between 2008 and 2020 to investigate the role of 
smart city development in promoting urban green economies. Their 
findings indicate that smart cities contribute to reducing pollution and 
energy consumption, with this impact varying across different regions. 
Qian et al. (8) examined the role of smart city development in fostering 
green economic growth in China, revealing that smart cities promoted 
green economic growth by driving economic development, reducing 
energy consumption, and decreasing waste emissions, particularly in 
large cities and non-resource-based cities. In terms of residents’ health, 
Wang and Zhou (9) explored the impact of smart city investment on 
subjective life quality, finding that information and communication 
technology had a negative effect on life satisfaction and well-being, while 
human capital had a positive effect. The impact of smart city investments 
varied significantly across different age groups and education levels. Liu 
et al. (10) highlighted the role of government information infrastructure 
in smart cities in alleviating information asymmetry between businesses 

and the government, which clarified the boundary conditions of AI in 
the relationship between e-government development and environmental 
pollution by enterprises, thereby improving public health and safety 
performance in urban areas. These studies demonstrate that most 
existing research focuses on improving green economic efficiency, with 
relatively limited attention given to how smart city renewal strategies can 
enhance residents’ health. Urban renewal strategies encompass not only 
the improvement of the ecological environment but also the 
enhancement of residents’ health, a dimension that remains 
underexplored in current smart city research. This study aims to address 
this gap by examining how AI-driven smart city renewal strategies affect 
both green economic efficiency and residents’ health.

Against the backdrop of accelerating global urbanization and 
digitalization, smart city development has become a critical tool for 
enhancing urban governance, optimizing resource allocation, and 
promoting sustainable development. However, current urban renewal 
policies primarily emphasize infrastructure development and industrial 
upgrading, while the impact of smart city renewal on public health 
remains relatively underexplored. Examining how AI-driven urban 
renewal strategies influence green economic efficiency and public 
health not only contributes to refining smart city policies but also 
provides a scientific foundation for governments in formulating health 
equity policies. Accordingly, this study centers on several key research 
questions. First, how do AI-driven smart urban renewal strategies 
influence green economic efficiency and public health? Specifically, the 
investigation aims to assess the role of AI technologies in smart urban 
renewal processes, with a particular focus on their contributions to 
optimizing the urban environment, improving resource allocation 
efficiency, fostering green economic development, and enhancing 
residents’ health outcomes. Second, how do rationalized industrial 
structure, industrial upgrading, and technological innovation capacity 
moderate the effectiveness of smart urban renewal strategies? This 
dimension of the study seeks to examine how variations in industrial 
structure and the capacity for technological innovation affect the 
outcomes of smart urban renewal initiatives, thereby influencing both 
green economic efficiency and public health. Finally, the study 
investigates how regional heterogeneity in technological innovation 
capacity and industrial structure characteristics results in differentiated 
impacts of smart urban renewal strategies across various regions.

The contributions and innovations of this study, developed in 
response to the aforementioned research questions, are reflected in the 
following key aspects:

 1) This study integrates AI technologies with smart urban renewal 
strategies to examine their potential in promoting green 
economic efficiency and public health. By constructing a 
comprehensive empirical model, it systematically analyzes the 
impact of AI-driven urban renewal initiatives on these 
critical dimensions.

 2) Several moderating variables—namely, rationalization of 
structural patterns (RSP), industrial upgrading, and 
technological innovation capacity—are introduced to address 
a gap in the existing literature regarding their influence on the 
effectiveness of smart urban renewal policies. The inclusion of 
these variables facilitates a more refined analysis of policy 
performance across varying economic contexts.

 3) A Difference-in-Differences (DID) model is employed to 
estimate the causal effects of smart urban renewal policies. 
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Additionally, a Spatial Durbin Model (SDM) is utilized to 
control for potential policy spillover effects, thereby enhancing 
the robustness of the empirical findings. This methodological 
framework improves the ability to account for external 
confounding factors encountered during policy 
implementation, resulting in more reliable conclusions.

 4) The study further explores how regional disparities in 
technological innovation capacity and industrial structure 
influence the outcomes of smart urban renewal strategies. This 
analysis provides policy-makers with targeted insights to 
support the design of region-specific interventions and 
optimize policy effectiveness.

Through these contributions, the study not only advances the 
theoretical understanding of the intersection between AI technologies 
and smart urban renewal but also offers empirical evidence to support 
the formulation of effective and context-sensitive policy measures.

2 Literature review

2.1 The relationship between smart cities 
and green economic efficiency

Smart cities refer to urban systems that utilize information 
technologies—particularly advanced technologies such as AI and the 
IoT—to improve the efficiency of infrastructure management, optimize 
resource allocation, and promote the development of a green economy 
(11, 12). According to smart city governance theory, the deep 
integration of advanced technologies like AI into urban governance 
systems not only enhances responsiveness in domains such as 
transportation, energy, and the environment but also establishes more 
flexible and precise mechanisms for resource allocation. This lays a 
solid foundation for the transition toward a green economy. Meanwhile, 
green growth theory provides theoretical support for examining how 
smart urban renewal contributes to improvements in green efficiency. 
Green growth emphasizes expanding economic output without 
increasing environmental burdens. In this context, the empowering 
role of AI in smart urban renewal aligns with the dual objectives of 
improving efficiency and ensuring environmental sustainability.

In recent years, amid increasing global attention to the Sustainable 
Development Goals, the development of smart cities has emerged as 
a critical pathway for driving green economic development (13). 
Smart cities not only pursue efficiency and innovation in economic 
development but also emphasize environmental protection and the 
sustainable use of resources. Li et al. (14) identified six core dimensions 
of smart cities—economic, environmental, transport, governance, 
among others—which, when optimized, contribute to improved green 
economic efficiency. Further empirical evidence from Qian et al. (15) 
demonstrated that the application of AI in smart cities can promote 
green economic growth by enhancing energy management, pollution 
control, and resource utilization efficiency. Moreover, the green 
development of smart cities involves approaches such as the intelligent 
management of transportation systems and the enhancement of 
building energy efficiency (16). Nevertheless, existing studies often 
focus on isolated dimensions of smart city development and tend to 
overlook the multidimensional impacts of differing urban 
characteristics and stages of development on green economic efficiency.

