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Background: There is a lack of studies on the relationship between urinary 
phthalate metabolites (UPMs) and cardiovascular disease (CVD) prevalence in 
adults suffering from chronic kidney disease (CKD). We  intended to examine 
the relationship between UPMs and the prevalence of CVD in people with CKD.

Methods: The research utilized data in the National Health and Nutrition 
Examination Survey (NHANES) 2005–2018. We  employed three statistical 
models—a generalized linear regression model, a weighted quantile sum (WQS) 
regression model, and a Bayesian kernel machine regression (BKMR) model.

Results: We included 834 CKD participants finally. In the generalized linear 
regression model, the prevalence of CVD was higher in individuals with MiBP 
(OR 1.86; 95% CI 1.08–3.18; P for trend = 0.022), MCNP (OR 1.85; 95% CI 1.18–
2.91; P for trend = 0.011), MBP (OR 1.68; 95% CI 1.02–2.76; P for trend = 0.041) 
and MECPP (OR 2.22; 95% CI 1.28–3.86; P for trend = 0.008) in the highest 
tertile compared to those in the lowest tertile. In the WQS model, the WQS 
index was significantly positively associated with CVD (OR 1.44; 95% CI 1.04–
1.99; p value = 0.028). Among the ten phthalates, MCNP showed the highest 
weight (weighted 0.21). A positive link between phthalate mixture exposure 
and cardiovascular disease was also demonstrated by the BKMR model. The 
conditional posterior inclusion probabilities (condPIPs) obtained from the BKMR 
model indicated that MCNP and MECPP were the primary contributors to the 
overall effect observed in the group, with condPIP values of 0.581 and 0.508, 
respectively.

Conclusion: The results indicated that phthalate exposure was linked to an 
elevated risk of cardiovascular disease and highlighted the need to reduce 
plastic use among the CKD population.
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1 Introduction

Since plastics were invented in 1909 (1), they have been ubiquitous 
in our daily lives as the primary synthetic materials, such as bottled 
water, food packaging bags, cosmetics, and paints. Plastic particles 
with a diameter smaller than 5 mm are known as microplastics (MPs), 
which are degradation products of plastics (2). MPs enter the human 
body via ingestion, inhalation, and dermal contact (3). Human tissues 
and body fluids have shown the presence of microplastics, including 
arteries (4), lungs (5), liver (6), placenta (7), blood (8), urine (9) and 
breast milk (10).

Phthalates are plasticizers that increase the flexibility and elasticity 
of plastics. Phthalates play a significant role in the plastic production 
process. Exposure to phthalates is associated with many health 
problems, such as depression (11), cancer (12), obesity (13), and 
diabetes (14). In recent years, several studies have indicated that 
phthalate exposure is associated with cardiovascular disease. Marfella 
et al.’s (15) study showed that patients with microplastics detected in 
carotid artery plaques had a higher risk of developing cardiovascular 
disease than those who did not have these substances detected. 
Workers in a chemical plant who were chronically exposed to plastics-
related pollution exhibited a higher susceptibility to cardiovascular 
disease compared to the general population (16). Zhang et al. (17) 
observed a positive link between urinary phthalates metabolites and 
serum levels of high-sensitivity cardiac troponin I among the general 
population. A cross-sectional study in China revealed the positive 
association between phthalate exposure and CVD in diabetic patients 
(18). Animal experiments have suggested that MPs cause toxicity to 
the cardiovascular system, such as reduced heart function, abnormal 
heartbeat, pericardial edema, and fibrosis of the myocardial tissue 
(19–21).

CKD is a public health issue, affecting approximately 10% of 
adults worldwide (22). Individuals with CKD face a greater risk of 
developing cardiovascular diseases. Cardiovascular disease ranks as 
the top cause of death for those with CKD (22). In CKD stages 4 to 5, 
cardiovascular mortality constitutes 40 to 50% of patient deaths (23). 
Traditional risk factors for cardiovascular disease include 
hypertension, diabetes, obesity, hyperlipidemia, smoking, high levels 
of sodium intake, and low physical activity (24). The phthalate is a new 
risk factor for CVD that has been discovered in recent years. Renal 
excretion is one of the main ways to remove phthalates from the body 
(25). CKD patients have impaired renal function, making it easier for 
phthalates to accumulate in the body. So far, no studies have explored 
the link between phthalate exposure and CVD in individuals with 
CKD. In addition, most of the previous studies have only assessed the 
association between individual phthalate exposure and CVD without 
considering the effects of mixed exposures.

