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Over the past decade, China has significantly improved air quality by integrating 
environmental policies with economic growth. Yet, environmental inequality 
remains a major challenge to social equity and sustainable development. This study 
examines the socioeconomic impacts of PM2.5 exposure using population data from 
1,317 county towns across 32 provinces (2013–2020), employing meteorological 
normalization and population-weighted exposure indices. The findings reveal that 
lower-income regions (L4) achieved the highest PM2.5 reduction (54%), whereas 
wealthier regions (L1–L3), despite higher pollution levels, saw lower reductions 
(45–50%), highlighting an unequal emission reduction burden. PM_dw exhibits 
more stable spatiotemporal patterns than PM2.5, offering clearer insights into 
emission trends. Despite overall improvements, residents in less-developed areas 
still face higher exposure, while urban centers, benefiting from more resources, 
experience increased health risks. Vulnerable populations—including coal miners, 
the educated, women, and the older adult—disproportionately suffer from high 
exposure levels. Meteorological conditions have generally mitigated PM2.5 exposure, 
with the most significant dispersion effect in 2018. Notably, meteorology’s role in 
mitigating inequality in occupational exposure significantly decreased from 43.7% 
in 2013 to 4.5% in 2019, while its exacerbating effect on urban–rural inequality, 
contributing 43.7% in 2010, drastically reduced by 2020, even shifting to a slight 
alleviating role. To achieve equitable environmental governance and robust pollution 
control, policies must not only address regional economic disparities and prioritize 
protection for disadvantaged communities but also account for the complex and 
evolving modulating role of meteorological conditions on exposure inequality.
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1 Introduction

Since the turn of the century, China has been at the forefront of global development, with its 
coal consumption peaking at 91.94 exajoules in 2023, making it one of the world’s largest 
consumers (1). This significant energy use contributes to substantial emissions of particulate 
matter (PM2.5), closely linked to adverse health outcomes (2–5). Research consistently highlights 
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the detrimental effects of PM2.5 on health, significantly increasing risks 
of respiratory diseases and reducing life expectancy (6–11). In response, 
the Chinese government has implemented robust policies like the “Ten 
Rules of the Atmosphere” and the “Battle of the Blue Sky,” achieving a 
54% reduction in PM2.5 levels and maintaining good air quality on over 
86% of days annually in key cities (12). Despite these improvements, 
disparities in air quality exposure continue to pose challenges, 
highlighting persistent environmental inequalities.

Recent research highlights the persistent environmental inequalities 
associated with air pollution, which manifest not only in pollution 
distribution but also in disparate access to environmental protection 
and resources across social strata. This disparity is most evident in areas 
benefiting from natural advantages or suffering from industrial 
pollution. Factors such as geography, industrial density, and economic 
development play significant roles in the distribution of these 
inequalities (13–16). Sociological analyses suggest that rural migrants 
and lower economic sectors face heightened risks due to their proximity 
to pollution-intensive industries (17–21). Furthermore, demographic 
shifts towards an aging population are exacerbating the health impacts 
of PM2.5, significantly increasing mortality rates, particularly among 
women aged 30–45, who experience double the pollutant exposure of 
the general adult population (22–26). These conditions undermine the 
benefits of air quality improvements and healthcare advancements, 
ultimately impacting subjective well-being and mental health.

Despite numerous studies addressing the environmental 
inequalities caused by air pollution in China, there remains a 
significant gap in comprehensive analysis of pollution exposure 
disparities across different socio-economic groups, particularly in 
terms of the specific roles of meteorological and emission factors. 
This study addresses this gap by systematically assessing the PM2.5 
exposure conditions in 1,317 county towns across 32 provinces in 
mainland China from 2013 to 2020. Utilizing a meteorological 
normalization model built through the integration of spatial 
information and machine learning techniques (27, 28), combined 
with a population-weighted pollution exposure index (29), 
we meticulously analyzed exposure disparities across various socio-
economic dimensions including urban–rural settings, occupation, 
age, gender, and educational levels, as well as the impacts of 
meteorological factors. Through exhaustive data analysis, this paper 
reveals regional variations and the effectiveness of China’s policies for 
reducing atmospheric emissions, highlighting the socio-economic 
impacts of these policies, and discussing environmental health 
inequalities from a community perspective. Our findings aim to 
provide a scientific basis for the formulation of more equitable 
environmental policies and advocate for enhanced health rights for 
socio-economically disadvantaged groups.

2 Method

2.1 Data sources

This study utilizes data from multiple sources, including the National 
Bureau of Statistics, the 6th and 7th Population Censuses, the European 
Centre for Medium-Range Weather Forecasts (ECMWF), and the China 
National Environmental Monitoring Centre (CNEMC). Specific 
information on each data source is shown in Table 1. The National 
Bureau of Statistics provides annual county-level population data for 

sectors such as mining, education, manufacturing, and transportation 
from 2013 to 2020, along with county-level education qualification data. 
The 6th and 7th Population Censuses offer data on sex, age groups, and 
place of residence (urban, rural, town) for 2010 and 2020, collected every 
10 years. The CNEMC platform provides national PM2.5 site-level hourly 
data from 2013 to 2020 (30), aggregated into annual averages for analysis. 
To ensure consistency, census data from different years were 
standardized. Data for 2005 and 2015 were obtained from 1% population 
sample surveys, while data for other years were sourced from 1‰ 
population change sample surveys. To account for these varying 
sampling ratios and ensure comparability, we inversely estimated the 
total population based on their respective sampling proportions. Specific 
details on the sampling ratios are available in the “China Statistical 
Yearbook” publications in National Bureau of Statistics1.

Meteorological data from the ECMWF, with a spatial resolution of 
0.25° × 0.25° from 2013 to 2020, were used as covariates for PM2.5 
inversion (31). While this resolution may not fully capture highly 
localized meteorological variations, such as those in complex urban 
microclimates or specific complex terrains, it provides the most 
comprehensive and consistently available long-term reanalysis data for 
nationwide studies like ours, ensuring broad spatial and temporal 
coverage for our analysis across 1,317 county towns. The data include 
mean sea level pressure (msl, Pa), relative humidity (rh, %), temperature 
(t2m, K), easterly and northward wind components (10 U and 10 V, 
m/s), and boundary layer height (blh, m). These data were localized 
based on the latitude and longitude of each PM2.5 station, enabling the 
extraction of meteorological parameters for each site.

Our study implemented a stringent quality control and 
preprocessing protocol for daily PM2.5 data to ensure analytical 
reliability. Physically invalid PM2.5 concentrations (values less than 
0 μg/m3 or greater than 1,000 μg/m3) were directly excluded. For the 
remaining valid data, outliers were identified using a ± 3 standard 
deviation rule within a 15-day sliding window, complemented by a 
review of global 0.1 and 99.9% percentiles to confirm extreme values. 
Identified outliers were replaced via linear interpolation to maintain 
time series continuity. PM2.5 Missing data were primarily imputed 
using linear interpolation, with a maximum imputation window of 
15 continuous days; longer gaps were left unfilled to prevent the 
introduction of highly uncertain synthetic data. Importantly, the 
meteorological parameters obtained from ECMWF’s ERA5 reanalysis 
product inherently provide complete spatiotemporal coverage and 
therefore did not require any missing value imputation in our study. 
This rigorous data processing supports the reliability of our machine 
learning algorithms (57).

