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Background: Rheumatoid arthritis is a chronic autoimmune disease influenced

by environmental exposures, including per- and polyfluoroalkyl substances

(PFAS). Although previous studies have suggested links between PFAS and

rheumatoid arthritis risk, none have used interpretable machine learning models

for prediction. This study aimed to develop such a model to assess risk based on

PFAS exposure.

Methods: We analyzed data from 11,705 participants in the National Health

and Nutrition Examination Survey (2003–2018). Twelve machine learning

algorithms were evaluated using metrics including area under the curve (AUC),

accuracy, sensitivity, specificity, and F1 score. Key predictors were identified

using SHapley Additive exPlanations (SHAP). Partial dependence plots and

locally weighted scatterplot smoothing (LOWESS) curves were used to examine

non-linear associations and exposure thresholds. A web-based risk calculator

was developed to enhance clinical and public health applicability.

Results: CatBoost showed the best performance (AUC: 0.82; Accuracy:

74%; F1 score: 0.62) and was selected for further interpretation.

SHAP analysis identified perfluorooctane sulfonic acid (PFOS) and

2-(N-Methyl-perfluorooctane sulfonamido) acetic acid (MPAH) as major

contributors to risk prediction. PFOS exhibited a U-shaped relationship with

increased risk above 15.10ng/ml, while MPAH showed a risk transition at

0.22 ng/ml. Waterfall plots illustrated the contribution of individual exposures.

The interactive web-based calculator allows users to input PFAS levels and

receive personalized rheumatoid arthritis risk estimates. It is freely available on

Hugging Face Spaces (https://huggingface.co/spaces/Machine199710/RA_ML).

Conclusions: This study demonstrates the potential of machine learning

to predict rheumatoid arthritis risk based on PFAS exposure. The identified

non-linear patterns provide insights into environmental contributions to disease

risk and may inform future prevention strategies.
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease

with variable global prevalence, more common in developed

and urban regions, and disproportionately affecting women

at a ratio of approximately 3:1 (1, 2). Despite significant

advances in treatment, challenges such as delayed diagnosis,

disease heterogeneity, and limited access to care in low-resource

settings continue to adversely affect patient outcomes (3). In this

context, machine learning (ML) has emerged as a promising

approach to address these challenges by leveraging complex

datasets from omics, imaging, and clinical records (4–6). Liu

et al. (4) used ML to identify six diagnostic genes, achieving

high accuracy (AUC: 0.996) for diagnosing atherosclerosis (AS)

with RA. ML offers the potential to identify novel biomarkers

and improve early diagnostic accuracy (7). It also enables

personalized treatment strategies, providing new opportunities to

enhance the management of RA (8). However, ensuring clinical

applicability requires overcoming challenges such as bias and

limited generalizability in current models.

Per- and polyfluoroalkyl substances (PFAS) are synthetic

chemicals commonly used in industrial and consumer products

due to their stability and resistance to degradation (9, 10).

However, these properties have also led to their accumulation in the

environment and human body (11), where they are associated with

various health risks, including immune dysfunction and metabolic

disorders (12, 13). PFAS exposure has also been linked to RA

(14). For instance, Qiao et al. (14) reported a negative association

between PFAS mixture exposure and RA in females. Despite these

findings, most studies have relied on traditional statistical methods,

which may not fully capture the complex relationships between

PFAS exposure and RA (15). While ML has been used to study

other environmental factors like heavy metals in relation to RA

(16), it has not yet been applied to explore the complex relationships

between PFAS exposure and RA or to identify potential patterns

and interactions. Using ML in this context could provide valuable

insights and improve the prediction and management of RA risk.

In this study, we utilized PFAS exposure data from the

2003 to 2018 National Health and Nutrition Examination Survey

(NHANES) to develop ML models for predicting RA. We

compared multiple ML algorithms using metrics such as AUC,

accuracy, sensitivity, and F1 score to identify the most effective

model. To enhance interpretability, we applied SHapley Additive

exPlanations (SHAP), and Partial Dependence Analysis (PDA)

to identify key PFAS associated with RA risk. Additionally,

we investigated the relationships between these key PFAS and

RA risk, exploring linear and non-linear patterns, such as U-

shaped associations, and determined clinically relevant cutoff

values. To facilitate the translation of our research findings

into a practical tool, we developed and deployed a user-

friendly, web-based calculator using the Gradio library. This

calculator allows users to input individual risk factors, including

PFAS exposure levels, and obtain a personalized RA risk

prediction. The calculator is publicly available on Hugging

Face Spaces (https://huggingface.co/spaces/Machine199710/RA_

ML), providing an accessible resource for both researchers and the

general public.