Therefore, we  utilized three statistical models in this study to 
investigate the effects of exposure to phthalates and the prevalence of 
CVD in the CKD population, both individually and collectively.

2 Methods

2.1 Study design and population

The National Health and Nutrition Examination Survey 
(NHANES) is a cross-sectional study, which was conducted by the 

National Center for Health Statistics (NCHS) of the Centers for 
Disease Control and Prevention (CDC) in the United  States. The 
NHANES survey was designed to assess the health and nutritional 
status of the U.S. general population. From 1999 to 2018, a sample of 
around 5,000 individuals from across the nation was examined 
annually. All individuals involved provided their informed consent in 
writing. The design, methods, and data of the survey are available on 
the internet at https://wwwn.cdc.gov/nchs/nhanes/. The data from 
continuous NHANES 2005–2018 was analyzed, and 70,190 
participants were enrolled. We excluded subjects who had missing 
data on urinary phthalate metabolites, urinary creatinine, CVD 
outcomes, urinary albumin creatinine ratio, eGFR, sample weights, 
and other covariates. The study ultimately involved 834 CKD 
participants (Figure 1).

2.2 Urinary phthalate metabolites 
assessment

Throughout NHANES 2005–2018, twelve metabolites of urinary 
phthalates were consistently measured. In this study, ten UPMs with 
concentrations above the lower limit of detection (LLOD) in over 60% 
of participants were examined (Supplementary Table S1). Values 
under the LLOD were replaced by the LLOD/ 2 . The high-
performance liquid chromatography-electrospray ionization-tandem 
mass spectrometry (HPLC-ESI-MS) was utilized to quantitatively 
detect urinary phthalate metabolites. The NHANES website contains 
detailed information on laboratory procedures.

2.3 Assessment of CVD outcomes

The assessment of CVD involved a questionnaire where 
individuals aged 20 years or older reported their medical history. All 
individuals involved were questioned as follows: “Has a doctor or 
other health professional ever told you that you had congestive heart 
failure/coronary heart disease/angina/heart attack/a stroke?” If they 
responded “Yes” to any of the above questions, they would 
be considered as having CVD.

2.4 Definition of CKD

To generate the estimated glomerular filtration rate (eGFR), the 
Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) 
formula was applied (26). CKD was defined as either of the following 
presents for a minimum of 3 months: urinary albumin creatinine ratio 
≥ 30 mg/g or eGFR < 60 mL/min/1.73m2 (27).

2.5 Covariates

We collected information on demographic characteristics (age, 
gender, race/ethnicity), socio-behavioral characteristics (poverty 
income ratio), lifestyle (smoking status and BMI), medical history 
(hypertension and diabetes), and laboratory data (total cholesterol, 
serum creatinine, and urine creatinine). PIR is the ratio of family 
income to poverty. A PIR lower than 1 signifies poverty. People were 
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considered smokers if they had smoked at least 100 cigarettes over the 
course of their life. Hypertension was identified according to a history 
of diagnosis by a doctor as reported by the individual. Diabetes was 
recognized by any of the following conditions: (1) HbA1c ≥ 6.5% or 
fasting glucose ≥ 126 mg/dL; (2) self-reported diagnosis of diabetes; 
(3) self-reported use of insulin or other diabetes medications. BMI was 
calculated by dividing a person’s weight in kilograms by their height 
in meters squared.

2.6 Statistical analysis

Urinary phthalate metabolites were corrected for dilution 
differences in spot urine samples by adjusting for urine creatinine. As 
the distributions of urinary phthalate metabolites were skewed, the 
data was ln-transformed to better align with a normal distribution. 

Continuous variables, including age, PIR, BMI, eGFR, and total 
cholesterol, were expressed as mean and standard deviation (SD). 
Group differences of continuous variables were compared using the 
survey design-based Kruskal-Wallis test. Categorical variables, 
including gender, race/ethnicity, smoking status, hypertension, and 
diabetes, were shown in the form of numbers and percentages. Group 
differences of categorical variables were compared using the survey 
design-based Rao-Scott Chi-square test.