2.2 Estimates of PM2.5 population exposure

Due to the uneven spatial distribution of PM2.5 monitoring 
stations, even at the county level, we  need to apply kriging 
interpolation to seamlessly fill gaps in station PM2.5 data and 
subsequent DW data. The processed seamless data is then spatially 
matched with population data to more accurately estimate the 
population-weighted PM2.5 exposure concentration.

1 https://data.stats.gov.cn
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Due to the uneven spatial distribution of PM2.5 monitoring 
stations across China, Kriging interpolation was applied to both raw 
PM2.5 and deweathered PM2.5 (PM_dw) station data to generate 
spatially continuous maps, ensuring comprehensive coverage for 
subsequent analyses. The deweathering (DW) method was used to 
separate meteorological influences from emission signals, deriving 
PM_dw. Using the spatially continuous PM_dw after Kriging 
interpolation for population exposure calculations helps prevent 
misjudgments of concentration errors caused by uneven station 
distribution, while also decoding the extent to which meteorological 
factors influence population exposure. Finally, the processed seamless 
data were spatially matched with population data to more accurately 
estimate population-weighted PM2.5 exposure.

Population-Weighted PM2.5 Exposure Estimation (32) was used in 
this study: Suppose there are i county towns (which serve as our basic 
analytical units across the nation), with the PM2.5 concentration of the 
ith province denoted as 2.5,iPM , and its population as iP . The calculation 
Equation 1 for the population-weighted PM2.5 exposure concentration 
for different groups is as follows Equation 1:
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Where:
2.5PM  represents the population-weighted average 

PM2.5 concentration.
2.5,iPM  is the PM2.5 concentration of the ith county town.

iP  is the population of the ith county town.
n is the total number of county town (e.g., 1,317 for the 

national average).

2.3 Spatial information embedded random 
forest

Given that the study area spans the entire country, the 
characteristics of PM2.5 vary significantly across different regions. 

Traditional deweathering methods using Random Forest Pointwise 
Models (RF Pointwise Model) suffer from low prediction accuracy 
due to limited sample sizes. Meanwhile, Random Forest Holistic 
Models (RF Holistic Model) tend to overwhelm the features of 
regions with fewer samples because of uneven sample distribution. 
To address these issues, this study employs a Geographically 
Weighted Random Forest (GWRF) model for simulating and 
predicting PM2.5. GWRF is a spatial analysis method that integrates 
spatial weight matrices with the Random Forest model, designed to 
handle datasets with significant spatial heterogeneity (17). GWRF 
assigns different weights to different samples during the decision tree 
construction process by incorporating the influence of geographic 
location, thereby improving predictive accuracy. This method can 
capture local patterns in spatial data, which is particularly suitable for 
data with uneven spatial distribution. The mathematical expression 
of the GWRF model is as follows Equation 2:
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Where iY  represents the dependent variable at location β0,i  is the 
intercept term, ( ),i iu v  are the coordinates of location β, ki  is the 
regression coefficient of the k-th independent variable, and εi is the 
error term. In this way, the GWRF model provides a customized 
predictive model for each geographic location, better reflecting the 
local characteristics of spatial data. By incorporating geographical 
weights, the GWRF model ensures sufficient data coverage while 
preserving the features of regions with smaller sample sizes. These 
geographical weights are crucial for estimating the local regression 
coefficients ( )β ,k i iu v  at each location i. Specifically, they are 
determined by a distance-decay function, such as the Gaussian kernel 
function. This function assigns higher weights to observations closer 
to location i and lower weights to those further away. The extent of 
this spatial influence is controlled by a crucial parameter called the 
bandwidth, which defines the decay rate of the weights with 
increasing distance. In our study, the optimal bandwidth was 
determined using a cross-validation (CV) approach, minimizing the 
prediction error. In this study, we trained and compared three model 
architectures of the Random Forest: GWRF, RF Holistic Model, and 

TABLE 1 Meteorological, air quality, and population data sources (2013–2020).

Name Unit Data type Data sources Time span

Mean sea level pressure Pa Hourly/0.25° ECMWF 2013–2020

Relative humidity %

2 m temperature K

10 m u-component of wind m/s

10 m v-component of wind m/s

Boundary layer height m

Population occupational data Million Annual, County-level National Bureau of Statistics 2013–2020

Population gender and age data Sort

Population education Million Every ten years, County-level Sixth and Seventh National 

Population Census

2010,2020

Residence and household registration Million

PM2.5 measured data ug/m3 Hourly/Station CNEMC 2013–2020
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RF Pointwise Model, to examine the impact of geographical 
weighting. The final model aggregates predictions from multiple 
geographically weighted trees, offering a robust and spatially adaptive 
framework for urban PM2.5 date prediction.

2.4 Deweather method

The effect of meteorological fluctuations can be removed by the 
Deweather method to obtain the PM2.5 concentration under average 
meteorological conditions termed PM_dw (33), and the principle of 
Deweather operation is shown in Figure 1, and the configuration 
operation is as follows:

Parameter settings of Deweather: The output parameter PM2.5 
(ug/m3), and the meteorological part of the input parameters include: 
Mean sea level pressure (msl, Pa), relative humidity (rh, %), 
temperature (t2m, K), eastward component of 10 m wind (10 U, m/s), 
northward component of 10 m wind (10 V, m/s), and boundary layer 
height (blh, m). Time terms representing emissions include: 
Normalized seasonal coefficient (NSC) (34), Day of Week, Unix time 
of the observation (number of seconds since 1 January 1970). Our 
selection of the current meteorological parameter set is based on a 
careful consideration of our core research objective and data 
processing strategy. We aim to more effectively identify and separate 
long-term, stable emission-driven signals (PM_dw) through the 
deweathering method, thereby revealing emission trends and the 
actual effects of environmental policies. While instantaneous and 
highly variable meteorological conditions (such as direct precipitation 
intensity or high-frequency vertical wind speeds) have physical 
impacts on PM2.5 concentrations, they can introduce high-frequency 
noise in the short term, potentially interfering with the identification 
of smoother, more representative emission trends. Therefore, 
we prioritized parameters that can capture the characteristics of the 
average meteorological field and contribute to a stable PM_dw curve. 
The construction of the model’s inputs and outputs is shown in 
Equation 3.

 

2.5PM (msl,rh,t 2m,10U,10 V,blh,NSC,
Day of Week,Unix Time)

f=

 (3)

Base model hyperparameter setting: construct a PM2.5 estimation 
model based on the GWRF algorithm, the number of trees is set to 
500, the training set is 70%, the validation set is 10%, and the test set 
is 20%, and the 5-fold cross-validation is used to avoid obtaining 
overfitting error results. Finally, a random forest based PM2.5 
estimation model is trained.

Deweather method: The time terms (NSC, Day of Week, Unix 
time) are fixed for all data samples, and the meteorological part uses 
multiple resamples to construct multiple randomly selected 
meteorological conditions for each data sample, and the database of 
the extracted meteorological fields is drawn from the complete 
meteorological data of all time scales of all stations in the country. The 
purpose is to ensure that the Deweather results for all data are 
obtained in the same meteorological field context and thus 
comparable, based on the previous study the sampling number is set 
to 1,000. In this way, each raw data sample of emission data possesses 
1,000 simulation-constructed randomly selected meteorological 
conditions, which are estimated by combining 1,000 meteorological 
terms (resample’s) with the same emission term (fixed) using the 
trained Random Forest model, and the estimation yields 1,000 PM2.5 
concentrations under the same emission but different meteorological 
conditions, which are averaged to obtain the 1,000 PM2.5 
concentrations were averaged to finally obtain the PM2.5 concentration 
formed under the conditions of the average meteorological field for 
that emission term (time term). The above operation was repeated for 
each piece of raw data to obtain the PM2.5 concentration under the 
condition of average meteorological field for each emission item (time 
item). It is crucial to clarify that this ‘emission signal’ represents the 
manifestation of emissions as pollution concentrations under average 
meteorological conditions (PM_dw), which fundamentally differs 
from the direct emission quantities (e.g., in tons per year) reported in 
an emission inventory. While our deweathering approach provides a 

FIGURE 1

Basic principle diagram of deweather.
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more stable spatiotemporal pattern reflective of underlying emission 
trends by removing meteorological variability, it does not directly 
quantify absolute emission rates from specific sources nor can it 
delineate individual emission sources. Therefore, direct comparisons 
with emission inventories, which capture detailed source-specific 
emission quantities, should be made with an understanding of these 
distinct methodological objectives.