Methods

Study participants

The National Health and Nutrition Examination Survey

(NHANES), conducted by the National Center for Health Statistics

under the CDC, is a cross-sectional survey assessing the health

and nutrition of non-institutionalized U.S. residents. This study

utilized data from seven NHANES cycles (2003–2018) comprising

80,312 participants. After excluding 68,607 individuals due to

missing RA status, serum PFAS measurements, or incomplete

covariate data, a final sample of 11,705 participants was included.

Missing covariates with <20% missingness were imputed using the

K-Nearest Neighbors (KNN) algorithm with k = 5, implemented

via VIM R package. PFAS variables had no missing values and were

therefore excluded from imputation. For variables that underwent

imputation, differences in summary statistics before and after

imputation were minimal (e.g., BMI mean: 29.218 before vs. 29.206

after), suggesting negligible impact on the overall data structure.

RA status was determined through self-reported diagnoses by

healthcare professionals, and the participant selection workflow

is shown in Supplementary Figure S1. All participants provided

written informed consent, and the study was approved by the

National Center for Health Statistics Research Ethics Review Board.

PFAS concentration

Serum PFAS levels were quantified using online solid-phase

extraction coupled with high-performance liquid chromatography-

turboionspray ionization-tandem mass spectrometry (online

SPE-HPLC-TIS-MS/MS), with detailed methods available on the

NHANES website (https://wwwn.cdc.gov/Nchs/Data/Nhanes/

Public/2017/DataFiles/PFAS_J.htm). The PFAS analyzed included

2-(N-Methyl-perfluorooctane sulfonamido) acetic acid (MPAH),

perfluorodecanoic acid (PFDE), perfluorohexane sulfonic acid

(PFHxS), perfluorononanoic acid (PFNA), perfluorooctane

sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and

perfluoroundecanoic acid (PFUA). For data collected between

2013 and 2018, total PFOS and PFOA concentrations were

calculated by summing the concentrations of their respective

isomers: linear (n-PFOA) and branched (Sb-PFOA) for PFOA,

and linear (n-PFOS) and monomethyl branched (Sm-PFOS) for

PFOS. Pearson correlation coefficients among the seven PFAS were

calculated and visualized in a heatmap to illustrate their positive

and negative correlations.

Covariates

The covariates included in this study were age, gender,

race, education level, Poverty-to-Income Ratio (PIR), body mass

index (BMI), smoking status, and alcohol consumption. Race

was categorized as Mexican American, other Hispanic, non-

Hispanic White, non-Hispanic Black, and other. Education level

was grouped into two categories: high school or lower, and more

than high school. PIR, representing income as an independent
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FIGURE 1

Workflow of the ML analysis for predicting RA risk based on PFAS exposure. The figure shows the workflow for analyzing PFAS exposure and RA risk

using ML models. NHANES data (2003–2018) underwent preprocessing, and 12ML algorithms were evaluated. CatBoost achieved the best

performance (AUC 0.82). Feature importance was analyzed using SHAP analysis, while PDA and SHAP visualizations explored non-linear relationships

and individual predictions.

variable, was calculated by dividing household income by the

poverty threshold for the specific NHANES survey year. Alcohol

consumption was defined as having consumed at least 12 alcoholic

drinks in one’s lifetime, where one drink was equivalent to

a 12 oz. beer, a 5 oz. glass of wine, or 1.5 oz. of liquor.

Smoking status was defined as having smoked at least 100

cigarettes during one’s lifetime. To ensure the reliability of the

model, variance inflation factors (VIFs) were used to assess

multicollinearity among covariates, with values below 10 indicating

no significant multicollinearity.

Data preprocessing and construction of ML
models

This study initially included 15 variables, comprising

10 continuous and five categorical features for ML analysis.
Continuous variables were standardized using the “StandardScaler”

to ensure consistency across the dataset. The pre-processed data

was then split into training (80%, n = 9,364) and testing

(20%, n = 2,341) subsets. Hyperparameter tuning and internal

validation were performed using 10-fold cross-validation within

the training set. To explore the relationship between PFAS

exposure and RA, 12ML models were tested: AdaBoost (AB),

CatBoost (CB), Decision Tree (DT), Extra Trees (ET), K-Nearest

Neighbors (KNN), Gradient Boosting (GB), LightGBM (LGB),

Multi-Layer Perceptron (MLP), Random Forest (RF), Support

Vector Machine (SVM), Voting Classifier (VC), and XGBoost

(XGB). Grid search with 10-fold cross-validation was employed

to optimize model hyperparameters, and the best configurations

(Supplementary Table S1) were applied to the final models.

Figure 1 outlines the machine learning workflow used in this

study, while model performance was evaluated to identify the most

effective approach for predicting RA based on PFAS exposure.