2.2 The impact of AI on public health

Public health is one of the core objectives in the development of 
smart cities, and the role of AI in enhancing residents’ health has 
increasingly garnered academic attention (17). In recent years, AI has 
made substantial progress in the healthcare sector, particularly in areas 
such as disease prediction, intelligent diagnostics, and personalized 
health management (18). For instance, AI can leverage big data 
analytics to forecast infectious disease outbreaks and optimize resource 
allocation, thereby improving the efficiency of public health 
management (19). However, the influence of AI on public health within 
smart cities extends beyond the healthcare domain. It also encompasses 
the intelligent optimization of the urban environment, including air 
quality monitoring, noise control, and traffic management. These 
environmental factors collectively affect overall health outcomes (20). 
Wang and Zhou (9) argued that intelligent urban environments can 
enhance quality of life, reduce environmental pollution, and improve 
accessibility to healthcare services, thereby contributing to better public 
health outcomes. Despite these insights, existing research on how AI 
optimizes the relationship between the urban environment and public 
health remains limited. In particular, there is a notable lack of empirical 
studies that offer a comprehensive analysis of these interactions.

2.3 Industrial structure optimization and 
smart city development

The optimization of industrial structure plays a critical role in the 
sustainable development of smart cities (21). An optimized industrial 
structure not only enhances economic efficiency but also reduces 
environmental pollution and improves resource utilization, thereby 
contributing to the advancement of a green economy (22). The theory of 
industrial upgrading provides a theoretical foundation for this process. 
According to this theory, the evolution of industrial structure is driven 
by both policy initiatives and technological advancement. In particular, 
intelligent technologies represented by AI have accelerated the transition 
toward high value-added and low-carbon industries. The development 
of smart cities requires not only the growth of high-tech industries but 
also the transformation and upgrading of traditional sectors—an 
endeavor that is often closely tied to technological innovation. Gaska and 
Generowicz (23) highlight a significant positive correlation between 
industrial structure optimization and technological innovation capacity, 
noting that innovation can drive structural adjustments that foster green 
development and improvements in public health within smart cities. The 
rationalization and upgrading of industrial structure can facilitate high-
quality economic development while simultaneously enhancing 
environmental outcomes (24). Although previous studies have examined 
the relationship between industrial structure and smart city construction, 
systematic research on the specific effects of industrial structure 
optimization on green economic efficiency and public health within the 
context of smart cities remains limited.

2.4 Policy spillover effects and spatial 
modeling

Policy spillover effects represent a critical consideration in the 
study of smart city policies (25). Due to the interconnectivity and 
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interactions among cities, the impacts of such policies are often not 
confined to the regions where they are implemented but may extend to 
neighboring areas. The DID model and the SDM are two widely 
adopted approaches for evaluating policy spillover effects (26). The DID 
model effectively estimates the true causal effects of policy interventions 
by controlling for heterogeneity across time and space. For example, 
Wang et al. (27) demonstrate that in the context of smart city initiatives, 
the DID model can capture the changes before and after policy 
implementation, thereby revealing the underlying effects of the policy. 
In contrast, the SDM accounts for spatial dependencies and spillover 
effects across geographic regions, making it particularly suitable for 
identifying interactive influences among cities. As illustrated by Zhang 
and Wen (28), the SDM enhances the precision of empirical analysis by 
incorporating spatial interactions into the estimation process. However, 
existing studies tend to focus on the policy impacts within single cities 
and often overlook the broader spatial and temporal dimensions of 
policy diffusion. The limited integration of multi-city and multi-period 
perspectives in assessing spillover effects presents a significant research 
gap, which this study aims to address.

2.5 Summary of the current state and 
research gaps

Overall, existing research has preliminarily explored the 
relationships among smart cities, green economic efficiency, public 
health, industrial structure optimization, and AI technologies. 
However, most studies focus on a single dimension or field, lacking 
interdisciplinary and integrative analysis. The comprehensive impact of 
AI on urban environments—particularly its dual influence on green 
economic efficiency and residents’ health—remains an underdeveloped 
area of inquiry. Furthermore, there is a notable absence of in-depth 
investigation into the moderating roles of industrial structure 
optimization and technological innovation capacity within the smart 
city context. The application of advanced empirical methods to assess 
policy spillover effects is also limited in current literature. This study 
aims to address these research gaps by systematically examining the 
dual impact of smart city policies on green economic efficiency and 
public health, with particular emphasis on the moderating effects of 
industrial structure optimization and technological innovation capacity. 
By integrating the DID model and the SDM, this study provides a more 
precise evaluation of the effects of smart city policy implementation and 
offers detailed insights into spatial spillover dynamics. This study 
contributes to the theoretical advancement of the smart city literature 
and provides evidence-based guidance for policymakers, thereby 
promoting the sustainable development of smart cities.

3 Materials and methods

3.1 Model construction and variable selection

In this study, to comprehensively investigate the impact of smart 
city policies on green economic efficiency and public health, a series 
of regression models are constructed to systematically analyze the 
intrinsic relationships among the variables. One of the core 
constructs of this study—green economic efficiency—is measured 
using Green Total Factor Productivity (GTFP), an indicator that 

captures changes in production efficiency while accounting for 
environmental pollution and resource consumption. To ensure the 
robustness and generalizability of the GTFP measurement, the 
Global Malmquist-Luenberger (GML) index is adopted. This index 
enables the calculation of GTFP across cities by incorporating 
undesirable outputs, such as emissions, into the efficiency analysis. 
The resulting GTFP values are log-transformed to facilitate 
comparability and enhance the interpretability of the regression 
analysis (29–31).

To effectively identify the causal effect of smart city renewal 
policies, the DID method is employed as the primary estimation 
strategy. DID is a quasi-experimental approach widely used in policy 
evaluation, designed to estimate the average treatment effect by 
comparing outcome changes over time between a treatment group 
and a control group. Although the basic conceptual framework of 
DID can be traced back to early economic research, its systematic 
application in modern econometrics is largely attributed to the work 
of David Card and Alan B. Krueger in the 1990s. By controlling for 
unobservable individual fixed effects and time trends, the DID 
method enables robust identification of differential changes before 
and after policy implementation across groups. The overall estimation 
framework is illustrated in Figure 1.

The application of the DID model requires the validity of the 
parallel trends assumption, which posits that in the absence of policy 
intervention, the outcome variables of the treatment and control 
groups would follow similar trends over time. To verify this 
prerequisite, a trend analysis is conducted.