3 Results

3.1 Model accuracy evaluation

This study applied an optimized random forest model to estimate 
PM2.5 levels across the country, achieving high estimation accuracy. 
The GWRF model exemplifies exceptional performance in predicting 
PM2.5 concentrations, demonstrating superior accuracy not only 
through traditional metrics such as RMSE, MAPE, and MAE but also 
in spatial effectiveness across China’s diverse geographic landscape. In 
Table 2 and Figure 2: the GWRF model achieves the lowest RMSE at 
12.51 μg/m3 and excels in MAPE and MAE with scores of 17.73% and 
6.88 μg/m3, respectively, outperforming the Pointwise and Holistic 
models. Combining these insights, the GWRF model not only stands 
out for its high precision and adaptability but also for its utility in 
enhancing deweathering processes and regional air quality 
assessments, making it a prime tool for environmental policy and 
health risk evaluations across varied geographic settings. The model 
demonstrates excellent estimation performance and can be applied to 
the next Deweather stage.

3.2 Spatial and temporal characteristics of 
economic development and air pollution in 
China

Figure 3 shows the changes in the temporal and spatial distribution 
of PM2.5 and GDP in China. From a temporal perspective, China’s 
overall PM2.5 emissions have been steadily declining since 2013, with 
regional variations in the rate of reduction. The most significant 
declines were observed in highly polluted regions such as North, 
Central, and Western China, while the decrease was less pronounced 
in Northwest China.

Spatially, PM2.5 concentrations exhibit distinct regional patterns. 
First, eastern and central China experience higher PM2.5 levels than 
the western region, with developed regions exhibiting greater 
emissions than less developed areas. This pattern aligns with the 
spatial concentration of GDP per capita in China’s three major urban 
agglomerations—Beijing-Tianjin-Hebei, the Yangtze River Delta, and 
the Pearl River Delta—where population density, industrial activity, 
and economic output are highest (35, 36). Second, a pronounced 

north–south disparity exists, with PM2.5 concentrations significantly 
higher in the north than in the south, primarily due to centralized 
heating and climatic conditions along the Qinling-Huaihe dividing 
line (37, 38). Third, population density strongly correlates with 
pollution severity, as densely populated areas tend to experience 
higher PM2.5 levels. Finally, coastal regions generally exhibit lower 
PM2.5 concentrations than inland areas, largely due to more favorable 
meteorological conditions and atmospheric dispersion processes.

The relationship between GDP and PM2.5 concentrations does not 
exhibit a straightforward correlation, which can be  attributed to 
several factors. First, geographic conditions play a key role. The 
Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta 
economic zones are located along the coast, benefiting from maritime 
transportation and trade. Additionally, regional meteorological 
conditions and pollutant dispersion influence population exposure 
levels, further shaping PM2.5 distribution patterns. Second, national 
policies promoting industrial upgrading and clean technology 
adoption have led to a continuous reduction in industrial emissions, 
particularly in economically developed regions where pollution 
control measures have become more stringent, aligning with national 
air quality standards.

As shown in Figure 3d, since 2013, PM2.5 concentrations have 
exhibited a clear downward trend, while China’s GDP has steadily 
increased, reflecting the country’s commitment to sustainable 
environmental development alongside economic growth. Figure 3c 
further illustrates the percentage reduction in PM2.5 across provinces 
from 2013 to 2020. Notably, pollution reductions were more 
pronounced in economically less developed regions such as Southwest 
and Northwest China, whereas reductions in economically developed 
regions were relatively modest.

The deweathering method produced the final PM_dw, enabling a 
more precise analysis of pollution trends. Figure  4 illustrates the 
temporal and spatial variations of PM2.5 concentrations across major 
urban clusters in China from 2013 to 2020, comparing deweathered 
and actual data. The findings reveal critical insights into pollution 
trends: Temporal Variations: PM2.5 levels in cities such as Harbin, 
Beijing, and Shanghai have shown a declining trend over the years, 
though with seasonal fluctuations. The time-series data (Figures 4e,f,g) 
indicate that both actual and deweathered PM2.5 levels exhibit seasonal 
peaks, particularly in winter, due to increased heating demand and 
stagnant atmospheric conditions that trap pollutants. The deweathered 
data (red lines) present a smoother trend with reduced peaks, 
suggesting that meteorological influences exacerbate seasonal 
pollution spikes. Removing these effects provides a clearer assessment 
of emission-driven pollution trends. Spatial Variations: The maps in 
panels Figure 4a through Figure 4d illustrate the evolution of PM2.5 
concentrations in selected years. From 2014 to 2020, air quality has 
generally improved, particularly in major cities, largely due to 
stringent pollution control measures. However, significant regional 
disparities persist, with northern China consistently exhibiting higher 
pollution levels than the south. This pattern reflects ongoing challenges 
related to industrial emissions and coal dependency in northern 
regions. The comparison between actual and deweathered PM2.5 data 
highlights the substantial impact of meteorological conditions on 
perceived pollution levels. While policy interventions have contributed 
to pollution reductions, their effectiveness varies significantly across 
regions, and weather effects often obscure actual trends in raw 
data analyses.

TABLE 2 Model accuracy comparison.

Model R2 RMSE MAPE MAE R

GWRF 0.90 12.51 17.73 6.88 0.95

RF holistic model 0.87 15.62 20.91 8.28 0.89

RF pointwise model 0.64 18.32 31.80 12.32 0.82
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Between 2013 and 2020, China’s economy maintained steady 
growth while pollution control measures led to notable improvements. 
However, regional economic disparities have resulted in significant 

differences in pollution exposure. As urbanization accelerates and 
green development policies advance, understanding the extent to 
which emission reductions contribute to inter-regional environmental 

FIGURE 2

Model Performance and GWRF model Analysis. Panels show probability density scatter plots comparing actual data (X-axis) to model predictions 
(Y-axis), with color gradients representing data point density. Specifically, Pointwise, Holistic, and GWRF model predictions are illustrated, highlighting 
how closely each model’s predictions align with actual observations.