2.6.1 Generalized linear regression model
Multivariable logistic regression models were utilized to 

estimate odds ratios (ORs) and 95% confidence intervals (CIs) for 
the association between the prevalence of cardiovascular disease 
and individual phthalates. Each phthalate was divided into tertiles, 
and the lowest tertile (T1) was regarded as the reference group. The 
median phthalate levels within each tertile were treated as a 

FIGURE 1

Flowchart of the sample selection from NHANES 2005–2018.
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continuous variable for linear trend analyses. We also conducted 
logistic regression models with phthalate concentrations, which 
were treated as continuous variables. All multivariable logistic 
regression models were adjusted for age, gender, race/ethnicity, PIR, 
BMI, smoking status, hypertension, diabetes, eGFR, and 
total cholesterol.

2.6.2 Weighted quantile sum (WQS) regression 
model

We applied the WQS regression model to assess the effect of 
phthalate mixture exposure on cardiovascular disease. This method 
took all the phthalates into consideration and calculated the WQS 
index, which reflected the impact of all phthalates on the outcome. 
The model restricted all phthalates to exert the same directional effect 
on cardiovascular disease. How each phthalate contributed to the total 
impact was assessed by assigning the weight of each phthalate to the 
WQS index using the model. Random division of the data resulted in 
two parts, with 40% designated for training and 60% for validation. 
The model calculated the average weight for each phthalate after 
bootstrapping 10,000 times.

2.6.3 Bayesian kernel machine regression (BKMR) 
model

Considering potential nonlinear and non-addictive relationships 
between phthalates and CVD, we  applied the BKMR model to 
examine the health impacts of exposure to phthalates. The BKMR 
model represents a novel method developed to estimate the overall 
and single-exposure impacts of combinations of multiple pollutants 
on health (27). It can also identify interactions among individual 
components of the mixture. This approach employs a kernel function 
to flexibly estimate the multivariable exposure response function, 
accommodating nonlinear and non-additive effects. A method for 
selecting variables hierarchically was created to tackle multicollinearity 
by grouping highly correlated exposures. In addition, this method 
makes it possible to visualize functions of exposure and response in 
high dimensions. Given that the outcome (with or without CVD) was 
binary in this study, we  implemented a probit BKMR regression 
model. Ten thousand of iterations were used to fit the model. The use 
of a Gaussian forecasting process method reduced the runtime and 
ensured accuracy. Posterior inclusion probabilities (PIPs) were 
generated through the variable selection. The importance of each 
variable is shown by PIPs, which have values from 0 to 1.

TABLE 1 Characteristics of the study participants.

Variables Overall (n = 834) CVD p value

Yes (n = 271) No (n = 563)

Age (years) 63.3 (15.7) 71.1 (9.6) 60.4 (16.5) <0.001

Gender 0.023

  Female 404 (54%) 105 (46%) 299 (57%)

  Male 430 (46%) 166 (54%) 264 (43%)

Race/ethnicity 0.035

  Mexican American 120 (7.6%) 30 (4.5%) 90 (8.8%)

  Other Hispanic 61 (3.9%) 16 (2.6%) 45 (4.4%)

  Non-Hispanic White 404 (69.2%) 154 (76.2%) 250 (66.6%)

  Non-Hispanic Black 185 (12.4%) 59 (12.0%) 126 (12.5%)

  Other races 64 (6.9%) 12 (4.7%) 52 (7.7%)

Family PIR 2.82 (1.65) 2.54 (1.57) 2.93 (1.66) 0.032

BMI (kg/m2) 30.95 (7.68) 31.93 (7.35) 30.59 (7.78) 0.080

Smoking <0.001

  Yes 418 (47%) 165 (60%) 253 (42%)

  No 416 (53%) 106 (40%) 310 (58%)

Hypertension <0.001

  Yes 563 (67%) 218 (83%) 345 (61%)

  No 271 (33%) 53 (17%) 218 (39%)

Diabetes <0.001

  Yes 486 (51%) 189 (68%) 297 (44%)

  No 348(49%) 82 (32%) 266 (56%)

eGFR (mL/min/1.73m2) 70.00 (29.08) 54.87 (21.20) 75.67 (29.62) <0.001

TC (mg/dL) 183.97 (42.63) 169.75 (43.16) 189.31 (41.22) <0.001

Continuous variables are presented as mean (SD). Categorical variables are presented as unweighted frequency counts (weighted percentages). PIR, poverty income ratio; BMI, body mass 
index; eGFR, estimated glomerular filtration; TC, total cholesterol.

https://doi.org/10.3389/fpubh.2025.1579618
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liang and Li 10.3389/fpubh.2025.1579618

Frontiers in Public Health 05 frontiersin.org

R software (version 4.4.0) was utilized for all the statistical 
analyses, with a two-sided p-value threshold < 0.05 considered 
statistically significant.