To further ensure the robustness of the empirical results, this 
study conducts a series of robustness checks, including placebo tests, 
propensity score matching, and rolling policy timing tests. During the 
model construction phase, the following baseline regression model 
(Equation 1) is first employed to examine the impact of smart city 
policies on green economic efficiency:

 0 1 2 , i t i ,tit it i tGTFP DID Cont= α +α +α +θ +θ + ε  (1)

In Equation 1, itGTFP  represents the Green Total Factor Productivity 
of city i at time t, reflecting the city’s level of green economic efficiency. 

= ×it it itDID post treat  is the key explanatory variable capturing the 
implementation effect of the smart city pilot policy. Specifically, =1itDID  

FIGURE 1

DID effect.
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if the city is subject to the pilot policy after its implementation; otherwise, 
= 0itDID . ,i tCont  denotes a set of control variables that may influence 

green economic efficiency, such as the level of foreign direct investment 
and financial development. θi and θt  represent city fixed effects and time 
fixed effects, respectively, to control for unobserved heterogeneity across 
cities and over time. ε ,i t  is the error term.

To further investigate the regional heterogeneity in the effects of 
policy implementation, this study divides the sample cities into 
eastern and central-western regions based on their geographical 
location and incorporates a regional dummy variable into the model. 
Specifically, itUA  is introduced, a dummy variable indicating whether 
city i belongs to the eastern region (assigned a value of 1 for eastern 
cities and 0 otherwise). This allows for an examination of the 
heterogeneous impacts of smart city policies across different regions. 
The revised model is presented as Equation 2:

 α α α θ θ ε= + × + + + +0 1 2 , ,it it it i t i t i tGTFP DID UA Cont  (2)

In Equation 2, itUA  refers to the city dummy variable used to 
differentiate cities by region, =1itUA  represents cities in the eastern 
region, and = 0itUA  denotes cities in the central and western regions. 
This model enables the analysis of regional disparities in the impact of 
smart city policies on green economic efficiency, providing a more 
nuanced understanding of policy effectiveness.

In addition to green economic efficiency, this study also explores 
the effect of smart city policies on resident health. The level of resident 
health is measured by life expectancy per capita ( itH ), which serves as 
a key health indicator and objectively reflects the population’s overall 
health status. To estimate the impact on resident health, we construct 
the following regression model, presented as Equation 3:

 β β β θ θ ε= + + + + +0 1 2 , ,' ' 'it it i t i t i tH DID Cont  (3)

In Equation 3, itH  represents the health level of residents in city i 
in year t, as measured by health-related indicators. The other symbols 
are consistent with those in the green economic efficiency model, and 

itDID  represents the implementation effect of the smart city policy. In 
addition to the core variables, this study also incorporates a set of 
control variables that may influence green economic efficiency and 
resident health. These control variables help to isolate the effect of the 
smart city policy and improve the robustness of the empirical analysis. 
Table 1 provides detailed definitions and measurement methods for 
all variables used in this study:

To further analyze how RSP, industrial structure upgrading, and 
technological innovation capacity affect the implementation outcomes 
of smart city policies, regression models are constructed for each of 
these moderating variables. Through these models, the moderating 
roles of these factors in the effects of smart city policies can be explored 
in depth, facilitating a better understanding of how they influence 
green economic efficiency and public health.

In models (4) to (6), a regression model is first developed for 
GTFP. In model (4), an interaction term for RSP is introduced to 
examine its moderating effect on the implementation outcomes of 
smart city policies. The model is expressed as Equation 4:

 α α α θ θ ε= + × + + + +0 1 2 , ,it it it i t i t i tGTFP DID RSP Cont  (4)

Here, itDID  represents the implementation effect of the smart city 
policy, and itRSP  is the indicator for industrial structure rationalization. 
The interaction term ×it itDID RSP  reveals how industrial structure 
rationalization influences the impact of policy implementation on 
green economic efficiency. A significant positive coefficient for this 
interaction term would suggest that industrial structure rationalization 
plays an active role in promoting the policy outcomes.

Similarly, model (5) introduces an interaction term for industrial 
structure upgrading (AIS) to explore how industrial structure 
upgrading moderates the effect of policy implementation. The model 
is expressed as Equation 5:

 α α α θ θ ε= + × + + + +0 1 2 , ,it it it i t i t i tGTFP DID AIS Cont  (5)

In this model, itAIS  represents industrial structure upgrading, 
which is reflected by the proportion of the tertiary industry to the 
secondary industry. The interaction term ×it itDID AIS  captures how 
industrial structure upgrading moderates the impact of smart city 
policies on green economic efficiency. If the coefficient of the 
interaction term is significant, it suggests that industrial structure 
upgrading plays a crucial moderating role in the policy effect, 
particularly in promoting green economic efficiency. Model (6) 
examines the moderating effect of technological innovation capacity 
(GEP) on the outcomes of smart city policies. Technological 
innovation capacity is measured by the number of patents, reflecting 
the city’s investment in technological research and development. The 
model is expressed as Equation 6:

 α α α θ θ ε= + × + + + +0 1 2 , ,it it it i t i t i tGTFP DID GEP Cont  (6)

In Equation 6, itGEP  represents the technological innovation 
capacity of the city. The interaction term ×it itDID GEP  allows for the 
examination of how technological innovation capacity influences the 
effect of smart city policies on green economic efficiency. A significant 
coefficient for this interaction term indicates that technological 
innovation capacity plays a promoting role in enhancing green 
economic efficiency.

In analyzing the impact on residents’ health levels (H), the 
same approach used for green economic efficiency is applied, with 
models (7) to (9) being constructed to investigate the moderating 
effects of industrial structure rationalization, industrial structure 
upgrading, and technological innovation capacity on residents’ 
health. Model (7) is used to analyze the impact of industrial 
structure rationalization on the effect of smart city policies on 
residents’ health:

 β β β θ θ ε= + × + + + +0 1 2 , ,' ' 'it it it i t i t i tH DID RSP Cont  (7)

In Equation 7, itRSP  represents industrial structure rationalization, 
and the interaction term ×it itDID RSP  tests the role of industrial 
structure rationalization in moderating the effect of smart city policies 
on residents’ health. Similarly, Equation (8) introduces the interaction 
term for industrial structure upgrading (AIS) to explore its moderating 
effect on residents’ health:

 β β β θ θ ε= + × + + + +0 1 2 , ,' ' 'it it it i t i t i tH DID AIS Cont  (8)
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Finally, Equation (9) investigates the moderating effect of 
technological innovation capacity (GEP) on residents’ health:

 β β β θ θ ε= + × + + + +0 1 2 , ,' ' 'it it it i t i t i tH DID GEP Cont  (9)

The regression models outlined above facilitate a better 
understanding of how moderating variables affect the implementation 
outcomes of smart city policies, particularly the roles played by 
industrial structure and technological innovation in this process. To 
further control for potential spatial effects, a SDM is employed to 
address the parallel trends assumption issue that may exist within the 
DID models. The spatial Durbin model is capable of capturing policy 
spillover effects, meaning that the policy implementation effects in 
one city may influence neighboring cities through mechanisms such 
as information flow and resource sharing. Therefore, Equation (10) 
introduces a spatial lag term to account for these spatial dependencies:

 1 , ,it it i t i tGTFP W GTFP DIDρ γ ε= × + +  (10)

Here, ρ is the spatial autocorrelation coefficient, and W is the 
spatial weight matrix, which captures the spatial dependencies between 
cities. This model helps identify spillover effects of smart city policies 
across cities and ensures an accurate evaluation of policy outcomes.