FIGURE 3

(a,b) Spatial distribution of GDP per capita (Province Shading) and PM2.5 (Hotspot Markers) in 2013 and 2020; (c) Decrease in PM2.5 (%) in each province 
from 2013 to 2020; (d) Time series of changes in the national total GDP and PM2.5 mean values from 2013 to 2020. Adapted with permission from “(a,b) 
Spatial distribution of PM2.5 in 2013 and 2020; (c) decrease in PM2.5 (%) in each province from 2013 to 2020; (d) time series of changes in the national 
total GDP and PM2.5 mean values from 2013 to 2020” by Wu et al. (58), licensed under CC BY 4.0.

https://doi.org/10.3389/fpubh.2025.1577897
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.mdpi.com/2073-4433/16/2/152
https://www.mdpi.com/2073-4433/16/2/152
https://www.mdpi.com/2073-4433/16/2/152
https://creativecommons.org/licenses/by/4.0/deed.en


Li et al. 10.3389/fpubh.2025.1577897

Frontiers in Public Health 07 frontiersin.org

FIGURE 4

Deweathered and actual PM2.5 concentrations across major Chinese urban clusters. Panels (a–d) depict the spatial distribution of deweathered PM2.5 
(PM_dw) concentrations across China for the years 2014, 2016, 2018, and 2020, respectively, with varying colors indicating different concentration 
levels. Panels (e–g) focus on time series analysis of both actual measured (black line) and deweathered (red line) PM2.5 concentrations in Harbin, 
Beijing, and Shanghai, representing the Eastern Three Provinces, Jing-Jin-Ji, and Yangtze River Delta urban clusters. These panels illustrate daily 
fluctuations and broader pollution trends from 2013 to 2020, highlighting the environmental challenges and seasonal variations faced by these key 
metropolitan areas.
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equity becomes increasingly important. This necessitates a closer 
examination of how different regions have benefited from emission 
control policies and whether disparities in pollution exposure have 
narrowed over time.

3.3 Regional equity analysis of emission 
reductions

This study categorizes China’s 32 provinces into four groups based 
on GDP per capita (Figure  5): L1 (high-income group) includes 
provinces in the top 25% of GDP per capita, primarily located along 
the eastern coast, such as Beijing and Shanghai, where industrialization 
is highly advanced (39). L2 (middle-high-income group) consists of 
provinces ranking between 25 and 50%, mostly in central and western 
China, balancing industrial and agricultural output, such as 
Chongqing and Anhui (40). L3 (low-middle-income group) includes 
provinces in the 50–75% GDP per capita range, widely distributed 
across inland regions (40). L4 (low-income group) represents 
provinces in the bottom 25%, mainly in remote areas relying on 
tourism and low-end agriculture, such as Guangxi and Gansu (41).

From Figure 5a, L1 contributed the highest share of GDP in 2017 
(41.4%), while L2 and L3 accounted for around 20% each, and L4 had 
the smallest share at 15.9%. Figure 5b shows that the average PM2.5 
concentration in L4 was 37 μg/m3, with a reduction rate of 54% from 
2013 to 2020. In contrast, L1, L2, and L3, which have higher economic 
levels and greater pollution burdens, exhibited PM2.5 levels between 45 

and 47.6 μg/m3, with a reduction rate of only 45–50%. As illustrated in 
Figure 5c, the L1 group ranks at a mid-to-low level in national emission 
reductions, whereas L3 and L4 show significantly higher percentage 
reductions, suggesting that low-pollution, economically disadvantaged 
regions bear a disproportionately larger burden of emission 
reduction efforts.

The industrial structure and energy consumption patterns of less-
developed regions are relatively homogeneous and easier to adjust, 
making short-term emission reduction policies highly effective. 
However, in the long term, these measures increase marginal abatement 
costs and economic pressures, potentially constraining regional 
economic growth (42). Moreover, disproportionate emission reduction 
mandates and pre-existing regional economic disparities may further 
exacerbate interregional inequality (42, 43). This reflects the interplay 
between regional resource allocation, policy efficiency, and the economic 
trade-offs associated with China’s ongoing environmental governance.

3.4 Differences in pollution exposure 
between urban and rural areas

To further examine disparities in PM2.5 exposure across different 
social groups, while excluding meteorological influences, this study 
investigates pollution exposure patterns in the context of urban–rural 
differences and population migration.

Figure 6a illustrates changes in China’s urban and rural population 
distribution, as well as local and foreign residents, between 2010 and 

FIGURE 5

Four subgroups of Chinese provinces based on GDP, (a) share of GDP contribution of each subgroup in 2017 (b) PM2.5 Reduction (2013–2020) and 
Average PM2.5 Concentration: The colored bars represent the fractional decrease in PM2.5 from 2013 to 2020, while the yellow crosses indicate the 
average PM2.5 concentration during the same period. (c) Per Capita GDP and PM2.5 Reduction (2013–2020) by Province: The colored bars represent per 
capita GDP in 2017 for the four subgroups, while the black line shows the fractional decrease in PM2.5 concentration from 2013 to 2020 for each 
province. Adapted with permission from “Four subgroups of Chinese provinces based on GDP” by Wu et al. (58), licensed under CC BY 4.0.
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2020 (6th and 7th Census). The urban population share increased from 
30% (N: 17%, O: 13%) to 41% (N: 18%, O: 23%), with most growth 
driven by an influx of foreign residents. Meanwhile, town populations 
grew from 20% (N: 16%, O: 4%) to 22% (N: 14%, O: 8%), again largely 
due to an increase in foreign residents. In contrast, the rural population 
declined significantly from 50% (N: 47%, O: 3%) to 37% (N: 33%, O: 
4%), with most of the loss attributed to local migration. These patterns 
underscore that rural-to-urban migration has been a dominant feature 
of China’s urbanization process in recent years.

Figure 6b presents China’s 2020 population distribution, revealing 
a high-density population in the east and a sparse population in the 
west. Urban clusters such as the Yangtze River Delta, Pearl River Delta, 
and Sichuan Basin have become key industrial hubs, attracting large 
numbers of migrant workers through advanced manufacturing, 
services, and high-tech industries (44). However, industrial expansion, 
coupled with population concentration, has intensified pollution 
exposure, as the convergence of industrial pollution and high 
population density amplifies environmental risks (45, 46). This 
interplay between urbanization, economic growth, and pollution 
dynamics highlights the urgent need for balanced development 
strategies to mitigate environmental inequalities.

Figure 6c illustrates the average PM_dw exposure levels among 
urban, rural, and township populations, as well as local and migrant 

residents, from 2013 to 2020. The results indicate a hierarchical 
pollution exposure pattern, where towns experience the highest 
exposure, followed by townships, and then cities. Additionally, local 
populations face higher pollution exposure than migrant populations. 
This trend can be attributed to urban industrial advantages, which 
attract large numbers of migrants from rural and township areas, 
fostering labor and market expansion that accelerates industrial 
upgrading and stricter environmental regulations (47). Consequently, 
high-polluting industries are relocated to peripheral towns (45), 
leveraging lower land and energy costs as well as convenient 
transportation networks, while reducing direct environmental impacts 
on densely populated urban centers. As a result, cities and towns bear 
the highest burden of air pollution exposure.

Figure 6d presents the meteorological contribution to PM_dw 
exposure across different population categories. The results suggest 
that meteorology generally plays a pollution-dissipating role, with 
wind and relative humidity being the dominant factors in pollutant 
transport, chemical reactions, and deposition (48). Cities and towns 
benefit the most from meteorological dispersion effects, with migrant 
populations experiencing greater reductions in exposure than local 
residents. This may be  due to the higher pollution base and 
population density in urban areas, which, combined with the urban 
heat island effect, enhances localized wind fields and convection 

FIGURE 6

(a) National 2010 and 2020 N-Urban, O-Urban, N-Town, O-Town, N-Rural, and O-Rural population share, where O represents outsiders and N 
represents natives. (b) National provincial city population distribution in 2020. (c) Urban, town, and rural populations’ average PM_dw exposure for 
residents, natives, and outsiders from 2013 to 2020. (d) Meteorological contribution to average PM_dw exposure for residents, natives, and outsiders in 
urban, town, and rural populations from 2013 to 2020. Adapted with permission from “Spatial distributions of county-level populations in 2020” by Wu 
et al. (58), licensed under CC BY 4.0.
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currents, creating favorable meteorological conditions for pollutant 
dispersion and deposition.

