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Objectives: The research aims to develop a human behavior-based model to 
predict respiratory infectious diseases.

Methods: This research employs semi-supervised machine learning techniques 
in conjunction with an RGB-depth camera to collect micro-level data. 
We  employed computational fluid dynamics to simulate the dispersion of 
virus concentration in outpatient environments. Furthermore, we  evaluated 
the infection risk of respiratory infectious diseases (RIDs) by utilizing a dose–
response model.

Results: A total of 201,600 behavioral data points were collected. The average 
interpersonal distance observed during medical procedures was 0.62 meters. 
The most common facial orientation between patients and healthcare workers 
(HCWs) was face-to-face, accounting for 30.48% of interactions. The predicted 
average viral RNA load exposures per second during various medical procedures 
were as follows: Otoscopy: 0.014314 viral RNA loads/s; Rhinoscopy: 0.014411 
viral RNA loads/s; Laryngoscopy: 0.014379 viral RNA loads/s; External auditory 
canal irrigation: 0.018803 viral RNA loads/s. Simulations of preventive measures 
indicated that N95 masks reduced the probability of infection to 2.44%, surgical 
masks to 14.81%, and cotton masks to 36.05%.

Conclusion: This research presents an innovative micro-level exposure risk 
model for respiratory infectious diseases (RIDs), which provides significant 
insights into the risk of infection. However, it is important to acknowledge 
certain limitations, including the distinctiveness of the data sources utilized 
and the insufficient examination of transmission pathways. Subsequent studies 
should aim to enhance the dataset, fine-tune model parameters, and integrate 
further transmission pathways to augment both the accuracy and applicability 
of the model.
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Introduction

The recent surge in respiratory infectious diseases (RIDs) has 
emerged as a significant threat to public health security (1). The World 
Health Organization (WHO) estimates that the COVID-19 pandemic 
has resulted in over 760 million confirmed cases and approximately 6 
million deaths worldwide (2). Although global efforts have temporarily 
mitigated the spread of COVID-19, RIDs continue to pose a substantial 
risk to human health (3). Current research suggests that RIDs may 
reduce global life expectancy by an average of 1.29 years (4). Therefore, 
it is imperative to enhance awareness and implement preventive and 
control measures in both daily life and workplace settings to effectively 
address the ongoing challenges (5) presented by COVID-19 and the 
potential resurgence of other respiratory viral diseases (6).

Recent studies have suggested the application of predictive 
models, including the Susceptible-Infected (SI) Model (7), the 
Susceptible-Infected-Recovered (SIR) Model (8), and the Seasonal 
SIR Model (SIRS) (9), to effectively forecast RIDs. These models 
utilize historical data to estimate the probability of infection; however, 
their reliance on past occurrences, such as the number of susceptible 
and infected individuals, limits their efficacy in predicting the 
emergence of new respiratory infectious diseases (10). Therefore, 
rather than serving as robust forecasting tools, these models primarily 
illustrate trends during RIDs outbreaks. In addition to these models, 
other methodologies such as neural networks (11), spatially weighted 
Poisson regression (12), seasonal decomposition of time series (13), 
Long Short-Term Memory (LSTM) networks (14), and Autoregressive 
Integrated Moving Average (ARIMA) models (15) have been 
employed to predict epidemiological patterns of RIDs. While these 
models have significantly contributed to the field of mathematical 
epidemiology, they often necessitate the continuous updating of data 
or the utilization of extensive datasets to derive optimized system 
parameters. Furthermore, they may fail to explain the critical issue of 
social interactions among individuals (16). As a result, macroscopic 
models can exhibit insensitivity in assessing the dynamics of 
infectious diseases or require stringent assumptions to mitigate their 
inherent limitations. Conversely, microscopic models offer a partial 
remedy to these issues by concentrating on the transmission of 
disease at the individual level (17). However, employing microscopic 
models to describe the mechanisms of virus transmission still 
presents challenges (18). As a result, the formulation of accurate 
microscopic models holds significant importance (19). The collection 
of behavioral data has emerged as a significant barrier to advancing 
micro-level modeling research. Although Sorokowska (20) employed 
survey methods to investigate interpersonal distance and Hajime 
Kanamori (21) gathered data on human touch behavior through 
direct observations, both approaches are susceptible to biases; surveys 
may suffer from memory inaccuracies, while on-site observations are 
inevitably influenced by observer error. Therefore, there is a pressing 
need for innovative technological solutions to facilitate the acquisition 
of more accurate and reliable behavioral data, overcoming the 
limitations of traditional research methodologies.