Evaluation of ML models

To assess the performance of each machine learning model,

a variety of metrics were used, including the receiver operating

characteristic (ROC) curve, area under the curve (AUC), accuracy,

sensitivity (recall), specificity, false-positive rate (FPR), false-

negative rate (FNR), positive predictive value (PPV), negative

predictive value (NPV), and F1 score.

Interpretation of ML models

Partial Dependence Analysis (PDA) was conducted to

investigate how changes in key PFAS affect the model’s

predictions while keeping other variables constant. Using

the “partial_dependence” function from “scikit-learn” and

spline interpolation, the analysis generated smoothed curves

to represent the relationship between PFAS levels and RA

risk. Additionally, a rug plot was included to display the data

distribution, providing further insight into how the model

responds to varying feature values.

SHapley Additive exPlanations (SHAP) were applied using the

“TreeExplainer” for the “cb_model” to analyze feature contributions

in the testing dataset. A summary plot displayed features ranked
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by importance and SHAP values, while a decision plot visualized

their overall impact on predictions. Additionally, a waterfall plot

illustrated individual feature contributions for a specific prediction.

SHAP values were also plotted using a scatter plot with a locally

weighted scatter plot smoothing (LOWESS) curve to identify

trends, marking critical thresholds where features transitioned

between positive and negative contributions.

Web-based calculator development

To translate our findings into a practical tool, we developed a

web-based calculator using the Gradio library in Python. Gradio

allows for the rapid creation of interactive web interfaces for

machine learning models. The calculator’s user interface includes

input fields for the key predictors identified in our analysis: age,

gender, race, education level, smoking status, alcohol consumption,

BMI, and serum levels of MPAH, PFDE, PFHxS, PFNA, PFOA,

PFOS, and PFUA. The interface utilizes radio buttons for gender

and education level, a dropdown menu for race, checkboxes for

smoking and alcohol status, and numerical input fields for the

remaining variables. Upon clicking a “Predict” button, the user-

provided inputs are preprocessed (including standardization of

numerical features using the same StandardScaler used during

model training), fed into the trained CatBoost model, and the

predicted RA risk (probability and risk level) is displayed. The

calculator provides an intuitive and accessible way for users

to assess their potential RA risk based on their individual

characteristics and PFAS exposure levels. The source code and

deployment details are available on Hugging Face Spaces (https://

huggingface.co/spaces/Machine199710/RA_ML).

Statistical analysis

For continuous variables, results were expressed as mean

and standard deviation (SD), while categorical variables were

presented as counts and percentages. Group comparisons for

demographic features and PFAS concentrations between RA and

non-RA participants were conducted using t-tests for continuous

data and Chi-square tests for categorical data. Statistical analyses

were performed with Python (version 3.9.19) and R (version 4.4.0),

with significance defined at p < 0.05.

Results

Characteristics of study participants

Among the 11,705 participants, as shown in Table 1, the mean

age was 50.1 years, with 49.2% male and 50.8% female. The

racial distribution included 16.2% Mexican American, 8.8% other

Hispanic, 45.1% non-Hispanic White, 20.7% non-Hispanic Black,

and 9.2% other. Education levels were nearly evenly split, with

48.1% having a high school education or lower. Mean BMI was 29.2

kg/m², and 54.4% had a history of smoking, while 94.0% reported

alcohol consumption. RA participants were older (62.3 vs. 45.4

years, p < 0.001), more likely female (59.2% vs. 47.6%, p < 0.001),

and predominantly non-Hispanic White (54.4% vs. 41.6%, p <

0.001) compared to non-RA participants. RA participants also had

higher BMI (30.9 vs. 28.5 kg/m², p < 0.001) and elevated levels of

several PFAS, including MPAH, PFHxS, PFNA, PFOA, and PFOS

(all p < 0.005). However, no significant differences were observed

for PFDE or PFUA levels.

Trends and correlations of PFAS
concentrations (2003–2018)

As shown in Table 2, serum PFAS concentrations generally

declined across NHANES cycles from 2003 to 2018. Notable

reductions included PFOS, which dropped from 25.7 to 7.18 ng/ml,

and PFOA, which decreased from 4.42 to 1.77 ng/ml. Similar

trends were observed for MPAH, PFDE, PFHxS, PFNA, and PFUA,

likely reflecting regulatory restrictions and reduced industrial use

of PFAS. Pearson correlation analysis (Supplementary Figure S2)

revealed a strong correlation between PFDE and PFUA (r =

0.77) and moderate correlations of PFUA with PFOS (r = 0.47)

and PFOA with PFNA (r = 0.47). In contrast, MPAH exhibited

weak correlations with most other PFAS (r < 0.2), indicating

distinct exposure pathways or unique environmental behaviors for

certain compounds.