3.5 Differences in PM2.5 exposure between 
social groups

Analysis of population-weighted PM2.5 exposure (PM_dw) across 
industries reveals notable disparities (Figure  7a1). Mining workers 
experience the highest PM_dw levels (59.89 μg/m3), primarily due to 
prolonged exposure to coal-related pollution during extraction, transport, 
and combustion (49–51). This pattern aligns with previous findings linking 
northern China’s coal-dependent heating systems to elevated emissions 
(52–55). Meteorological dispersion has the strongest impact in mining 
(−0.084), indicating that weather conditions significantly mitigate pollution 
exposure in this sector. In contrast, IT workers experience lower PM_dw 
levels (52.50 μg/m3) with minimal meteorological influence (−0.032), likely 
due to their predominantly indoor work environments. Construction 
workers, despite comprising 36% of the workforce, exhibit moderate PM_
dw levels (53.21 μg/m3), reflecting the combined effects of outdoor 
exposure and favorable dispersion conditions.

Gender and age differences further shape PM2.5 exposure patterns 
(Figure 7a2). Females exhibit slightly higher PM_dw levels (55.87 μg/m3) 
than males (55.69 μg/m3), despite males being overrepresented in high-
exposure industries such as construction and transport. This discrepancy 
may result from females’ greater involvement in household cooking and 
their higher likelihood of residing in pollution-prone rural or peri-urban 
areas. Meteorological dissipation effects favor males slightly more (−6.3% 
vs. −6.2% for females), possibly due to males’ increased outdoor activity in 
well-ventilated environments.

Age-stratified data indicate that older populations (65 + years) face the 
highest PM_dw levels (56.37 μg/m3), exceeding those of younger age 
groups (55.78 μg/m3 for 0–14 years). This trend is consistent with their 
higher concentration in regions characterized by aging infrastructure, coal-
based heating, and limited green spaces (56). Conversely, younger 
populations benefit from pollution control policies in regulated school 
zones, which help reduce their overall exposure risks.

Educational background also correlates with PM_dw exposure 
(Figure  7a3). Individuals with vocational (54.20 μg/m3) and 
undergraduate education (54.01 μg/m3) face higher exposure than 
primary school cohorts (53.34 μg/m3), reflecting their occupational 
concentration in pollution-intensive industrial hubs. Weaker 

FIGURE 7

(a1–a3) Differences in PM_dw exposure among populations with different occupations, age groups, genders, and education levels, averaged over 2013–2020, 
the green dashed line represents the meteorological contribution. (b1–b3) Effect of average weather on PM_dw exposure among populations with different 
occupations, age groups, genders, and education levels, averaged over 2013–2020. (c1–c3) Percentage of populations with different occupations, age groups, 
genders, and education levels, 2017. Adapted with permission from “(a,c,e) Differences in average PM2.5 exposure among populations with different 
occupations, age groups, genders, and education levels in 2020 (the red line indicates the percentage decrease in 2020 compared to 2013). (b,d,f) Proportions 
of populations with different occupations, age groups, genders, and education levels in 2017” by Wu et al. (58), licensed under CC BY 4.0.

https://doi.org/10.3389/fpubh.2025.1577897
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.mdpi.com/2073-4433/16/2/152
https://www.mdpi.com/2073-4433/16/2/152
https://www.mdpi.com/2073-4433/16/2/152
https://creativecommons.org/licenses/by/4.0/deed.en


Li et al. 10.3389/fpubh.2025.1577897

Frontiers in Public Health 11 frontiersin.org

meteorological dispersion effects (−5.78% for higher education vs. 
−6.04% for primary education) further exacerbate exposure in these 
regions. In contrast, lower-educated populations, less engaged in 
formal industries, have lower pollution exposure but remain 
socioeconomically vulnerable, highlighting the need for 
further investigation.

Figure 7b presents the time-series variation of meteorological 
effects on PM2.5 exposure. The results indicate that meteorological 
conditions generally mitigate pollution exposure, following a rise-and-
fall trend from 2013 to 2020, peaking in 2018. This peak may 
be  attributed to temporary improvements in meteorological 
conditions such as increased wind speed and precipitation, which 
enhanced pollutant dispersion and deposition. However, recent shifts 
suggest a reversal, with meteorological conditions now favoring 
pollution retention.

These findings highlight the complex interplay between industrial 
policy, demographic dynamics, and environmental governance in 
shaping PM2.5 exposure disparities. Mitigation strategies should 
be  tailored to sector-specific risks, with a particular focus on 
protecting vulnerable populations in high-pollution regions through 
enhanced environmental policies and industrial regulation. 
Addressing these inequities requires comprehensive pollution control 
measures, targeted emission reduction strategies, and sustainable 
urban planning to minimize exposure risks across different socio-
economic groups.

To deeply investigate the driving factors of PM2.5 exposure 
inequality and its manifestation under meteorological and emission 
influences, this study conducted a comparative analysis of the degree 
and sources of inequality in exposure to raw PM2.5 (PM) and 
deweathered PM2.5 (PM_dw). We employed the Lorenz curve, Gini 
coefficient, and Theil contribution decomposition method. For 
analyses concerning occupational and education level groups, 
we examined data for 2013 and 2019. For analyses concerning urban–
rural and local/migrant groups, we examined data for 2010 and 2020.

Figure 8 illustrates the inequality characteristics of PM and PM_
dw exposure among different occupational groups. From the Lorenz 
curve and Gini coefficient (Figure 8a), in 2013, the Gini coefficient for 
raw PM was 0.018, while for PM_dw, it was 0.032. This difference 
indicates that meteorological conditions played a role in mitigating 
inequality in occupational exposure. However, by 2019, the Gini 
coefficient for raw PM decreased to 0.021, and for PM_dw, it was 
0.022. The mitigating effect of meteorology drastically decreased from 
43.7% in 2013 to 4.5% in 2019, indicating a significant reduction in 
meteorology’s role in alleviating inequality. The Theil contribution 
analysis (Figure 8b) further reveals that the mining industry, within 
occupational groups, is a population segment that exacerbates 
inequality, and is significantly higher than other groups.

Supplementary Figure S1 focuses on the inequality performance 
of PM and PM_dw exposure among different education level groups. 
Changes in the Gini coefficient indicate that meteorology presents a 
slight exacerbating effect on exposure inequality within the education 
level dimension. The Theil contribution analysis further shows that 
the higher the education level, the more pronounced the inequality. 
Supplementary Figure S2 reveals that the burden of PM2.5 exposure 
inequality was more significantly borne by local populations. 
Specifically, in 2010, rural populations experienced a greater degree of 
pollution inequality. The meteorological effect exacerbated urban–
rural exposure inequality in 2010, contributing 43.7%; however, by 
2020, this influence significantly improved, with meteorology shifting 
to alleviate pollution inequality in town areas. This change highlights 
the complex influence of meteorological conditions on PM2.5 exposure 
inequality across different years and socio-economic dimensions.