This study aimed to employ a novel technique that integrated RGB 
depth cameras with semi-supervised machine learning algorithms to 
collect behavioral data. The infection risk evaluation for RIDs was 
enhanced through the development of micro-level transmission models, 
which utilized the human behavioral dataset to quantify exposure.

Methods

Study design and setting

This study employed a hybrid computational-experimental 
methodology that integrated computational fluid dynamics (CFD) 
simulations with behavioral observation data. The research was 
conducted in an outpatient department, focusing specifically on 
healthcare workers exposure dynamics.

Environment and equipment preparation

The research was conducted at a comprehensive, first-rate hospital 
in Beijing, China. The otolaryngology department of the outpatient 
clinic was selected as the primary research site to ensure the site’s 
representativeness. The tools utilized in the study included a tripod, a 
portable hard drive, a portable power supply, a depth camera, and a 
portable computer. The portable computer was equipped with 
PyCharm Community Edition software and a Linux operating system, 
with pre-edited code imported into the project. This code 
encompassed the Kinect_RGBD_Cap project, which records 
behavioral data; the labeling4RGBD project, which generates label 
annotations for the data; and the Yolov_8 project, which employs 
semi-supervised machine learning techniques on the data. The 
Kinect_RGBD_Cap project is capable of capturing three-dimensional 
information of the environment and measuring the distance between 
the target and the camera, thereby generating depth maps. The specific 
methodology for data collection is as follows: first, the user should 
launch the PyCharm Community Edition software and initiate the 
Kinect_RGBD_Cap project to capture behavioral data, as illustrated 
in Figure 1. Subsequently, the data should be saved to the designated 
working folder to complete the data collection process. The Yolov8 
algorithm represents a machine learning approach that integrates a 
limited amount of labeled data with a substantial volume of unlabeled 
data for model training. Its significance lies in facilitating the rapid 
collection and processing of behavioral data for this research.

Data collection

Based on observations conducted during the pre-experimental 
phase, the observation area was positioned within 6 meters of the 
medical operation area. This proximity was established to enhance the 
accuracy and reliability of the behavioral data collected. During the 
research period, data were continuously collected over a duration of 
7 days, with collection occurring from 7:30 to 12:00 and from 13:00 to 
17:00 each day. To maximize the simulation of real-world behaviors, 
a total of 201,600 pieces of behavioral data were monitored. This 
dataset includes pertinent medical procedures such as otoscopy, nasal 
endoscopy, laryngeal endoscopy, and auditory canal irrigation. The 
privacy of patients and healthcare professionals was safeguarded, as 
the images captured were depth images that did not contain 
identifiable facial features; please refer to Figure  1. This research 
received ethical approval from the Ethics Committee of the People’s 
Liberation Army General Hospital of China (S2023-522-01).
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Data cleaning

In the collection of data on human behavior, two trained 
investigators meticulously examine the data. Based on prior research, 
we have established the following filtering criteria: (1) The original 
behavioral data cannot determine the relative distance between 
healthcare personnel and patients; (2) the original behavioral data 
cannot clearly identify the relative facial orientation between 
healthcare personnel and patients; (3) the original behavioral data 
cannot locate the relative position of healthcare personnel and 
patients. If the original data exhibiting one or more of these 
characteristics will be  excluded from this study. Following this 
filtering process, 161,917 valid human behavior data points remain 
from the original 201,600 data points. The excluded data are all 
invalid data, and the proportion of excluded data does not exceed 
20%, thereby further ensuring the reliability of the data.