Performance evaluation and comparison of
ML models

Figure 2 presents the ROC curves for 12MLmodels, comparing

their performance on the training and testing datasets. Among

the models, CB achieved the highest test dataset AUC (0.82),

demonstrating its strong ability to generalize effectively. Table 3

summarizes the performance metrics for the 12ML models,

including AUC, accuracy, sensitivity (recall), specificity, FPR, FNR,

PPV, NPV, and F1 score. Among these models, CB achieved the

highest testing accuracy (74%) and the highest F1 score (0.62), with

a strong AUC (0.82). It also maintained a good balance between

sensitivity (0.76) and specificity (0.73), while minimizing FPR

(0.27) and FNR (0.24). Based on these findings, CB was selected

as the optimal model for further analysis due to its robust overall

performance acrossmultiplemetrics, including AUC, accuracy, and

F1 score.

Notably, the ET model also demonstrated highly competitive

results, with an AUC of 0.81, accuracy of 74%, and F1 score of

0.61—closely matching CB’s performance. This suggests that ET

may serve as a strong alternative in similar modeling tasks.

Interpretation of the optimal ML model

SHAP analysis was employed to visually illustrate how specific

features either increased or decreased the risk of RA in the

CB model (Figure 3). The waterfall plot (Figure 3A) shows how

each feature influenced the model’s prediction for this individual,

with age and BMI having the strongest negative impacts, while

MPAH contributed positively to the risk. The summary plot
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TABLE 1 Baseline characteristics of participants.

Characteristics Non-RA (N = 8,458) RA (N = 3,247) Total (N = 11,705) p-Value

Age, year 45.4 (17.3) 62.3 (13.9) 50.1 (18.1) <0.001

Gender, n (%)

Male 4,432 (52.4%) 1,325 (40.8%) 5,757 (49.2%) <0.001

Female 4,026 (47.6%) 1,922 (59.2%) 5,948 (50.8%)

Race, n (%)

Mexican American 1,532 (18.1%) 362 (11.1%) 1,894 (16.2%) <0.001

Other Hispanic 769 (9.1%) 262 (8.1%) 1,031 (8.8%)

Non-Hispanic White 3,517 (41.6%) 1,766 (54.4%) 5,283 (45.1%)

Non-Hispanic Black 1,764 (20.9%) 659 (20.3%) 2,423 (20.7%)

Other 876 (10.4%) 198 (6.1%) 1,074 (9.2%)

Education, n (%)

High school or lower 3,901 (46.1%) 1,724 (53.1%) 5,625 (48.1%) <0.001

More than high school 4,557 (53.9%) 1,523 (46.9%) 6,080 (51.9%)

Weight, kg 80.9 (21.4) 84.8 (22.7) 82.0 (21.8) <0.001

Height, cm 168 (10.0) 165 (10.2) 167 (10.1) <0.001

BMI, kg/m2 28.5 (6.63) 30.9 (7.42) 29.2 (6.94) <0.001

Smoke, n (%) 4,862 (57.5%) 1,509 (46.5%) 6,371 (54.4%) <0.001

Alcohol, n (%) 8,010 (94.7%) 2,990 (92.1%) 11,000 (94.0%) <0.001

MPAH, ng/ml 0.317 (0.478) 0.399 (1.09) 0.340 (0.706) <0.001

PFDE, ng/ml 0.366 (0.850) 0.354 (0.468) 0.363 (0.763) 0.87

PFHxS, ng/ml 2.19 (2.83) 2.29 (2.56) 2.22 (2.76) <0.001

PFNA, ng/ml 1.14 (1.09) 1.24 (1.30) 1.17 (1.16) 0.005

PFOA, ng/ml 3.24 (3.05) 3.46 (3.21) 3.30 (3.10) <0.001

PFOS, ng/ml 13.6 (21.5) 15.9 (20.4) 14.2 (21.3) <0.001

PFUA, ng/ml 0.262 (1.10) 0.242 (0.376) 0.256 (0.952) 0.701

TABLE 2 Serum concentration of PFAS of eight NHANES cycles.

PFAS Cycles of NHANES p-
Value

2003–
2005
(N =

1,339)

2005–
2006
(N =

1,368)

2007–
2008
(N =

1,632)

2009–
2010
(N =

1,656)

2011–
2012
(N =

1,383)

2013–
2014
(N =

1,469)

2015–
2016
(N =

1,503)

2017–
2018
(N =

1,355)

Total
(N =

11,705)

MPAH, ng/ml 0.557

(1.52)

0.597

(0.737)

0.466

(0.657)

0.318

(0.506)

0.234

(0.371)

0.193

(0.310)

0.172

(0.285)

0.195

(0.318)

0.340

(0.706)

<0.001

PFDE, ng/ml 0.337

(0.340)

0.533

(0.779)

0.396

(0.720)

0.397

(0.696)

0.333

(0.635)

0.346

(1.44)

0.275

(0.481)

0.282

(0.339)

0.363

(0.763)