4 Discussion

This study comprehensively analyzed population PM2.5 exposure 
in China from 2013 to 2020, uniquely disentangling the complex 

FIGURE 8

Comparison of actual (PM) and deweathered (PM_dw) PM2.5 exposure inequality among occupational groups in 2013 and 2019. (a) Lorenz curves and 
Gini coefficients. (b) Theil contributions by occupational group.
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interplay of emissions, meteorology, and socioeconomic disparities. 
Leveraging a robust GWRF model, which demonstrated superior 
performance (RMSE of 12.51 μg/m3, MAPE of 17.73%, MAE of 
6.88 μg/m3) over traditional models, we assessed population-weighted 
exposure across 1,317 county towns.

Our findings reveal a nuanced picture of environmental inequality. 
Lower-income regions (L4) achieved the highest PM2.5 reduction 
(54%), while wealthier regions (L1–L3) saw lower reductions 
(45–50%), highlighting a disproportionate emission reduction burden. 
Despite overall improvements, residents in less-developed areas 
continue to face higher exposure, and vulnerable populations—
including coal miners (enduring the highest PM_dw levels at 59.89 μg/
m3), the educated, women, and the older adult—disproportionately 
suffer from elevated exposure risks.

Crucially, our study illuminates the complex and evolving role of 
meteorological conditions in modulating exposure inequality. While 
meteorology generally mitigates PM2.5 exposure, with the most 
significant dispersion effect in 2018, its specific impact on inequality 
varies dynamically. Notably, meteorology’s role in mitigating 
inequality in occupational exposure significantly decreased from 
43.7% in 2013 to 4.5% in 2019. Concurrently, its exacerbating effect 
on urban–rural inequality, contributing 43.7% in 2010, drastically 
reduced by 2020, even shifting to a slight alleviating role. The 
enhanced stability of PM_dw compared to raw PM2.5 provides a 
clearer signal for understanding underlying emission trends, critical 
for policy evaluation.

In conclusion, achieving equitable environmental governance and 
robust pollution control in China necessitates multifaceted policy 
approaches. Policies must not only address regional economic 
disparities and prioritize protection for disadvantaged communities 
through targeted interventions (e.g., sector-specific controls, clean 
energy transitions, infrastructure upgrades) but also account for the 
complex and evolving modulating role of meteorological conditions 
on exposure inequality. This comprehensive understanding is vital for 
developing effective strategies that promote both environmental 
sustainability and social justice.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found below: https://zenodo.org/records/14879617.

Author contributions

SL: Conceptualization, Data curation, Formal analysis, Funding 
acquisition, Investigation, Methodology, Project administration, 
Resources, Software, Supervision, Validation, Visualization, Writing – 
original draft, Writing  – review & editing. CWa: Data curation, 
Funding acquisition, Resources, Validation, Writing  – review & 
editing. LM: Funding acquisition, Resources, Writing  – review & 
editing. XW: Funding acquisition, Resources, Supervision, Writing – 
review & editing. GD: Funding acquisition, Resources, Supervision, 
Writing – review & editing. CWu: Conceptualization, Data curation, 
Formal analysis, Funding acquisition, Investigation, Methodology, 

Project administration, Resources, Software, Supervision, Validation, 
Visualization, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This work was supported 
by the Practical Innovation Project of Postgraduate Students in the 
Professional Degree at Yunnan University, grant number 
[ZC-23234472]. This work was also supported by the China 
Scholarship Council (CSC).

Acknowledgments

Some content in this article’s figures (e.g., Figure 5) is adapted and 
modified based on our previous work and analyses presented in Wu 
et al. (58) Atmosphere (https://doi.org/10.3390/atmos16020152), 
licensed under CC-BY 4.0, utilizing publicly available datasets 
alongside the authors’ own processing.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that Gen AI was used in the creation of this 
manuscript. The authors take full responsibility for the use of 
generative AI in the preparation of this manuscript. Generative AI 
(GPT-4, OpenAI) was used solely for language refinement and 
manuscript editing to improve readability and clarity. No AI-generated 
content was used for data analysis, result interpretation, or scientific 
conclusions. All outputs from the AI were thoroughly reviewed for 
factual accuracy and plagiarism by the authors.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpubh.2025.1577897/
full#supplementary-material

https://doi.org/10.3389/fpubh.2025.1577897
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://zenodo.org/records/14879617
https://doi.org/10.3390/atmos16020152
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1577897/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1577897/full#supplementary-material


Li et al. 10.3389/fpubh.2025.1577897

Frontiers in Public Health 13 frontiersin.org

References
 1. Agency, I. E. World energy outlook 2024. Paris: Resources for the Future. (2024). 

Available at: https://media.rff.org/documents/Report_24-06.pdf

 2. Chen Y, Ebenstein A, Greenstone M, Li H. Evidence on the impact of sustained 
exposure to air pollution on life expectancy from China’s Huai River policy. Proc Natl 
Acad Sci. (2013) 110:12936–41. doi: 10.1073/pnas.1300018110

 3. He G, Perloff JM. Surface water quality and infant mortality in China. Econ Dev 
Cult Chang. (2016) 65:119–39. doi: 10.1086/687603

 4. Knittel CR, Miller DL, Sanders NJ. Caution, drivers! Children present: traffic, 
pollution, and infant health. Rev Econ Stat. (2016) 98:350–66. doi: 10.1162/REST_a_00548

 5. Rafiq S, Rahman MH. Healthy air, healthy mom: experimental evidence from 
Chinese power plants. Energy Econ. (2020) 91:104899. doi: 10.1016/j.eneco.2020.104899

 6. De Leeuw G, Van Der A R, Bai J, Xue Y, Varotsos C, Li Z, et al. Air quality over 
China. Remote Sens. (2021) 13:3542. doi: 10.3390/rs13173542

 7. Fiordelisi A, Piscitelli P, Trimarco B, Coscioni E, Iaccarino G, Sorriento D. The 
mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail 
Rev. (2017) 22:337–47. doi: 10.1007/s10741-017-9606-7

 8. Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, et al. 
Outdoor particulate matter exposure and lung cancer: a systematic review and meta-
analysis. Environ Health Perspect. (2014) 122:906–11. doi: 10.1289/ehp/1408092

 9. He L, He L, Lin Z, Lu Y, Chen C, Wang Z, et al. Sensing the environmental 
inequality of Pm2. 5 exposure using fine-scale measurements of social strata and 
citizenship identity. ISPRS Int J Geo Inf. (2024) 13:257. doi: 10.3390/ijgi13070257

 10. Pui D, Chen S, Zuo Z. Pm2. 5 in China: measurements, sources, visibility and health 
effects, and mitigation. Particuology. (2014) 13:1–26. doi: 10.1016/j.partic.2013.11.001

 11. Zhang Q, Meng X, Shi S, Kan L, Chen R, Kan H. Overview of particulate air 
pollution and human health in China: evidence, challenges, and opportunities. 
Innovation (Camb). (2022) 3:100312. doi: 10.1016/j.xinn.2022.100312

 12. Zhang R, Zhu S, Zhang Z, Zhang H, Tian C, Wang S, et al. Long-term variations 
of air pollutants and public exposure in China during 2000–2020. Sci Total Environ. 
(2024) 930:172606. doi: 10.1016/j.scitotenv.2024.172606

 13. Golub A, Marcantonio RA, Sanchez TW. Race, space, and struggles for mobility: 
transportation impacts on African Americans in Oakland and the East Bay. Urban 
Geogr. (2013) 34:699–728. doi: 10.1080/02723638.2013.778598

 14. Moser M, Zwickl K. Informal environmental regulation of industrial air pollution: 
does neighborhood inequality matter? Vienna: Vienna University of Economics and 
Business. (2014). doi: 10.57938/6e2422a9-e320-4ff4-a112-6a429f2b945f

 15. Zheng D, Shi M. Multiple environmental policies and pollution haven hypothesis: 
evidence from China's polluting industries. J Clean Prod. (2017) 141:295–304. doi: 
10.1016/j.jclepro.2016.09.091

 16. Zheng S, Yao R, Zou K. Provincial environmental inequality in China: 
measurement, influence, and policy instrument choice. Ecol Econ. (2022) 200:107537. 
doi: 10.1016/j.ecolecon.2022.107537

 17. Georganos S., Grippa T., Gadiaga A., Vanhuysse S., Kalogirou S., Lennert M., et al. 
An application of geographical random forests for population estimation in Dakar, 
Senegal using very-high-resolution satellite imagery. 2019 Joint Urban Remote Sensing 
Event (Jurse), (2019). IEEE, 1–4.