Annotated data

We have developed face orientation labels based on the 
participants’ relative positions to the depth camera, aiming to identify 
the relative facial orientations among participants to achieve more 
accurate human behavior identification. As illustrated in Figure 2, 

these labels include “front,” “back,” “right side,” “left side,” “upward,” 
“right front side,” “left front side,” “right back side,” and “left back side.”

Training behavioral data

The YOLOv8 model was utilized in this study to conduct semi-
supervised machine learning on behavioral data. We  selected the 
following metrics to objectively assess the model’s performance:

 a) Precision: As demonstrated in Equation 1, it quantifies the 
percentage of actual positive cases among those that the model 
predicted to be positive.

 b) Recall: As demonstrated in Equation 2, recall quantifies the 
percentage of all actual positive occurrences that the model 
accurately predicts as positive.

 c) Mean Average Precision: As illustrated in Equation 3, this 
metric calculates the model’s average performance across 
all categories.

 
=

+
TPPrecision

TP FP  
(1)

FIGURE 1

Sample of behavioral data (A indicates nasal endoscopy, B indicates laryngeal endoscopy, C indicates otoscopy, and D indicates auditory canal 
irrigation).
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(3)

TP stands for True Positives, FP stands for False Positives, FN 
stands for False Negatives, and C represents the number of classes in 
the dataset. The higher the AP value, the better the performance of 
the model.

Developing a close-range transmission 
model for SARS-CoV-2

This study exclusively focused on the close-range transmission of 
SARS-CoV-2 within outpatient settings, excluding surface 
transmission. As a result, the research evaluated the infection risk 
faced by healthcare workers and investigated the mechanisms of 
pathogen transmission occurring at close range in an outpatient 
context. The initial parameter settings were based on the 
following assumptions:

 1) The five relative orientations identified from the facial 
parameters between healthcare workers (HCWs) and patients, 
based on facial direction analysis utilizing machine vision 
technology, are Face-to-Face (F-F), Face-to-Side (F-S), Face-to-
Back (F-B), Side-to-Side (S-S), and Back-to-Back (B-B).

 2) In the indoor environment of the clinic, we hypothesized that 
susceptible individuals acquired the virus through two primary 
mechanisms: direct inhalation and indirect deposition. 
Simultaneously, infected individuals disseminated the virus 
within the environment through verbal communication 
and respiration.

 3) Aerosols serve as the primary vector for virus transmission. 
However, as exhalation patterns have evolved, so too has the 

particle size distribution of aerosols. Aerosols with a particle 
size of less than 5 μm are classified as small, while those larger 
than 5 μm are classified as large. Recent studies indicate that all 
particles expelled during regular breathing are aerosols with a 
small particle size (22). Both large and small aerosols are 
released during speaking (23). Consequently, the six identified 
transmission categories are: small particle-size aerosol 
inhalation during breathing, small particle-size aerosol 
sedimentation during breathing, small particle-size aerosol 
inhalation during speaking, small particle-size aerosol 
sedimentation during speaking, large particle-size aerosol 
inhalation during speaking, and large particle-size aerosol 
sedimentation during speaking.

 4) In this study, we incorporated experimental results obtained 
from computational fluid dynamics (CFD). The attenuation 
coefficients associated with variations in facial orientation, 
referred to as η(f) in this manuscript, were derived from 
simulations examining inhalation and sedimentation viral 
exposure for both large and small aerosol particle sizes across 
various facial orientations. Furthermore, to ascertain the 
attenuation coefficients pertinent to changes in distance, also 
designated as η(d) in this paper, the experiments simulated 
inhalation and sedimentation viral exposure for large and small 
aerosol particle sizes at relative distances of 0.3 m, 0.5 m, 0.7 m, 
0.9 m, 1.1 m, 1.3 m, 1.5 m, and 2.5 m.

 5) The generation rates of small particle-size aerosols released 
during breathing, small particle-size droplets released during 
speaking, and large particle-size aerosols released during 
speaking were determined in this study through a review of 
literature. The rates were found to be  1.73 × 10−8 μL/s, 
1.95 × 10−8 μL/s, and 2.39 × 10−3 μL/s, respectively (24).