<0.001

PFHxS, ng/ml 2.62 (2.75) 2.41 (2.74) 2.97 (3.88) 2.25 (2.72) 1.89 (2.62) 2.05 (2.24) 1.75 (1.88) 1.70 (2.39) 2.22 (2.76) <0.001

PFNA, ng/ml 1.23 (1.21) 1.42 (1.34) 1.51 (1.36) 1.56 (1.49) 1.20

(0.972)

0.902

(0.707)

0.824

(0.754)

0.601

(0.549)

1.17 (1.16) <0.001

PFOA, ng/ml 4.42 (3.66) 4.66 (3.60) 4.83 (3.78) 3.53 (2.30) 2.58 (1.93) 2.50 (3.38) 2.00 (1.72) 1.77 (1.38) 3.30 (3.10) <0.001

PFOS, ng/ml 25.7 (25.6) 22.5 (19.0) 18.7 (18.0) 13.2 (15.7) 10.3 (12.4) 9.00 (37.5) 7.93 (8.91) 7.18 (8.10) 14.2 (21.3) <0.001

PFUA, ng/ml 0.274

(0.387)

0.301

(0.552)

0.269

(0.470)

0.301

(0.840)

0.271

(0.449)

0.268

(2.33)

0.165

(0.267)

0.197

(0.251)

0.256

(0.952)

<0.001
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FIGURE 2

ROC curves of the 12ML models for predicting RA risk. The ROC curves illustrate the performance of 12ML models in predicting RA risk based on

PFAS exposure. Each panel (A–L) represents the training (blue line) and testing (red line) dataset performance for a specific model: (A) Random

Forest, (B) Support Vector Machine, (C) Decision Tree, (D) Gradient Boosting, (E) K-Nearest Neighbors, (F) Multi-Layer Perceptron, (G) AdaBoost, (H)

Voting Classifier, (I) LightGBM, (J) CatBoost, (K) Extra Trees, and (L) XGBoost. The area under the curve (AUC) values for both training and testing

datasets are shown, with CatBoost achieving the highest test dataset AUC of 0.82, demonstrating favorable performance.

TABLE 3 Discrimination characteristics among 12ML models.

Metrics RF SVM DT GB KNN MLP AB VC LGB CB ET XGB

AUC 0.81 0.80 0.79 0.81 0.78 0.81 0.81 0.81 0.81 0.82 0.81 0.81

Accuracy (%) 69 70 66 73 71 71 73 69 68 74 74 71

Sensitivity/recall 0.85 0.82 0.85 0.76 0.71 0.80 0.76 0.85 0.87 0.76 0.75 0.79

Specificity 0.63 0.66 0.58 0.72 0.71 0.68 0.71 0.63 0.61 0.73 0.74 0.68

FPR 0.37 0.34 0.42 0.28 0.29 0.32 0.29 0.37 0.39 0.27 0.26 0.32

FNR 0.15 0.18 0.15 0.24 0.29 0.20 0.24 0.15 0.13 0.24 0.25 0.21

PPV 0.47 0.48 0.44 0.51 0.49 0.49 0.50 0.47 0.46 0.52 0.52 0.48

NPV 0.92 0.91 0.91 0.89 0.87 0.90 0.89 0.92 0.92 0.89 0.88 0.90

F1 score 0.60 0.60 0.58 0.61 0.58 0.60 0.61 0.61 0.60 0.62 0.61 0.60

AB, AdaBoost; AUC, area under the receiver operator curve; RF, Random Forest; SVM, Support Vector Machine; DT, Decision Tree; GB, Gradient Boosting; KNN, K-Nearest Neighbors; MLP,

Multi-Layer Perceptron; VC, Voting Classifier; LGB, LightGBM; CB, CatBoost; ET, Extra Trees; XGB, XGBoost; FPR, false positive rate; FNR, false negative rate; PPV, positive predictive value;

NPV, negative predictive value.

(Figure 3B) ranks feature by their mean SHAP values across the

dataset, with age being the most influential feature overall, followed

by BMI, gender, race, and smoking status. Among the PFAS,

MPAH had the highest importance with a predominantly positive

effect, while PFOS displayed mixed contributions depending on

its value. These findings emphasize the combined impact of

demographic and PFAS features in both individual and overall

model predictions.

Through SHAP analysis, MPAH and PFOS were identified as

the most important PFAS. Subsequently, we conducted further

analysis to explore the relationships between these two PFAS and

RA risk. Figure 4 presents the Partial Dependence Plots (PDPs) for
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FIGURE 3

SHAP Analysis for Feature Contributions in the CatBoost Model. (A) SHAP waterfall plot illustrates individual feature contributions to RA risk

prediction, with age and BMI showing the strongest negative impacts, while MPAH contributes positively. (B) SHAP summary plot ranks features by

their mean SHAP values across the dataset, highlighting age and BMI as the most influential, with PFOS and MPAH showing moderate contributions

depending on their values.