 18. He Q, Wang R, Ji H, Wei G, Wang J, Liu J. Theoretical model of environmental 
justice and environmental inequality in China’s four major economic zones. 
Sustainability. (2019) 11:5923. doi: 10.3390/su11215923

 19. Ma C. Who bears the environmental burden in China—An analysis of the 
distribution of industrial pollution sources? Ecol Econ. (2010) 69:1869–76. doi: 
10.1016/j.ecolecon.2010.05.005

 20. Ma J, Mitchell G, Dong G, Zhang W. Inequality in Beijing: A spatial multilevel 
analysis of perceived environmental hazard and self-rated health. Ann Am Assoc Geogr. 
(2017) 107:109–29. doi: 10.1080/24694452.2016.1224636

 21. Schoolman ED, Ma C. Migration, class and environmental inequality: exposure to 
pollution in China's Jiangsu Province. Ecol Econ. (2012) 75:140–51. doi: 
10.1016/j.ecolecon.2012.01.015

 22. Cao J, Xu H, Xu Q, Chen B, Kan H. Fine particulate matter constituents and 
cardiopulmonary mortality in a heavily polluted Chinese city. Environ Health Perspect. 
(2012) 120:373–8. doi: 10.1289/ehp.1103671

 23. Crouse DL, Peters PA, Van Donkelaar A, Goldberg MS, Villeneuve PJ, Brion 
O, et al. Risk of nonaccidental and cardiovascular mortality in relation to long-term 
exposure to low concentrations of fine particulate matter: a Canadian national-
level cohort study. Environ Health Perspect. (2012) 120:708–14. doi: 
10.1289/ehp.1104049

 24. Mckinney LA, Wright D. Gender and environmental inequality. In: Long MA, 
Lynch MJ, Stretesky PB, editors. Handbook on Inequality and the Environment. 
Gloucestershire, United Kingdom: Edward Elgar Publishing Limited (2023).

 25. Xu F, Huang Q, Yue H, Feng X, Xu H, He C, et al. The challenge of population 
aging for mitigating deaths from pm(2.5) air pollution in China. Nat Commun. (2023) 
14:5222. doi: 10.1038/s41467-023-40908-4

 26. Xue T, Zhu T, Zheng Y, Liu J, Li X, Zhang Q. Change in the number of Pm2. 
5-attributed deaths in China from 2000 to 2010: comparison between estimations from 
census-based epidemiology and pre-established exposure-response functions. Environ 
Int. (2019) 129:430–7. doi: 10.1016/j.envint.2019.05.067

 27. Grange SK, Carslaw DC. Using meteorological normalisation to detect 
interventions in air quality time series. Sci Total Environ. (2019) 653:578–88. doi: 
10.1016/j.scitotenv.2018.10.344

 28. Grange SK, Carslaw DC, Lewis AC, Boleti E, Hueglin CJAC, Physics. Random 
forest meteorological normalisation models for Swiss pm 10 trend analysis. Atmos Chem 
Phys. (2018) 18:6223–39. doi: 10.5194/acp-18-6223-2018

 29. Huang G, Brown PE. Population-weighted exposure to air pollution and COVID-19 
incidence in Germany. Spat Stat. (2021) 41:100480. doi: 10.1016/j.spasta.2020.100480

 30. Zhang Q, Zheng Y, Tong D, Shao M, Wang S, Zhang Y, et al. Drivers of improved 
pm(2.5) air quality in China from 2013 to 2017. Proc Natl Acad Sci USA. (2019) 
116:24463–9. doi: 10.1073/pnas.1907956116

 31. Molteni F, Buizza R, Palmer TN, Petroliagis TJQJOTRMS. The Ecmwf ensemble 
prediction system: methodology and validation. Q J R Meteorol Soc. (1996) 122:73–119. 
doi: 10.1002/qj.49712252905

 32. Aunan K, Ma Q, Lund MT, Wang S. Population-weighted exposure to pm(2.5) 
pollution in China: an integrated approach. Environ Int. (2018) 120:111–20. doi: 
10.1016/j.envint.2018.07.042

 33. Liu H, Yue F, Xie Z. Quantify the role of anthropogenic emission and meteorology 
on air pollution using machine learning approach: a case study of pm(2.5) during the 
Covid-19 outbreak in Hubei Province, China. Environ Pollut. (2022) 300:118932. doi: 
10.1016/j.envpol.2022.118932

 34. Yang K, Wu C, Luo YJEP. The impact of Covid-19 on urban Pm2. 5—taking Hubei 
Province as an example. Environ Pollut. (2022) 294:118633. doi: 10.1016/j.envpol.2021.118633

 35. Wu J, Sun WJL. Regional integration and sustainable development in the Yangtze 
River Delta, China: towards a conceptual framework and research agenda. Land. (2023) 
12:470. doi: 10.3390/land12020470

 36. Xu M, Zhang ZJLUP. Spatial differentiation characteristics and driving mechanism 
of rural-industrial land transition: a case study of Beijing-Tianjin-Hebei region, China. 
Land Use Policy. (2021) 102:105239. doi: 10.1016/j.landusepol.2020.105239

 37. Liu J, Yang Q, Liu J, Zhang Y, Jiang X, Yang YJS. Study on the spatial differentiation 
of the populations on both sides of the “Qinling-Huaihe line” in China. Sustainability. 
(2020) 12:4545. doi: 10.3390/su12114545

 38. Xu L, Qu J, Han J, Zeng J, Li HJER. Distribution and evolutionary in household 
energy-related Co2 emissions (Hces) based on Chinese north–south demarcation. 
Energy Rep. (2021) 7:6973–82. doi: 10.1016/j.egyr.2021.09.104

 39. Shen J, Kee G. Development and planning in seven major coastal cities in southern 
and eastern China. Cham: Springer (2017).

 40. Cao W, Yuan XJJOCP. Region-county characteristic of spatial-temporal evolution 
and influencing factor on land use-related Co2 emissions in Chongqing of China, 
1997–2015. J Clean Prod. (2019) 231:619–32. doi: 10.1016/j.jclepro.2019.05.248

 41. Chan X, Bin L, Tianzuo WJCCPR. New patterns of county in-situ urbanization 
and rural development: perspective of E-commerce. China City Plann Rev. (2017) 
26:34–41.