3 Results

3.1 Baseline characteristics of participants

In the final analysis, there were 834 participants, and 54% of them 
were females. Participants had a weighted average age of 63.3 years. 
Race/ethnicity distribution differed between groups with and without 
CVD. In contrast to the non-CVD group, the CVD group consisted of 
older individuals, more males, and a larger percentage of people with 
hypertension, diabetes, and smoking habits. In the CVD group, BMI 
was higher, while PIR and eGFR were lower. Higher total cholesterol 
was observed in the non-CVD group, which might be attributed to the 
CVD group taking lipid-lowering drugs. Table 1 displayed the detailed 
baseline characteristics of this study.

3.2 Measurement and correlations of 
urinary phthalate metabolites

The detection frequency and distribution of phthalates were 
shown in Supplementary Table S1. There were ten phthalates with a 
detection frequency above 60%. We  found significant positive 
correlations among 10 phthalates (r ranging from 0.09 to 0.94). There 
were strong correlations between MEOHP and MEHHP (r = 0.94), 
MEOHP and MECPP (r = 0.92), and MEHHP and MECPP (r = 0.90) 
(Figure 2).

FIGURE 2

Pearson correlations among urinary concentrations of ten phthalates 
in the population (N = 834). All of the correlations showed statistical 
significance (p < 0.05), except those of MBP and MCOP (p = 0.28), 
MEP and MCOP (p = 0.31), MiBP and MCNP (p = 0.3), and MBzP and 
MCOP (p = 0.06).

TABLE 2 The association between individual phthalate concentration and 
the prevalence of CVD.

Variables OR (95% 
CI)

p value P for trend

MEP

T1 Ref

T2 1.08 (0.61, 1.92) 0.779

T3 0.98 (0.63, 1.54) 0.944 0.915

MEHHP

T1 Ref

T2 0.70 (0.41, 1.20) 0.192

T3 1.34 (0.77, 2.35) 0.295 0.207

MiBP

T1 Ref

T2 1.59 (0.93, 2.75) 0.092

T3 1.86 (1.08, 3.18) 0.025 0.022

MEOHP

T1 Ref

T2 1.53 (0.89, 2.63) 0.123

T3 1.67 (0.96, 2.91) 0.068 0.076

MBzP

T1 Ref

T2 1.19 (0.65, 2.17) 0.577

T3 1.32 (0.78, 2.25) 0.295 0.293

MCNP

T1 Ref

T2 1.43 (0.89, 2.28) 0.134

T3 1.85 (1.18, 2.91) 0.008 0.011

MCOP

T1 Ref

T2 1.16 (0.65, 2.05) 0.617

T3 1.39 (0.83, 2.35) 0.210 0.205

MECPP

T1 Ref

T2 1.90 (1.10, 3.26) 0.021

T3 2.22 (1.28, 3.86) 0.005 0.008

MBP

T1 Ref

T2 1.20 (0.69, 2.10) 0.504

T3 1.68 (1.02, 2.76) 0.042 0.041

MCPP

T1 Ref

T2 0.82 (0.51, 1.32) 0.414

T3 1.44 (0.93, 2.23) 0.104 0.081

By comparing the second and third tertiles of each phthalate to the first, odds ratios (ORs) 
were calculated. The models were adjusted for age, gender, race/ethnicity, PIR, BMI, smoking 
status, hypertension, diabetes, total cholesterol, and eGFR.
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3.3 Generalized linear regression model to 
evaluate the association between 
phthalates and CVD