Finally, to validate the robustness of the results obtained from the 
models, a panel random forest model is also applied. This model 
utilizes the causal forest algorithm to handle the heterogeneity of 
policy effects across different cities and time periods. In this way, the 
reliability and accuracy of the policy effects can be further ensured, 
while the robustness of the model is tested, thereby providing stronger 
empirical support for policy decision-making. Through these detailed 
regression analyses and the control for spatial effects, this study 
comprehensively explores the implementation outcomes of smart city 
policies and reveals the significant moderating roles played by 

industrial structure rationalization, industrial structure upgrading, 
and technological innovation capacity in this process.

3.2 Research subjects and data sources

To assess the practical effects of smart city renewal strategies, this 
study examines the first batch of smart city pilot policies introduced 
in China in 2013, focusing on 32 prefecture-level cities that 
participated in the initial pilot program as the experimental group. 
These cities, through the development of smart city initiatives, have 
led efforts in areas such as information infrastructure construction, 
data resource integration, and urban management automation, 
providing a crucial foundation for investigating the mechanisms that 
enhance green economic efficiency and residents’ health. For the 
control group, 192 prefecture-level cities that were not selected for 
participation in the smart city pilot policies were included. These cities 
were not directly impacted by the smart city policies during the study 
period, with their economic development and residents’ health 
primarily influenced by other conventional factors, thereby serving as 
a benchmark for evaluating the policy effects. Given the significant 
influence of the COVID-19 pandemic on data from 2020 onwards, 
which resulted in a global economic recession and instability, causing 
abnormal policy and market responses—particularly in the green 
economy and public health sectors—this study excludes data from this 
period to ensure the reliability of the data and the stability of the 
results. Consequently, the study covers the years 2007 to 2019, 
focusing on the critical period before and after the launch of the smart 
city pilot policies. The years 2007 to 2012 represent the pre-policy 
implementation phase, capturing baseline conditions prior to the 
introduction of the policies, while the years 2013 to 2019 reflect the 
post-policy implementation phase, used to assess the impact of the 
policies on green economic efficiency and residents’ health.

TABLE 1 Variables and their definitions.

Category Variable name Symbol Definition and measurement method

Dependent 

Variables

Green Economic Efficiency GTFP Measured by GTFP, calculated using the Malmquist–Luenberger index and logarithmic 

transformation.

Resident Health Level H Measured by life expectancy as the primary health indicator, assessed in a positive direction.

Independent 

Variables

Smart City Policy Implementation 

Effect

DID Dummy variable: assigned a value of 1 for pilot cities after policy implementation, 0 otherwise.

Control 

Variables

Foreign Investment Level FI Ratio of actual foreign direct investment to regional GDP, reflecting the city’s degree of openness.

Human Capital Level HC Ratio of education expenditure to local government fiscal expenditure, measuring human capital 

accumulation in the city.

Urbanization Level UB Measured by the intensity of nighttime light data, reflecting the degree of urban development.

Financial Development Level FD Ratio of the loan balance of financial institutions to regional GDP, reflecting the availability of 

financial resources.

Government Intervention Level GI Ratio of local government budget expenditure to regional GDP, reflecting the level of government 

regulation.

Moderating 

Variables 

Category

Rationalization of Industrial Structure RSP Measured by the Theil index to assess inter-industry balance; the closer the value is to 0, the 

higher the equilibrium level.

Advanced Industrial Structure AIS Ratio of the tertiary industry output to the secondary industry output, measuring the degree of 

industrial upgrading.

Technological Innovation Capability GEP Number of patents granted in each city, used to measure the level of technological innovation.
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The research data primarily derives from the WHO-GHO and the 
China City Statistical Yearbook, as well as Provincial and Municipal 
Statistical Bulletins. The WHO-GHO provides key health-related 
indicators, ensuring the accuracy and comparability of health data due 
to its global scope and authoritative nature. The China City Statistical 
Yearbook and the Provincial and Municipal Statistical Bulletins offer 
data on urban economics, population, infrastructure development, 
and other relevant factors, which are utilized to measure green 
economic efficiency, control variables, and moderating variables. To 
address the issue of missing data, multiple imputation methods were 
employed to handle the missing values. This approach generates 
several complete datasets based on the observed data, thereby 
reducing bias caused by missing information and enhancing the 
robustness of the results. In instances where inconsistencies between 
different data sources were identified, standardization and 
harmonization processes were applied to ensure data uniformity. For 
example, data from the China Urban Statistical Yearbook and 
provincial statistical bulletins were standardized across different years 
and regions to eliminate potential biases arising from variations in 
statistical criteria. Regarding measurement errors, a data validation 
and correction strategy was implemented, particularly for key 
indicators related to green economic efficiency and residents’ health 
levels. These core variables underwent repeated verification and cross-
checking to ensure their accuracy. To mitigate potential systematic 
measurement errors, control variables were incorporated into the 
model, and robustness tests were conducted to verify the stability of 
the results. Data processing and analysis were performed using Stata 
16 software, and the impact of smart city renewal strategies on green 
economic efficiency and residents’ health at the prefecture level was 
evaluated through model regression analysis.

Building upon the WHO health indicators, this study also integrated 
real-time environmental sensor data from select cities. Using the API 
provided by the National Ecological and Environmental Ministry, 
minute-level monitoring data on PM2.5, noise levels, and green space 
coverage from pilot cities between 2015 and 2019 were collected. To align 
with the research objectives, spatial interpolation methods were 
employed to accurately match these monitoring data at the municipal 

level. However, due to the limited coverage of environmental sensors, 
only 32% of the sample cities had a complete monitoring network. 
Consequently, these sensor data were excluded from the main model but 
were used as supplementary data for robustness checks.