 6) Viruses were generated at a rate of 4.5 × 10^-2 viral RNA 
copies per second in small particle-size aerosols produced by 
breathing, 1.0 viral RNA copies per second in small particle-
size aerosols produced by speaking, and 7.4 × 10^-2 viral RNA 
copies per second in large particle-size aerosols produced by 
speaking (23).

 7) We reevaluated the virus exposure levels based on the 
demonstrated protective efficacy of N95 (25), surgical, and 
fabric masks (26). This approach provides a more 
comprehensive assessment of their protective capacities, 
allowing for a better evaluation of the effectiveness of various 
preventative measures.

 8) The following model was employed in this study to illustrate 
the close-range transmission of SARS-CoV-2:

 ( ) ( ) ( ) ( ) ( )= ⋅η ⋅η ⋅,e s r vG R d f C s  (4)

In Equation 4, e(s, r) denotes the level of viral exposure, 
quantified as viral RNA load per second (viral RNA load/s), where s 
represents the particle size and r reflects the various exhalation 
patterns, including inhalation and deposition. The function vG(R) 
indicates the volume flow rate of aerosols, measured in microliters 
per second (μL/s), corresponding to a particle size of s, which is 
generated by the exhalation activities R, such as speaking or 

FIGURE 2

The orientation of the individual’s face.
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breathing, of the infected individual. Additionally, the η(d) refers to 
the attenuation coefficient associated with relative distance, while η(f) 
represents the attenuation coefficient related to relative facial 
orientation. Lastly, C signifies the concentration of the virus, 
expressed as viral RNA load per second (viral RNA load/s), within 
aerosols of particle size s.

Results

Analysis of personnel behavior

We collected 201,600 data points by monitoring behavioral 
interactions in the outpatient otorhinolaryngology department. The 
findings revealed a high percentage of close-range interactions 
(90.62%) and an average interpersonal distance of 0.62 meters 
between HCWs and patients (see Table  1). The primary facial 
orientations observed among HCWs and patients were F-F, F-S, and 
F-B, accounting for 17.1, 30.5, and 25.2% of the total, respectively (see 
Figure 3).

Training results for the model

Model Accuracy: The results of this study’s model are summarized 
using a standardized confusion matrix. The confusion matrix clearly 
illustrates whether the model misclassifies one category as another or 
confuses two distinct categories. As shown in Figure 4, the actual 
categories are represented by the columns (x) in the matrix, while the 
predicted categories are represented by the rows (y). The average 
accuracy rate is 90.4%, indicating that the model effectively recognizes 
and classifies data.

Model Precision: This study employs precision and recall to assess 
the overall accuracy of the model. The F1 score, which is derived from 
the harmonic mean of precision and recall, ranges from 0 to 1, with 1 
indicating optimal performance and 0 indicating the worst 
performance. Ideally, an F1 score within the confidence interval of 0.4 
to 0.6 suggests that the model performs adequately. The Precision-
Recall (PR) curve illustrates the relationship between precision and 
recall, with recall plotted on the horizontal axis and precision on the 
vertical axis. Typically, as recall increases, precision decreases, and vice 
versa. However, this study finds that the closer the curve is to the 
upper right corner, the better the model’s ability to accurately predict 

FIGURE 3

Probability distribution graph of interpersonal distance and facial orientation [the horizontal axis represents relative distance and healthcare provider 
codes, while the vertical axis indicates frequency distribution, measured in percentage. (A) Represents nasal endoscopy, (B) indicates laryngeal 
endoscopy, (C) denotes otoscopy, and (D) signifies auditory canal irrigation].
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FIGURE 4

Standardized confusion matrix.

outcomes while maintaining high precision and recall, as shown in 
Figures 5, 6.

Average Precision of the Model: The localization loss is represented 
by the Box loss, where a smaller value indicates that the model can locate 
the target more accurately. The classification loss is represented by the 
Cls loss, where a smaller value signifies that the model can more 
accurately identify different categories. The confidence loss is represented 

by the dfl loss, which enables the model to accurately determine whether 
the target is present. As illustrated in Figure 4, a smaller value corresponds 
to better performance. Based on the combination of these parameters 
and the findings from the mean Average Precision (mAP) output, it is 
reasonable to conclude that the model possesses strong recognition 
capabilities and can be effectively utilized for rapid batch identification 
of human behavior data (Figure 7).