We applied multivariable logistic regression to assess the effect of 
each phthalate on CVD. In the multivariable logistic regression model, 
we adjusted for covariates, including age, gender, race/ethnicity, PIR, 
BMI, smoking status, hypertension, diabetes, GFR, and total 
cholesterol. Table  2 indicated the association between phthalate 
exposures and the prevalence of CVD. After adjusting for potential 
covariates, compared to the lowest tertile, MiBP (OR 1.86; 95% CI 
1.08–3.18; P for trend = 0.022), MCNP (OR 1.85; 95% CI 1.18–2.91; 
P for trend = 0.011), MBP (OR 1.68; 95% CI 1.02–2.76; P for 
trend = 0.041) and MECPP (OR 2.22; 95% CI 1.28–3.86; P for 
trend = 0.008) in the highest tertile were independently related to the 
elevated prevalence of CVD. No significant associations were found 
between the other urinary phthalate metabolites and 
CVD. Supplementary Table S2 displayed the relationship between 
each phthalate and CVD by considering the concentration of each 
phthalate as a continuous variable. MiBP (OR 1.30; 95% CI 1.01–1.68; 
p = 0.041), MCNP (OR 1.26; 95% CI 1.03–1.53; p = 0.027) and MBP 
(OR 1.34; 95% CI 1.06–1.71; p = 0.017) were significantly associated 
with CVD.

A subgroup analysis was also carried out to compare the 
association among different renal functions. MECPP was associated 
with a higher prevalence of CVD in participants with eGFR ranging 
from 60 to 90 mL/min/1.73m2 (OR 3.31; 95% CI 1.62–6.79; P for 
interaction = 0.029). MBP was associated with a higher prevalence of 
CVD in participants with eGFR lower than 60 mL/min/1.73m2 (OR 
1.59; 95% CI 1.12–2.25; P for interaction = 0.036) (Table  3). No 
significant interaction was found for the other phthalates.

3.4 WQS regression model to evaluate the 
association between phthalates and CVD

We utilized the WQS regression model to assess the effect of 
phthalate mixture exposure on CVD. As presented in Table 4, after 
adjustment for all covariates, the WQS index was significantly 

associated with CVD, with an odds ratio of 1.44 (95% CI 1.04–1.99). 
The weight of each phthalate for the WQS index was reported in 
Figure 3A. Among the ten phthalates, MCNP was weighted the most 
at 0.21, with MECPP and MiBP having weights of 0.18 and 0.15, 
respectively.

Considering the WQS model hypothesized that all phthalates 
exerted the same directional effect on cardiovascular disease, we also 
fitted the negative WQS model to examine whether the WQS index 
was negatively associated with CVD. Each phthalate’s weight was 
displayed in Figure 3B. No significant association was found in this 
model (Table 4).

3.5 BKMR model to evaluate the 
association between phthalates and CVD

We employed the BKMR model to determine the combined impact 
of phthalate exposure on CVD. Table 5 provided a summary of the 
inclusion probabilities for each phthalate. The primary influence of the 
entire group was driven by MCNP and MECPP (condPIP = 0.581 and 
0.508, respectively), while the condPIPs of others were lower than 0.5.

Figure 4 illustrated the association of each phthalate with CVD, 
while the remaining nine phthalates were maintained at their median 
concentrations. MCNP, MCOP, MECPP, and MBzP showed a positive 
relationship with CVD, whereas MBP, MCPP, MEP, and MEHHP 
exhibited a flat or inverse correlation. MiBP and MEOHP exhibited 
increasing association with CVD in the low concentration and inverse 
association in the high concentration. However, considering the 95% 

TABLE 3 The association between urinary phthalate metabolites and the prevalence of cardiovascular disease among CKD patients with different renal 
functions.

Phthalates >90 mL/min/1.73m2 
(n = 221)

60–90 mL/min/1.73m2 
(n = 156)

<60 mL/min/1.73m2 
(n = 457)

P for interaction

MEP 0.99 (0.62, 1.59) 0.93 (0.72, 1.20) 1.08 (0.89, 1.32) 0.850

MEHHP 0.91 (0.41, 2.05) 1.68 (0.88, 3.20) 1.13 (0.88, 1.46) 0.852

MiBP 1.03 (0.34, 3.15) 1.96 (1.15, 3.35) 1.20 (0.89, 1.62) 0.907

MEOHP 0.93 (0.39, 2.21) 2.50 (1.29, 4.84) 1.11 (0.86, 1.45) 0.477

MBzP 1.19 (0.65, 2.16) 1.16 (0.72, 1.88) 1.12 (0.86, 1.46) 0.577

MCNP 1.85 (0.98, 3.51) 1.23 (0.77, 1.96) 1.19 (0.89, 1.58) 0.186

MCOP 1.46 (0.80, 2.65) 1.63 (1.00, 2.67) 1.00 (0.82, 1.23) 0.076

MECPP 1.44 (0.63, 3.31) 3.31 (1.62, 6.79) 1.12 (0.85, 1.46) 0.029

MBP 0.71 (0.27, 1.85) 0.99 (0.43, 2.26) 1.59 (1.12, 2.25) 0.036

MCPP 1.00 (0.60, 1.66) 1.29 (0.73, 2.28) 1.05 (0.87, 1.26) 0.995

The models were adjusted for age, gender, race/ethnicity, PIR, BMI, smoking status, hypertension, diabetes, total cholesterol, and eGFR.