4 Results

4.1 Analysis of the relationship between 
smart city renewal strategies and green 
economic efficiency

The impact of smart city renewal strategies (the explanatory 
variable) and the control variables on green economic efficiency is first 
assessed. A two-way fixed effects model is employed to perform the 
regression analysis for model (1), with the results presented in Figure 2.

As presented in Figure  2, the smart city renewal strategy 
demonstrates a significant positive impact on GTFP, which reflects 
green economic efficiency, with a coefficient of 0.098 that is statistically 
significant at the 1% level. This finding suggests that the smart city 
renewal strategy effectively fosters the high-quality development of the 
green economy by optimizing resource allocation and enhancing the 
ecological environment. Among the control variables, the urbanization 
level is positively correlated with GTFP and is significant at the 1% 
level, indicating that urbanization advancement significantly promotes 
green economic efficiency. Additionally, human capital has a positive 
effect on GTFP, although foreign investment and financial 
development exhibit lower levels of significance, suggesting that their 
impact on GTFP is relatively limited.

The regional heterogeneity regression results for the eastern and 
central-western regions are presented in Figure 3, based on model (2).

As depicted in Figure 3, the smart city renewal strategy exerts a 
significant positive effect on GTFP in both the eastern and central-
western regions, with significance at the 1% level in both cases. The 
coefficient for the central-western region (0.109) is higher than that 
for the eastern region (0.063), suggesting that the smart city renewal 

FIGURE 2

Regression results of smart city renewal strategies and green 
economic efficiency. *p < 0.1, **p < 0.05, ***p < 0.01.

FIGURE 3

Regional heterogeneity regression results for green economic 
efficiency. *p < 0.1, **p < 0.05, ***p < 0.01.
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FIGURE 5

Parallel trend test results for the GML index.strategy has a more pronounced positive effect in the central-western 
region. However, due to differences in sample sizes between the 
eastern and central-western regions, direct comparison of the 
coefficients may introduce bias. Therefore, further statistical 
validation, such as Fisher’s combined test, is necessary to ensure the 
robustness and accuracy of these conclusions. The results of Fisher’s 
combined test are presented in Figure 4.

As shown in Figure 4, the regression coefficient difference for the 
DID variable is −0.046, with a p-value of 0.006. This indicates a 
significant difference in the impact of the smart city renewal strategy 
on GTFP between the eastern and central-western regions. The results 
suggest that the positive effects of policy, foreign investment, and 
human capital are significantly greater in the central-western region 
compared to the eastern region.

A parallel trend test was conducted using the GML index for cities 
in both the experimental and control groups from 2007 to 2019. The 
results are presented in Figure 5.

As shown in Figure 5, prior to the implementation of the smart city 
pilot policy (2007–2012), the trends of the GML index for the 
experimental and control groups were largely consistent, supporting the 
parallel trend assumption of the DID model. Following the introduction 
of the smart city policy in 2013, the GML index for the two groups began 
to diverge significantly. The index for the experimental group continued 
to rise after 2013, reflecting the substantial impact of smart city initiatives 
on enhancing green economic efficiency. In contrast, the GML index for 
the control group decreased steadily from 2013 to 2015 before gradually 
rebounding. These findings suggest that the smart city renewal strategy 
played a pivotal role in driving sustained improvements in green 
economic efficiency in the pilot cities, with the policy effects being both 
significant and stable over the long term.

4.2 Analysis of the relationship between smart 
city renewal strategies and resident health

To assess the impact of smart city renewal strategies and control 
variables on resident health, a two-way fixed effects regression model 
was applied to model (3). The results are presented in Figure 6.

As shown in Figure  6, the smart city renewal policy exerts a 
significant positive impact on resident health, with a coefficient of 
0.085, which is statistically significant at the 1% level. This finding 
indicates that smart city renewal strategies substantially enhance 
resident health by optimizing the urban environment, improving the 
quality of public services, and better allocating healthcare resources. 
Among the control variables, human capital, financial development, 
and urbanization are positively associated with resident health, 
suggesting that improvements in education, the availability of financial 
resources, and urbanization progress play a critical role in promoting 
resident well-being.

To further assess the robustness of the impact of smart city 
renewal strategies on green economic efficiency and residents’ health, 
a sensitivity analysis was conducted, utilizing environmental sensor 
data as an auxiliary analytical tool. Table 2 presents the results derived 
from the supplementary analysis using real-time environmental data.

The sensitivity analysis results in Table  2 indicate that 
incorporating real-time environmental sensor data strengthens the 
impact of smart city renewal strategies on both green economic 
efficiency and residents’ health. Specifically, the inclusion of real-time 
PM2.5 data increased the coefficients for green economic efficiency 
and residents’ health level to 0.104 and 0.091, respectively, with a 
significant improvement in the goodness of fit. This suggests that 
improvements in air quality positively influence the effectiveness of 
the policy. Furthermore, the inclusion of real-time noise data also 
yielded a significant effect, although slightly lower than the impact of 
PM2.5 data, highlighting the important moderating role of 
environmental factors in the success of smart city renewal strategies.

To ensure the robustness of the model results, multiple robustness 
tests were conducted, and the estimated results from different methods 
on green economic efficiency and residents’ health levels were 
compared, as shown in Table 3.

As shown in Table 3, although there are some variations in the 
estimated coefficients across models, the overall trends remain 
relatively consistent. Regarding the impact on green economic 

FIGURE 4

Fisher’s combined test results for regional heterogeneity in green 
economic efficiency.
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efficiency, the causal forest model yields a higher estimated coefficient 
(0.112), while the SDM produces a lower coefficient (0.087). For 
residents’ health levels, all models demonstrate a significant positive 
relationship, with the causal forest model showing the highest 
coefficient (0.093), suggesting that this model is more sensitive in 
estimating health impacts. In terms of the parallel trend test, the 
baseline DID model exhibits a significant p-value (0.032), supporting 
the parallel trends assumption. However, the p-values for the SDM 
(0.125) and the GMM model (0.041) are higher, indicating smaller 
policy spillover effects or more pronounced endogeneity issues. The 
causal forest algorithm did not provide results for the parallel trend 
test, but the significance of its coefficients suggests that this method is 
highly effective in addressing policy effect heterogeneity. Overall, the 
different models indicate that smart city renewal strategies have a 
significant positive impact on both green economic efficiency and 
residents’ health.