FIGURE 4

Partial Dependence Plots (PDPs) for PFOS and MPAH. (A) PDP for PFOS displays a U-shaped relationship with RA risk, showing decreased risk at

moderate levels and increased risk at both low and high concentrations. (B) PDP for MPAH illustrates a transition from a slight negative association at

lower levels to a positive association at higher levels. The solid blue line represents the fitted relationship, while the dashed black line denotes

smoothed trends. The gray shaded area indicates the 95% confidence interval, and the rug plot below each graph illustrates the data distribution

along the feature range.

PFOS (Figure 4A) and MPAH (Figure 4B), illustrating their non-

linear effects on RA risk. PFOS exhibits a U-shaped relationship,

with moderate levels linked to a lower risk of RA, while both

low and high levels are associated with increased risk. MPAH

shows a slight negative association with RA risk at lower and

moderate concentrations, transitioning to a positive association at

higher concentrations.

Figure 5 further supports these findings through SHAP scatter

plots with LOWESS curves, showing the transitions from negative

to positive contributions. For PFOS, the threshold where the SHAP

value shifts occurs at approximately 0.04 (standardized value),

corresponding to 15.10 ng/ml in the original scale. For MPAH,

the threshold occurs at −0.17 (standardized value), equivalent

to 0.22 ng/ml in the original scale. These results underscore the
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FIGURE 5

SHAP value scatter plots with LOWESS curves for PFOS and MPAH. (A) PFOS: The SHAP values show a transition from negative to positive

contributions at a standardized value of 0.04, corresponding to 15.10ng/ml. (B) MPAH: The SHAP values transition from negative to positive

contributions at a standardized value of −0.17, corresponding to 0.22ng/ml. The solid red line represents the LOWESS curve, the dashed blue line

indicates the critical threshold, and the black dashed line marks SHAP = 0.

critical roles of PFOS and MPAH in RA risk, revealing complex

and non-linear relationships that provide valuable insights for

predictive modeling. These findings have been incorporated into an

interactive web-based calculator, available at https://huggingface.

co/spaces/Machine199710/RA_ML, to facilitate personalized risk

assessment (Figure 6).
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FIGURE 6

User interface of the interactive web-based calculator for predicting RA risk. The interface is divided into two sections: Basic Information and Physical

Indicators. The Basic Information section includes radio buttons for gender (1: male, 2: female) and education level (0: high school or below, 1:

above high school), a dropdown menu for race (1: Mexican American, 2: Other Hispanic, 3: Non-Hispanic White, 4: Non-Hispanic Black, 5: Other

Race), and checkboxes for smoking and alcohol consumption. The Physical Indicators section includes numerical input fields for age, BMI, PIR, and

serum concentrations (in ng/ml) of MPAH, PFDE, PFHxS, PFNA, PFOA, PFOS, and PFUA. A “Predict” button triggers the risk calculation, and the results

are displayed in the “Prediction Result” area below.

Discussion

Using data from the U.S. NHANES (2003–2018), our study

introduced an interpretable ML approach to investigate the

association between PFAS exposure and RA. This is the first study

to apply interpretable ML techniques to examine the link between

PFAS exposure and RA risk. Among the 12 models tested, CatBoost

demonstrated the best performance, achieving an accuracy of 74%,

an F1 score of 0.62, and an AUC of 0.82, making it the preferred

choice for identifying RA risk. To enhance the interpretability of the

model, techniques such as SHAP analysis and Partial Dependence

Analysis were employed to assess feature contributions. At

the individual level, the SHAP waterfall plot illustrated how

specific features influenced predictions, highlighting personalized

insights. PFOS and MPAH were identified as the most significant

PFAS linked to RA risk, showing non-linear relationships: PFOS

exhibited a U-shaped effect with a critical point at 15.10 ng/ml,

while MPAH demonstrated a shift from a slight negative to positive

association at 0.22 ng/ml. To make our findings readily accessible

and usable, we deployed a web-based RA risk calculator. This

interactive tool allows users, including clinicians and individuals,

to input their own values for the key predictors and obtain an

estimated RA risk. This facilitates the practical application of

our model and contributes to a more proactive approach to RA

risk assessment.

ML has revolutionized medicine by enabling the analysis

of large and complex datasets, uncovering patterns and

associations that traditional methods often overlook (15, 17).