TABLE 1 Interpersonal distance between HCWs and patients.

Medical 
operation

Total Mean Standard Sum Min Median Max

A 20 0.67508 0.22163 13.50164 0.42709 0.61215 1.1213

B 25 0.70838 0.20353 17.70946 0.3996 0.63334 1.19879

C 15 0.69932 0.21287 10.48976 0.48231 0.5984 1.1077

D 27 0.3915 0.07712 6.65548 0.27598 0.3703 0.58176
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FIGURE 5

F1 curve.

FIGURE 6

P_R curve.
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FIGURE 7

Average precision of the model.

Viral exposure levels

An average of 0.0113 viral RNA loads/s through inhalation and 
0.0031 viral RNA loads/s through deposition during nasal endoscopy. 
At laryngeal endoscopy, the average viral exposure level was 0.0113 
viral RNA loads/s through inhalation and 0.00308 viral RNA loads/s 
through deposition. During otoscopic examination, the average viral 
exposure level was 0.01123 viral RNA loads/s through inhalation and 
0.003 viral RNA loads/s through deposition. During auditory canal 
irrigation, the average viral dose per second via the inhalation route 
was 0.0145 viral RNA loads/s, while the viral exposure via the 
deposition route was 0.0043 viral RNA loads/s (Figure 8).

Viral exposure levels and human behavior

Additionally, our findings demonstrated that the average level of 
viral exposure per second was highest during nasal endoscopy, 
laryngeal endoscopy, otoscopy, and auditory canal irrigation when the 
relative facial orientation between HCWs and patients were positioned 
face-to-face (F-F) position. This was followed by the face-to-side (F-S) 
orientation, with the lowest exposure occurring during the back-to-
back (B-B) facial orientation. Furthermore, as interpersonal distance 
increased, levels of viral exposure decreased (see Figure 9).

Intervention strategies’ efficacy

We evaluated the effectiveness of various intervention approaches 
by analyzing the effective filtration rates of N95 masks (94.10%), 
medical surgical masks (51.90%), and simple cotton masks (38.10%). 
This study indicates that wearing an N95 mask can effectively prevent 

airborne transmission at close range, reducing the risk of infection to 
2.44%. The risk of infection can be decreased to 14.81% when wearing 
a medical surgical mask and to 36.05% with a basic cotton mask (see 
Figure 10).

Discussion

Respiratory infectious diseases (RIDs) have become increasingly 
common and diverse in recent years (27). Accurately forecasting 
infections caused by these diseases is crucial, necessitating the 
development of more sophisticated prediction algorithms to analyze 
the complex patterns associated with them (28). In contrast, 
traditional methods for predicting respiratory infectious disorders 
may fail to identify illnesses promptly and accurately (29). Therefore, 
to implement effective prevention and control strategies for the public 
in addressing the challenges posed by respiratory infectious diseases 
(RIDs), ongoing, in-depth research in the field of disease prediction 
is essential.

To enhance early disease surveillance and address the limitations 
of existing respiratory infectious disease prediction models, this study 
assessed the risks associated with the SARS-CoV-2 virus using 
computational fluid dynamics (CFD) techniques. The findings 
indicated that the maximum risk of infection during medical 
procedures was 42.72%, while the average viral exposure per second 
in outpatient departments was 0.012564 viral RNA loads. These results 
were consistent with those reported by Zhang et  al. (30). The 
heightened risk of infection in outpatient environments can 
be attributed to close contact, which is identified as one of the six 
principal factors facilitating the transmission of respiratory infections 
(31, 32). Observations during various medical procedures, such as 
laryngoscopy, nasal endoscopy, otoscopy, and external auditory canal 
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irrigation, revealed that the interpersonal distance between patients 
and healthcare providers was frequently less than 1.5 meters, with the 
closest recorded distance being as minimal as 0.39 meters. Considering 
that airborne aerosols and droplet particles can travel at least 
1.5 meters under standard environmental conditions (33), the results 
of this study suggest that the average distance maintained between 
patients and healthcare providers was merely 0.62 meters. This 
situation aligns with the World Health Organization’s definition of 
close contact (34), thereby fostering an environment particularly 
conducive to the transmission of respiratory infectious diseases 
(RIDs). This study also found that the relative facial position of HCWs 
during close contact with patients significantly influenced the degree 
of viral exposure. The highest level of viral exposure, reaching up to 
0.033007 viral RNA loads per second, was observed during face-to-
face interactions between HCWs and patients, as determined by 
investigations utilizing computational fluid dynamics (CFD) 
simulations. When patients and HCWs interacted face-to-side, the 