4.3 Analysis of the moderating effects of 
moderating variables

The regression results examining the moderating effects of RSP, 
industrial structure upgrading, and technological innovation 
capability on the relationship between smart city renewal strategies, 
control variables, and green economic efficiency are presented in 
Figure 7.

As shown in Figure 7, the smart city pilot policy significantly 
enhances green economic efficiency in cities with a high degree of RSP 
(DID regression coefficient = 0.077, p < 0.01), indicating that RSP 
serves as a positive moderating factor in this process. In contrast, no 
such effect is observed in cities with an irrational industrial structure. 
Additionally, both the industrial structure upgrading and 
non-upgrading groups exhibit significant positive effects (p < 0.01), 
suggesting that smart city development generally boosts GTFP, with a 
more pronounced effect in cities with upgraded industrial structures. 
Furthermore, in cities with lower technological innovation capacity, 
the impact of the smart city pilot policy is significant (DID regression 
coefficient = 0.057, p < 0.01), indicating that regions with less 

technological innovation capability experience more substantial 
moderating effects. However, no significant effect is observed in 
regions with higher technological innovation capacity. These findings 
suggest that regional differences in industrial structure optimization 
and technological innovation capacity play a crucial role in shaping 
the effectiveness of urban renewal strategies. This highlights the 
importance of context-specific approaches when promoting smart 
city development.

The regression results for the moderating variables on the 
relationship between smart city renewal strategies, control variables, 
and resident health are presented in Figure 8.

As illustrated in Figure  8, the smart city pilot policy exerts a 
significant positive effect on residents’ health in cities with a high 
degree of RSP (DID regression coefficient = 0.065, p < 0.01), 
suggesting that RSP plays a beneficial moderating role in this process. 
In contrast, no such effect is observed in cities with an irrational 
industrial structure. Moreover, both the industrial structure upgrading 
and non-upgrading groups display significant positive effects 

FIGURE 6

Regression results of smart city renewal strategies and resident 
health. *p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 2 Sensitivity analysis of results.

Variable combination Green economic 
efficiency coefficient

Residents’ health level 
coefficient

Goodness of fit

Basic Indicators 0.098** 0.085** 0.712

Basic Indicators + Real-time PM2.5 0.104*** 0.091** 0.735

Basic Indicators + Real-time Noise 0.096* 0.088** 0.728

*p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 3 Comparison of robustness test results.

Method Green economic efficiency 
coefficient

Residents’ health level 
coefficient

Parallel trend test p-value

Baseline DID 0.098** 0.085** 0.032

SDM 0.087* 0.079* 0.125

Causal Forest 0.112*** 0.093** –

GMM 0.091* 0.083** 0.041

*p < 0.1, **p < 0.05, ***p < 0.01.
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FIGURE 7

Regression results of the moderating variables on green economic efficiency. *p < 0.1, **p < 0.05, ***p < 0.01.

(p < 0.01), indicating that smart city development generally enhances 
residents’ health, with the effect being more pronounced in cities with 
upgraded industrial structures. In cities with lower technological 
innovation capability, the impact of the smart city pilot policy is not 
significant. However, in cities with higher technological innovation 
capability, the effect is significant (DID regression coefficient = 0.049, 
p < 0.01), suggesting that technological innovation capability plays a 
positive moderating role in this context. Further threshold regression 
analysis reveals that the impact of technological innovation capacity 
on health outcomes exhibits non-linear characteristics. Specifically, 
when the number of patents granted in a city exceeds 4,200 per year 
(95% CI: 3,850–4,550), the policy effect coefficient increases from 
0.049 to 0.078 (p < 0.001), suggesting that high levels of innovation 
accelerate health improvements. However, when the number of 
patents granted exceeds 9,800 per year, the marginal effect begins to 
decline, as the coefficient decreases to 0.053 (p = 0.012). This decline 
may be  attributed to resource misallocation or the saturation of 
marginal returns from health interventions due to excessive 

technological concentration. These findings highlight that regional 
differences in industrial structure optimization and technological 
innovation capability significantly influence the effectiveness of urban 
renewal strategies, emphasizing the importance of context-specific 
approaches to optimize smart city development and enhance residents’ 
health outcomes. Simultaneously, the health benefits derived from 
technological innovation appear to have a dynamic upper limit, which 
could be addressed through policy adjustments. These might include 
decentralized technology deployment or the integration of cross-
sectoral applications to overcome the bottleneck of 
diminishing returns.

To further analyze the impact of technological innovation capacity 
on residents’ health across different regions, a regression analysis is 
conducted for regions with varying levels of technological innovation. 
Table 4 presents the coefficients of residents’ health levels under the 
influence of smart city renewal strategies across regions with high, 
medium, and low technological innovation capacity. By comparing 
regions with different levels of technological innovation, a clearer 

TABLE 4 Comparison of green economic efficiency coefficients across different regions and industrial structures.

Region/industrial structure Green economic 
efficiency coefficient 

(DID regression)

P-value Standard 
error

Impact degree Statistical 
significance

Eastern Region (Rational Structure) 0.073 0.004 0.021 Positive Impact **

Eastern Region (Irrational Structure) 0.050 0.025 0.030 Positive Impact *

Central and Western Regions (Rational Structure) 0.118 0.000 0.019 Strong Positive Impact ***

Central and Western Regions (Irrational Structure) 0.085 0.010 0.028 Positive Impact **

All regions (rational structure) 0.098 0.000 0.015 Positive Impact ***

All regions (irrational structure) 0.060 0.021 0.022 Positive Impact *

*p < 0.1, **p < 0.05, ***p < 0.01.
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understanding of how technological innovation influences the extent 
of health improvement can be gained.

Table 4 reveals significant differences in the impact of regional 
and industrial structure on green economic efficiency. First, in the 
eastern region, when the industrial structure is rational, the green 
economic efficiency coefficient is 0.073, with a high level of statistical 
significance (p-value = 0.004), indicating that a rational industrial 
structure has a certain positive effect on green economic efficiency. 
However, when the industrial structure is irrational, the green 
economic efficiency coefficient drops to 0.050, with lower statistical 
significance (p-value = 0.025). This suggests that industrial structure 
optimization in the eastern region has a relatively limited impact on 
improving green economic efficiency. In contrast, the green economic 
efficiency improvements in the central and western regions are more 
pronounced. When the industrial structure is rational, the green 
economic efficiency coefficient for this region reaches 0.118, with 
extremely strong significance (p-value = 0.000). This result indicates 
that industrial structure optimization in the central and western 
regions leads to a significant increase in green economic efficiency. 
Even when the industrial structure is irrational, the green economic 
efficiency coefficient remains positive at 0.085, but the effect is 
weaker. Overall, a rational industrial structure has a more significant 

effect on promoting green economic efficiency in the central and 
western regions.