TABLE 4 Association between WQS regression index and cardiovascular 
disease (N = 834), NHANES, 2005–2018.

Outcomes OR 95% CI p value

CVD

A positive model 1.44 (1.04, 1.99) 0.028

A negative model 1.30 (0.95, 1.77) 0.102

OR estimates reflect the odds ratios of CVD with a one-quartile increase in the WQS index. 
Models were adjusted for age, gender, race/ethnicity, PIR, BMI, smoking status, 
hypertension, diabetes, total cholesterol, and eGFR.
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confidence intervals included the reference line of 0, these results were 
not statistically significant.

Figure  5 displayed the general link between exposure to the 
phthalate mixture and cardiovascular disease. Despite the lack of a 
statistically significant difference in the model (95% CI including 
zero), there was a positive trend between the phthalate mixture 
exposure and CVD. We further investigated the interactions between 
phthalates. As shown in Supplementary Figure S1, when the 
association between exposure 1 and CVD was affected by levels of 
exposure 2, the curves intersected, which indicated potential 
interactions existed between phthalates.

4 Discussion

In this cross-sectional study involving 834 CKD participants, 
we applied three statistical models to analyze the relationship between 

phthalates and cardiovascular diseases. In the generalized linear 
regression model, after adjusting for all covariates, we  found that 
MiBP, MCNP, MECPP, and MBP were associated with CVD. In the 
fully adjusted WQS model, the WQS index was significantly and 
positively related to CVD. Among the ten phthalates, MCNP showed 
the highest weight. Pearson correlations indicated that MECPP, 
MEHHP, and MEOHP are highly correlated. The BKMR model also 
demonstrated a positive trend between phthalate mixture exposure 
and CVD. The condPIPs derived from the BKMR model showed that 
the main effect on the entire group was primarily due to MCNP.

FIGURE 3

The weight of each phthalate for the WQS index in a positive WQS regression model (A) and a negative WQS regression model (B). Models were 
adjusted for age, gender, race/ethnicity, PIR, BMI, smoking status, hypertension, diabetes, total cholesterol, and eGFR.

TABLE 5 CondPIP in BKMR model in NHANES 2005–2018 (N = 834).

Phthalates CondPIP

MCNP 0.581

MECPP 0.508

MEP 0.481

MiBP 0.471

MEHHP 0.470

MEOHP 0.458

MCOP 0.458

MCPP 0.447

MBzP 0.430

MBP 0.383

The BKMR model was adjusted for age, gender, race/ethnicity, PIR, BMI, smoking status, 
hypertension, diabetes, total cholesterol, and eGFR. CondPIP, conditional posterior inclusion 
probability.

FIGURE 4

The estimated risk and 95% CI for each phthalate exposure with CVD 
while setting other phthalates to their median concentrations. The 
models were adjusted for age, gender, race/ethnicity, PIR, BMI, 
smoking status, hypertension, diabetes, total cholesterol, and eGFR.
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The findings of our study partially aligned with several previous 
studies. In a cross-sectional study, Zhu et al. (28) reported that MiBP and 
MBzP were associated with the increased prevalence of CVD among the 
general adult population. Additionally, Su et al.’s (29) study showed an 
association between urinary phthalates metabolites (MEHP, MnBP, and 
MiBP) and coronary heart disease. Another survey by Shiue indicated 
that MBP was associated with the risk of stroke (30). However, Olsen 
et  al. (31) observed no association between four selected phthalate 
metabolites (MiBP, MMP, MEP, and MEHP) and coronary risk in an 
older adult population. It is worth noting that none of the aforementioned 
studies considered renal function when performing multivariate analyses.