viral exposure measured 0.007670 viral RNA loads per second. In 
contrast, when positioned back-to-back, the viral exposure was 
negligible. These findings are consistent with those of Nielsen et al. 
(35). Following an analysis of 161,917 behavioral data points, we found 
that during medical procedures, the predominant facial orientation 
between patients and healthcare professionals was face-to-face 
(30.5%), followed by face-to-side (17.1%). When considered together, 
excessively close interpersonal distance and specific facial orientation 
may be the primary contributors to the elevated risk of respiratory 
infectious disease transmission in outpatient departments (42.27%). 
However, we often overlook potential micro-level influencing factors 
in our daily work practices; for example, we tend to neglect subtle 
variations in facial orientation and interpersonal distance. 
Additionally, the complexity of the standardization process and the 
challenges associated with collecting behavioral data limit our ability 
to observe micro-level behaviors. Drawing on existing research, this 
paper proposes a novel approach to gathering behavioral data by 

FIGURE 8

The levels of viral exposure per second. The vertical axis represents the viral exposure level per second (unit: “viral RNA load/s the horizontal axis 
indicates the coding for healthcare workers (HCWs). Nasal endoscopy is labeled as (A), laryngeal endoscopy as (B), otoscopy as (C), and auditory canal 
irrigation as (D).
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FIGURE 9

The relationship between viral exposure levels and human behavior. The vertical axis represents viral exposure levels, measured in “viral RNA load/s,” 
while the horizontal axis indicates interpersonal distance, measured in meters (m). The labels (A–D) correspond to nasal endoscopy, laryngeal 
endoscopy, otoscopy, and auditory canal irrigation, respectively.

integrating semi-supervised machine learning algorithms with 
machine vision technologies. This innovative approach has the 
potential to generate new opportunities for predicting respiratory 
infections. More importantly, we believe that interventions focusing 
on facial orientation and interpersonal distance are more relevant to 
the preventive and control needs of the post-epidemic era compared 
to other strategies. Therefore, we recommend that medical personnel 
in outpatient ENT departments adhere strictly to the use of masks and 
face shields during relevant procedures, while also minimizing 
unnecessary face-to-face interactions and close contact. This is 
particularly critical during outbreaks of novel infectious diseases or 
influenza, as compliance with appropriate behaviors and protective 
measures is essential for ensuring the health and safety of both 
healthcare providers and patients.

In conclusion, this study developed a micro-level risk assessment 
model for respiratory infectious diseases (RIDs) by utilizing behavioral 
data from patients and healthcare staff. Moreover, this model also 

provides a novel perspective on the management and prevention of 
respiratory infectious diseases (RIDs). Although this study differs 
from previous models designed to predict the risk of respiratory 
infectious diseases (RIDs), it complements them and will enhance the 
prognosis, prevention, and management of respiratory infectious 
diseases (RIDs).

This study has the following limitations. First, this research only 
considered the risk of infection to healthcare workers from airborne 
transmission of the virus, while touching contaminated surfaces is 
also an important route for virus transmission. Second, this study 
used semi-supervised machine learning algorithms to process 
behavioral data, so the collected behavioral data may still differ from 
the actual situation. Finally, the behavioral data in this study came 
from a single center with a limited sample size, so the data 
characteristics may not represent other departments in the Beijing 
area. Therefore, the next phase of research needs to expand the scope 
of the study to obtain a wide and diverse data sample, thereby more 
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accurately assessing the risk of transmission of respiratory 
infectious diseases.
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FIGURE 10
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