 42. Lipton MJWD. Migration from rural areas of poor countries: the impact on rural 
productivity and income distribution. World Dev. (1980) 8:1–24. doi: 
10.1016/0305-750X(80)90047-9

 43. Deng X, Wang Y, Song MJGSustainability. Development geography for exploring 
solutions to promote regional development. Geogr Sustain. (2023) 4:49–57. doi: 
10.1016/j.geosus.2022.12.003

 44. Xu J, Takahashi MJE. Progressing vulnerability of the immigrants in an urbanizing 
village in coastal China. Environ Dev Sustain. (2021) 23:8012–26. doi: 
10.1007/s10668-020-00914-8

 45. Commoner B. Rapid population growth and environmental stress. Consequences 
of rapid population growth in developing countries. United States: International Journal 
of Health Services, SAGE Publications. (1991).

 46. Ebenstein AJROEStatistics. The consequences of industrialization: evidence from 
water pollution and digestive cancers in China. Rev Econ Stat. (2012) 94:186–201. doi: 
10.1162/REST_a_00150

 47. Kostka G. J. W. B. P. R. W. P. (2014). Barriers to the implementation of environmental 
policies at the local level in China. World Bank policy research working paper.  
Availalbe online at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2487614 
(Accessed July 29, 2025).

 48. Pérez IA, García MÁ, Sánchez ML, Pardo N, Fernández-Duque BJIJOER. Key 
points in air pollution meteorology. Int J Environ Res Public Health. (2020) 17:8349. doi: 
10.3390/ijerph17228349

 49. Mahdevari S, Shahriar K, Esfahanipour A. Human health and safety risks 
management in underground coal mines using fuzzy Topsis. Sci Total Environ. (2014) 
488-489:85–99. doi: 10.1016/j.scitotenv.2014.04.076

https://doi.org/10.3389/fpubh.2025.1577897
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://media.rff.org/documents/Report_24-06.pdf
https://doi.org/10.1073/pnas.1300018110
https://doi.org/10.1086/687603
https://doi.org/10.1162/REST_a_00548
https://doi.org/10.1016/j.eneco.2020.104899
https://doi.org/10.3390/rs13173542
https://doi.org/10.1007/s10741-017-9606-7
https://doi.org/10.1289/ehp/1408092
https://doi.org/10.3390/ijgi13070257
https://doi.org/10.1016/j.partic.2013.11.001
https://doi.org/10.1016/j.xinn.2022.100312
https://doi.org/10.1016/j.scitotenv.2024.172606
https://doi.org/10.1080/02723638.2013.778598
https://doi.org/10.57938/6e2422a9-e320-4ff4-a112-6a429f2b945f
https://doi.org/10.1016/j.jclepro.2016.09.091
https://doi.org/10.1016/j.ecolecon.2022.107537
https://doi.org/10.3390/su11215923
https://doi.org/10.1016/j.ecolecon.2010.05.005
https://doi.org/10.1080/24694452.2016.1224636
https://doi.org/10.1016/j.ecolecon.2012.01.015
https://doi.org/10.1289/ehp.1103671
https://doi.org/10.1289/ehp.1104049
https://doi.org/10.1038/s41467-023-40908-4
https://doi.org/10.1016/j.envint.2019.05.067
https://doi.org/10.1016/j.scitotenv.2018.10.344
https://doi.org/10.5194/acp-18-6223-2018
https://doi.org/10.1016/j.spasta.2020.100480
https://doi.org/10.1073/pnas.1907956116
https://doi.org/10.1002/qj.49712252905
https://doi.org/10.1016/j.envint.2018.07.042
https://doi.org/10.1016/j.envpol.2022.118932
https://doi.org/10.1016/j.envpol.2021.118633
https://doi.org/10.3390/land12020470
https://doi.org/10.1016/j.landusepol.2020.105239
https://doi.org/10.3390/su12114545
https://doi.org/10.1016/j.egyr.2021.09.104
https://doi.org/10.1016/j.jclepro.2019.05.248
https://doi.org/10.1016/0305-750X(80)90047-9
https://doi.org/10.1016/j.geosus.2022.12.003
https://doi.org/10.1007/s10668-020-00914-8
https://doi.org/10.1162/REST_a_00150
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2487614
https://doi.org/10.3390/ijerph17228349
https://doi.org/10.1016/j.scitotenv.2014.04.076


Li et al. 10.3389/fpubh.2025.1577897

Frontiers in Public Health 14 frontiersin.org

 50. Morrice E, Colagiuri R. Coal mining, social injustice and health: a universal 
conflict of power and priorities. Health Place. (2013) 19:74–9. doi: 10.1016/j.healthplace. 
2012.10.006

 51. Redmann R. Environmental effects of mining. Florida, United States: 
Routledge (2018).

 52. Fan M, He G, Zhou M. The winter choke: coal-fired heating, air pollution, and 
mortality in China. J Health Econ. (2020) 71:102316. doi: 10.1016/j.jhealeco.2020.102316

 53. Kerimray A, Rojas-Solórzano L, Torkmahalleh MA, Hopke PK, Gallachóir 
BPÓJEFSD. Coal use for residential heating: patterns, health implications and lessons 
learned. Energy Sustain Dev. (2017) 40:19–30. doi: 10.1016/j.esd.2017.05.005

 54. Li D, Wu D, Xu F, Lai J, Shao LJJOCP. Literature overview of Chinese research in 
the field of better coal utilization. J Clean Prod. (2018) 185:959–80. doi: 10.1016/j. 
jclepro.2018.02.216

 55. Zhang Z, Zhou Y, Zhao N, Li H, Tohniyaz B, Mperejekumana P, et al. Clean heating 
during winter season in northern China: a review. Renew Sust Energ Rev. (2021) 
149:111339. doi: 10.1016/j.rser.2021.111339

 56. Shumake KL, Sacks JD, Lee JS, Johns DO. Susceptibility of older adults to 
health effects induced by ambient air pollutants regulated by the European Union 
and the United  States. Aging Clin Exp Res. (2013) 25:3–8. doi: 10.1007/ 
s40520-013-0001-5

 57. Kuchin YI, Mukhamediev RI, Yakunin KO. One method of generating synthetic 
data to assess the upper limit of machine learning algorithms performance. Cogent Eng. 
(2020) 7. doi: 10.1080/23311916.2020.1718821

 58. Wu C, Li S, Hu P, Ma T, Wang X, Gao L, et al. Inequitable air quality improvement 
in China: Regional and population-level disparities in PM exposure (2013–2020). 
Atmosphere. (2025) 16:152. doi: 10.3390/atmos16020152

https://doi.org/10.3389/fpubh.2025.1577897
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1016/j.healthplace.2012.10.006
https://doi.org/10.1016/j.healthplace.2012.10.006
https://doi.org/10.1016/j.jhealeco.2020.102316
https://doi.org/10.1016/j.esd.2017.05.005
https://doi.org/10.1016/j.jclepro.2018.02.216
https://doi.org/10.1016/j.jclepro.2018.02.216
https://doi.org/10.1016/j.rser.2021.111339
https://doi.org/10.1007/s40520-013-0001-5
https://doi.org/10.1007/s40520-013-0001-5
https://doi.org/10.1080/23311916.2020.1718821
https://doi.org/10.3390/atmos16020152

	Decoding population PM2.5 exposure in China: interplay of emissions, meteorology, and inequality (2013–2020)
	1 Introduction
	2 Method
	2.1 Data sources
	2.2 Estimates of PM2.5 population exposure
	2.3 Spatial information embedded random forest
	2.4 Deweather method

	3 Results
	3.1 Model accuracy evaluation
	3.2 Spatial and temporal characteristics of economic development and air pollution in China
	3.3 Regional equity analysis of emission reductions
	3.4 Differences in pollution exposure between urban and rural areas
	3.5 Differences in PM2.5 exposure between social groups

	4 Discussion

	References