Unlike conventional statistical techniques, ML models excel at

capturing non-linear relationships, handling high-dimensional

data, and improving predictive accuracy through iterative learning

(18). In the context of RA, ML has been employed to address key

challenges such as diagnosis, treatment prediction, and biomarker

discovery (18–20). Several studies have explored the application

of ML in RA. For instance, Liu et al. (4) utilized a combination of

RF and least absolute shrinkage and selection operator (LASSO)

algorithms to identify immune-related genes for diagnosing

AS in RA patients, achieving high diagnostic accuracy (AUC

0.995). Another study focused on treatment response prediction,

systematically reviewing ML models used to predict responses to

disease-modifying antirheumatic drugs (DMARDs) (21). While

promising, many models exhibited unclear or high risks of bias,

underscoring the need for improved methodologies and external

validation. Additionally, Liu et al. (6) constructed a diagnostic
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model for RA based on platelet-related genes, demonstrating

excellent performance (AUC up to 0.979) and emphasizing the

potential of ML in uncovering novel diagnostic markers. Our study

also applied 12MLmethods to investigate the relationship between

PFAS exposure and RA risk, achieving promising predictive

performance. Although the CatBoost model demonstrated

relatively strong overall performance, it exhibited a false negative

rate of 0.24. In clinical contexts, false negatives are of particular

concern, as they may lead to missed diagnoses. Therefore, while

the model shows promise, further refinement is needed to reduce

the risk of overlooking true RA cases. Beyond optimizing machine

learning models, improving their interpretability is equally

important, as it facilitates better integration with clinical practice

and public health applications.

While CatBoost was selected as the final model due to its

overall strong and balanced performance, the Extra Trees (ET)

model also demonstrated comparable results. With an AUC of 0.81,

accuracy of 74%, and an F1 score of 0.61, the ET model performed

similarly across key evaluationmetrics. These findings highlight the

robustness of tree-based ensemble methods in capturing complex,

non-linear relationships in high-dimensional environmental health

data. Given its competitive performance, ETmay serve as a valuable

alternative model, especially in scenarios where computational

simplicity, model diversity, or interpretability through ensemble

averaging is prioritized.

Interpretable ML is critical for bridging the gap between

predictive models and practical applications in clinical and public

health settings (22–24). By providing transparency, methods like

SHAP enable a deeper understanding of how individual features

influence model predictions, facilitating trust and actionable

insights (25). In RA research, interpretable ML techniques have

been used to identify key biomarkers and assess their contributions

to disease risk and treatment outcomes. For example, SHAP

analysis has been employed to evaluate the impact of clinical

features, such as inflammatory markers, on treatment response,

enhancing model interpretability (26, 27). In our study, we

applied 12ML algorithms to explore the relationship between

PFAS exposure and RA, selecting the CatBoost model for its

relatively strong performance. Using SHAP and PDA, we identified

PFOS and MPAH as the most influential PFAS and uncovered

their non-linear associations with RA risk. For PFOS, the risk

increased at levels above 15.10 ng/ml, while MPAH showed a

similar threshold effect at 0.22 ng/ml. These findings highlight

critical exposure thresholds that warrant further investigation.

However, validating these thresholds and understanding the

toxicological mechanisms underlying the PFAS-RA relationship

require additional experimental studies. The availability of our

web-based calculator allows for further exploration of these

relationships in a user-friendly format and can help bridge the gap

between research findings and practical application.

The non-linear relationships observed between PFOS, MPAH,

and RA in our study may reflect the dual immunomodulatory

effects of PFAS through intricate molecular and cellular pathways.

At lower concentrations, PFAS may interact with immune cells,

such as T regulatory (Treg) cells, promoting their activation

and function to suppress excessive immune responses (28). This

protective mechanism could help maintain immune homeostasis,

reducing the risk of inflammation-driven conditions like RA (29).

Additionally, PFAS at low levels may modulate signaling pathways,

such as the nuclear receptor PPAR-γ (peroxisome proliferator-

activated receptor gamma) (30–32), which has anti-inflammatory

properties and can inhibit the production of pro-inflammatory

cytokines like TNF-α and IL-6 (33).

Conversely, higher concentrations of PFOS and MPAH might

overwhelm these regulatory mechanisms, leading to immune

dysregulation. PFAS are known to disrupt the NF-κB pathway, a

critical regulator of immune responses, driving the overproduction

of pro-inflammatory cytokines and chemokines (29, 34). This

shift can lead to a chronic inflammatory state, which is a

hallmark of RA. Furthermore, PFAS at high levels may interfere

with the differentiation and function of immune cells such as

macrophages and dendritic cells, skewing them toward a pro-

inflammatory phenotype and amplifying the inflammatory cascade

(35, 36). Furthermore, PFAS may disrupt mitochondrial function

and increase reactive oxygen species (ROS) production, causing

oxidative stress. This stress can activate inflammasomes, such as

NLRP3, further contributing to the inflammatory milieu (37).