Several studies have indicated that micro-and nanoplastics 
(MNPs) can be  excreted in the urine. In human urine samples, 
microplastics were detected by Raman microspectroscopy (9). 
Nanoplastics were rapidly detected in urine after a single exposure, 
which included tail vein injection, gavage, or pulmonary perfusion in 
mice (32). These studies revealed that kidney excretion plays a vital 
role in the elimination of MNPs. CKD patients have declined eGFR 
levels, making CKD a condition more prone to MNPs accumulation. 
Furthermore, phthalates may adversely affect the kidneys, forming a 
vicious circle. An inverse relationship was observed between phthalate 
metabolites and eGFR, along with a positive relationship with urinary 
ACR among general adults (33). A cross-sectional clinical study also 
showed that urinary phthalate metabolites were associated with renal 
impairment (34). In addition, CKD patients have compromised 
intestinal epithelial barrier function, making it easier for MNPs to pass 
through the intestinal barrier and reach the bloodstream (35). In our 
study, in the subgroup analysis, MECPP was associated with CVD 
among CKD patients with eGFR 60–90 mL/min/1.73m2, while MBP 
exhibited association with CVD among CKD patients with eGFR < 
60 mL/min/1.73m2. Differences in this relationship under different 
kidney function statuses may be explained by a negative association 
between urinary creatine and renal function. We used urinary creatine 

to adjust for urinary dilution of phthalates. Urinary creatine levels can 
be influenced by eGFR, which may introduce a bias (36).

Although the underlying mechanism of cardiovascular toxicity 
induced by phthalates has not been entirely clarified, several 
insights have been put forward in recent years. Chen et al.’s (37) 
study showed that microplastic exposure altered the expression of 
genes associated with heart development in fish. Sun et al. (21) 
observed pericardial edema in zebrafish embryos exposed to 
nanoplastics. The expression of genes involved in the development 
of atrioventricular heart valves was significantly affected after 
exposure to nanoplastics in human induced pluripotent stem cells 
(hiPSCs) (38). These findings imply that MNPs adversely affect 
early cardiac development. Zhang et al. (39) found that microplastics 
induced mitochondrial damage and energy metabolism dysfunction 
via the AMPK-PGC-1α pathway in cardiomyocytes of chickens. Li 
et al. (40) identified that microplastics triggered oxidative stress and 
induced cardiomyocyte apoptosis, finally leading to cardiac fibrosis 
in rats. Wei et al.’s (41) study revealed that the administration of 
microplastics in rats induced pyroptosis of cardiomyocytes. 
Moreover, inflammation significantly contributes to the onset of 
cardiovascular diseases. The expression levels of inflammatory 
markers in plaque samples were higher in patients in whom MNPs 
were detected within the plaque than those in whom MNPs were 
not detected (15). Studies performed in vitro and in vivo revealed 
that MNPs triggered cardiomyocyte inflammation responses (42–
44). In an observational cohort study, Amdur et al. (45) found that 
the plasma levels of inflammation biomarkers were independently 
associated with atherosclerotic vascular disease in CKD patients. 
Therefore, phthalates may also induce cardiovascular toxicity in 
CKD patients by aggravating the inflammatory response.

This study has some strengths and limitations. This study is the 
first to explore the correlation between phthalates and cardiovascular 
disease among those with CKD. Furthermore, by employing three 
statistical models, we comprehensively estimated the single exposure, 
overall exposure, and interactive effects of phthalates on the CVD 
outcome. This study also comes with a few limitations that should 
be noted. First, we excluded the population whose urinary phthalates 
data were missing. This population may include CKD participants, 
which might lead to a bias in our study. Second, although this study 
has adjusted for a variety of covariates, there may be other potential 
confounders that were not considered. Third, the CVD outcome was 
assessed using a self-reported questionnaire, which may lack 
accuracy. Finally, this study is cross-sectional and thus cannot 
conclude the causal link between phthalate exposure and CVD 
outcome. Hence, to further examine the link between phthalate 
exposure and cardiovascular disease, prospective and large-scale 
cohort studies are required.

5 Conclusion

Our study concludes that urinary phthalate metabolites are 
associated with CVD among individuals with CKD, with the greatest 
influence being from MCNP. These findings indicate that phthalate 
exposure is a potential risk factor for CVD and highlight the need to 
reduce phthalate exposure in the CKD population.

FIGURE 5

The overall CVD risk (95% CI) from phthalate exposure when 
comparing different phthalates at various percentiles to their median 
level. The model was adjusted for age, gender, race/ethnicity, PIR, 
BMI, smoking status, hypertension, diabetes, total cholesterol, and 
eGFR.
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