After accounting for the heterogeneity of technological 
innovation, the relationship between technological innovation 
capacity and residents’ health within regions is further examined. 
Table 5 presents the regression coefficients under varying levels of 
technological innovation, highlighting significant differences in the 
positive impact of technological innovation on residents’ health.

Table 5 illustrates the effects of different levels of technological 
innovation on residents’ health. In regions with strong technological 
innovation capacity, the positive impact of smart city policies on 
health is more pronounced. Specifically, areas with high innovation 
capacity exhibit a strong positive effect, with a coefficient of 0.120 and 
a p-value of 0.000, indicating both statistical and substantive 
significance. Regions with medium levels of innovation show a 
moderate effect (coefficient = 0.080), while in areas with low 
technological innovation capacity, the effect remains positive 
(coefficient = 0.040) but with relatively weak statistical significance 
(p-value = 0.080). These findings suggest a positive correlation 
between the level of technological innovation and improvements in 
residents’ health, with particularly evident effects in regions where 
innovation is more concentrated.

FIGURE 8

Regression results of the moderating variables on residents’ health. *p < 0.1, **p < 0.05, ***p < 0.01.

TABLE 5 Correlation analysis between technological innovation capacity and residents’ health.

Level of technological 
innovation

Coefficient of 
residents’ health level 

(DID regression)

P-value Standard 
error

Impact degree Statistical 
significance

High technological innovation capacity 0.120 0.000 0.022 Strong Positive Impact ***

Medium technological innovation capacity 0.080 0.004 0.018 Moderate Positive Impact **

Low technological innovation capacity 0.040 0.080 0.028 Weak Positive Impact *
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In summary, (1) the positive moderating effect of RSP on green 
economic efficiency and public health is evident. This effect is 
primarily observed in the enhanced resource allocation that occurs 
following the optimization of industrial structure. By reducing the 
proportion of inefficient and high-pollution industries, cities can 
increase the overall benefits of the green economy. Rationalizing the 
industrial structure promotes the development of high-tech and 
high-value-added industries, improving resource utilization 
efficiency while simultaneously driving environmental improvements. 
As a result, it has a significant positive impact on green economic 
efficiency. Moreover, RSP also enhances public health, as a well-
organized industrial layout helps reduce pollution sources and create 
healthier living environments. For example, reducing the share of 
heavily polluting industries mitigates the negative health effects of air 
and noise pollution on residents. In cities undergoing rapid 
industrialization, the positive effects of RSP are particularly 
pronounced. These cities are often dominated by heavy industries and 
high-pollution sectors, and their irrational industrial structures lead 
to severe issues of resource waste and environmental pollution. 
Therefore, RSP in these cities—through optimized resource allocation 
and the promotion of high-tech, low-pollution industries—can 
significantly improve green economic efficiency and enhance 
environmental quality. For instance, reducing the proportion of high-
pollution industries such as coal and steel, and reallocating resources 
to high-end manufacturing and green energy sectors, not only boosts 
green productivity but also reduces pollutant emissions, indirectly 
improving residents’ health. In contrast, in post-industrial cities, 
where the industrial structure is already relatively rational and 
dominated by service and high-tech industries, the potential for 
further structural optimization is limited, reducing the extent of its 
moderating effect. Thus, the impact of RSP on green economic 
efficiency and public health is more pronounced in cities undergoing 
rapid industrialization.

(2) The positive moderating effect of industrial structure 
upgrading on green economic efficiency and public health is more 
pronounced. This mechanism primarily stems from the fact that 
industrial structure upgrading promotes the development of 
high-end technology and innovation-driven industries, thereby 
enhancing a city’s green technological capabilities and production 
efficiency. The rapid expansion of high-end services and technology 
industries is typically accompanied by the widespread implementation 
of environmental protection technologies, such as clean energy and 
green building technologies, all of which significantly contribute to 
enhancing green economic efficiency. Simultaneously, industrial 
structure upgrading improves the quality of employment 
opportunities for residents, elevating their economic income levels 
and quality of life, which in turn positively impacts public health. By 
increasing health protections and improving urban public services, 
the upgrading of the industrial structure not only drives economic 
growth but also fosters the enhancement of public health. In cities 
undergoing rapid industrialization, the moderating effect of 
industrial structure upgrading is similarly significant. As these cities 
progressively transition to high-end technology and innovation-
driven industries, green economic efficiency is effectively improved. 
The adoption of advanced technologies and green industries, 
particularly clean energy and green building technologies, has 
facilitated economic transformation and optimized resource 
utilization. Additionally, as industries evolve, these cities provide 

more high-income, high-skill employment opportunities, thereby 
improving residents’ economic status and quality of life, which in 
turn enhances public health. In post-industrial cities, industrial 
structure upgrading has already reached a relatively mature stage. 
These cities are predominantly service-oriented, with higher levels of 
technological innovation and green industry integration. 
Consequently, although industrial structure upgrading can still 
positively affect green economic efficiency and public health, the 
magnitude of this effect is generally smaller compared to cities 
undergoing rapid industrialization.

(3) The impact of technological innovation capacity as a 
moderating variable is also significant. In cities with lower 
technological innovation capacity, the effectiveness of smart city 
renewal policies is notably enhanced. This is likely due to the fact that 
such cities often face more structural challenges and resource 
shortages. Smart city development can address these limitations 
through informatization and intelligentization, thereby fostering 
improvements in the green economy and public health. In contrast, in 
cities with higher technological innovation capacity, the effect of smart 
city renewal policies does not demonstrate significant improvement. 
This may be attributed to the fact that these cities already possess a 
solid foundation in technological innovation, industrial upgrading, 
and related aspects, resulting in smaller incremental benefits from 
policy implementation. Technological innovation has driven 
advancements in areas such as intelligent production and smart health 
management, directly enhancing the productivity of the green 
economy and the health levels of residents. Intelligent health 
management systems and urban environmental monitoring systems 
enable more precise adjustments in the allocation of urban resources, 
thereby optimizing green economic efficiency and improving the 
living environments of residents.

Therefore, in advancing smart city development, it is crucial to 
implement location-specific, customized policy measures that align 
with the local industrial structure and technological innovation 
foundation to maximize the enhancement of green economic 
efficiency and residents’ health levels.