Additionally, PFAS may affect lipid metabolism and membrane

integrity, potentially altering the signaling processes in immune

cells and exacerbating inflammation (38, 39). This U-shaped

behavior reflects the balance between protective and harmful effects

of PFAS, driven by concentration-dependent impacts on immune

pathways and cellular function. Further research is needed to clarify

these mechanisms and validate thresholds, offering insights into

PFAS contributions to RA and potential interventions.

Additionally, the observed decline in serum PFAS

concentrations across NHANES cycles from 2003 to 2018—

particularly for compounds such as PFOS and PFOA—likely

reflects regulatory actions and changes in industrial practices.

While this downward trend is encouraging from a public health

standpoint, it introduces analytical complexity when evaluating

associations with chronic diseases like RA. Specifically, the

temporal mismatch between decreasing PFAS levels and increasing

RA prevalence may lead to residual confounding or attenuated

associations. These findings underscore the importance of

accounting for time as a potential effect modifier or confounder in

future research, particularly in studies leveraging cross-sectional

datasets like NHANES.

This study has several limitations. First, RA diagnosis was based

on self-reported NHANES data, which may introduce recall bias

and affect classification accuracy. Second, althoughNHANES uses a

multi-stage stratified sampling design, it may not fully represent the

entire U.S. population, potentially limiting generalizability. Third,

the absence of external datasets restricts the ability to confirm

model performance and reproducibility. While internal validation

was performed using 10-fold cross-validation, the lack of external

validation using independent datasets limits generalizability. In

addition, key RA risk factors such as genetic susceptibility

and co-exposure to other environmental pollutants were not

included, which may have introduced confounding bias. The

temporal mismatch between declining PFAS levels and increasing

RA prevalence further complicates interpretation. Finally, since

PFAS testing is not routinely conducted in clinical settings, the

practical application of the web-based risk calculator may be
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limited. Future research should address these limitations through

clinically confirmed RA diagnoses, incorporation of genetic and

environmental covariates, use of external validation cohorts, and

consideration of temporal trends and data accessibility.

Conclusion

In conclusion, this study utilized an interpretable machine

learning framework to investigate the association between PFAS

exposure and RA using data from the NHANES (2003–2018).

Among the 12 tested models, CatBoost demonstrated favorable

performance, achieving an AUC of 0.82 and an accuracy of

74%, providing robust predictions and highlighting PFOS and

MPAH as key PFAS associated with RA risk. This analysis

revealed non-linear relationships for these PFAS, with distinct

threshold effects, emphasizing the complexity of their role in

RA pathogenesis. These findings underscore the importance of

integrating environmental exposure data into predictive models to

enhance RA risk assessment and inform public health strategies.

Furthermore, the development and deployment of a web-based

calculator based on these findings provides a practical tool for

individuals and clinicians to assess RA risk, promoting proactive

health management.
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Glossary

AUC, area under the curve; BMI, body mass index; CB,

CatBoost; CDC, Centers for Disease Control and Prevention;

DMARDs, disease-modifying antirheumatic drugs; ET, Extra

Trees; FNR, false-negative rate; FPR, false-positive rate; GB,

Gradient Boosting; KNN, K-Nearest Neighbor; LASSO, least

absolute shrinkage and selection operator; LGB, LightGBM;

LOWESS, locally weighted scatter plot smoothing; ML, machine

learning; MLP, Multi-Layer Perceptron; MPAH, 2-(N-Methyl-

perfluorooctane sulfonamido) acetic acid; NF-κB, nuclear factor

kappa-light-chain-enhancer of activated B cells; NHANES,

national health and nutrition examination survey; NPV,

negative predictive value; n-PFOA, linear perfluorooctanoic

acid; n-PFOS, linear perfluorooctane sulfonic acid; NLRP3,

nucleotide-binding oligomerization domain, leucine-rich repeat

and pyrin domain containing 3; PDA, Partial Dependence

Analysis; PDP, Partial Dependence Plot; PFAS, Per- and

polyfluoroalkyl substances; PFDE, perfluorodecanoic acid;

PFHxS, perfluorohexane sulfonic acid; PFNA, perfluorononanoic

Acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane

sulfonic acid; PFUA, perfluoroundecanoic acid; PIR, Poverty-

to-Income Ratio; PPAR-γ, peroxisome proliferator-activated

receptor gamma; PPV, positive predictive value; RA, rheumatoid

arthritis; ROC, receiver operating characteristic; ROS, reactive

oxygen species; Sb-PFOA, branched perfluorooctanoic acid;

SHAP, SHapley Additive exPlanations; Sm-PFOS, monomethyl

branched perfluorooctane sulfonic acid; SPE-HPLC-TIS-MS/MS,

solid-phase extraction high-performance liquid chromatography

turboionspray ionization tandem mass spectrometry; SVM,

Support Vector Machine; Treg, T Regulatory Cells; VC, Voting

Classifier; VIF, variance inflation factor; XGB, XGBoost.
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