5 Discussion

This study examines the impact of smart city renewal strategies 
on green economic efficiency and residents’ health. The findings 
indicate that smart city renewal significantly enhances green 
economic efficiency, particularly in regions with less optimized 
industrial structures and lower levels of technological innovation. 
Moreover, the positive effect of smart city renewal on public health 
is also confirmed, suggesting that such strategies contribute not only 
to economic outcomes but also play a vital role in improving the 
quality of urban life. However, the analysis also reveals regional 
heterogeneity in policy outcomes. The improvement in green 
economic efficiency is more pronounced in the central and western 
regions, which may be  closely related to regional disparities in 
industrial structure and technological innovation capacity. 
Therefore, policy formulation should be tailored to regional needs 
and stages of development, rather than applying a uniform strategy 
across all areas. Specifically, eastern regions may require greater 
focus on enhancing technological innovation and guiding the 
development of high-end industries, whereas central and western 
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regions should prioritize infrastructure development and the 
promotion of green industries.

From a policy perspective, governments should aim to advance 
both green economic development and residents’ health. In the 
process of promoting smart city renewal, it is crucial to integrate 
environmental governance measures, particularly those addressing air 
quality, noise pollution, and other urban environmental issues. The 
incorporation of smart technologies for environmental monitoring 
can facilitate the accurate identification and real-time tracking of 
pollution sources, enabling more responsive and efficient mitigation 
strategies. Furthermore, policies should encourage interregional 
collaboration and technological exchange. In particular, efforts should 
be  made to strengthen technical training and direct innovation 
resources toward regions with lower levels of technological innovation, 
thereby enhancing their capacity to participate in and benefit from the 
green transition.

These conclusions are supported by findings from similar studies. 
For example, Wang et  al. (32) assessed the effects of China’s 
low-carbon city pilot policies on digital economy growth, 
demonstrating that such policies not only facilitated the development 
of the digital economy but also advanced green development. 
Notably, the study revealed that these policies had a more substantial 
impact on digital economy growth in coastal, non-resource-based, 
and large cities, primarily through mechanisms such as technological 
innovation and industrial restructuring. Similarly, Chen et al. (33) 
explored the influence of smart city pilots on green economic 
efficiency, concluding that smart cities enhance urban green 
economic efficiency via advancements in technology, structural 
optimization, and energy utilization. Their study also emphasized 
that the effects of smart cities are more pronounced in cities 
characterized by higher talent concentrations, robust financial 
development, and lower population densities. Furthermore, Wu et al. 
(34) investigated the relationship between smart city construction 
and residents’ health, finding that smart cities improve health 
outcomes by reducing outpatient visits and increasing access to 
inpatient services, with the impact being particularly significant 
among rural residents. In summary, the smart city renewal strategy 
emerges as a dual driver, positively contributing to green economic 
efficiency while simultaneously enhancing residents’ health. The 
rationalization of industrial structure and the facilitation of 
technological innovation stand out as critical moderating factors in 
this process. Therefore, policymakers should pay close attention to 
regional differences, particularly regarding levels of technological 
innovation and industrial restructuring, to effectively tailor smart city 
initiatives. By doing so, they can foster a synergistic relationship 
between green economic development and public health, achieving 
a sustainable and inclusive win-win outcome.

6 Conclusion

This study constructs an empirical model using WHO-GHO data 
to analyze the impact of smart city renewal strategies on green 
economic efficiency and residents’ health. It examines the 
mechanisms of moderating variables such as RSP, upgrading, and 
technological innovation capability, exploring how these factors 
influence the effects of smart city renewal strategies in promoting a 

green economy and enhancing residents’ health. The following 
conclusions are drawn:

 (1) The smart city renewal strategy significantly enhances GTFP, 
representing green economic efficiency, with a coefficient of 
0.098, statistically significant at the 1% level. Regional 
heterogeneity analysis reveals that the impact is more 
pronounced in the central and western regions, with a 
coefficient of 0.109.

 (2) The smart city renewal strategy significantly improves 
residents’ health, with a coefficient of 0.085, significant at 
the 1% level. This suggests that the strategy enhances 
residents’ health by optimizing the urban environment, 
improving the quality of public services, and better 
allocating medical resources. Additionally, human capital, 
financial development, and urbanization are positively 
correlated with residents’ health, indicating that 
advancements in education, financial resources, and 
urbanization contribute to health improvements.

 (3) RSP and upgrading significantly amplify the positive effects of 
the smart city renewal strategy on both green economic 
efficiency and residents’ health, with coefficients of 0.077 and 
0.065, respectively, for green economic efficiency (p < 0.01). In 
regions with lower technological innovation capabilities, the 
impact on green economic efficiency is more substantial (DID 
coefficient = 0.057, p < 0.01), while in regions with higher 
technological innovation capabilities, the impact on residents’ 
health is more pronounced (DID coefficient = 0.049, p < 0.01).

In conclusion, the smart city renewal strategy plays a significant 
role in advancing green economic development and improving 
residents’ health. Moderating variables such as RSP, upgrading, and 
technological innovation capacity further enhance these effects. 
Therefore, future policy design should consider regional 
differences, industrial structures, and technological innovation 
levels, promoting smart city development in a targeted manner to 
achieve dual improvements in both the green economy and 
residents’ health.

Based on these findings, policymakers are advised to adapt and 
design policies flexibly in accordance with regional differences in 
technological innovation capacity and industrial structure. 
Specifically, in the eastern region, emphasis should be  placed on 
deepening the integration of technological innovation and green 
industries. In contrast, the central and western regions should 
concentrate efforts on infrastructure development and the 
transformation toward green industrial systems. In addition, it is 
essential for governments to enhance environmental monitoring, 
particularly by leveraging smart technologies to assess environmental 
quality. This approach can provide accurate and timely data to 
support the formulation of targeted environmental policies. 
Ultimately, the effective implementation of smart city renewal 
strategies should pursue dual objectives—promoting green economic 
growth and improving public health—to ensure sustainable 
urban development.

Although this study provides robust empirical evidence regarding 
the impacts of smart city renewal strategies, certain limitations 
remain. For instance, regional sample disparities may affect the 
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precision of the results. Future research could address this issue by 
improving sample representation. Moreover, subsequent studies may 
explore additional influencing factors, such as social capital and 
public health policies, to offer a more comprehensive perspective for 
enhancing the overall quality of urban development.
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