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Advanced manufacturing devices such as 3D printers bring users into closer 
contact with processes that generate ultrafine particles or release engineered 
nanomaterials. While approaches to assessing the risk of lung carcinogenesis 
and related health effects are developing, serious questions exist regarding the 
impact such devices may have on human health and safety if proper actions (i.e., 
engineering controls including ventilation or filtration) are not taken to mitigate 
exposures. The size distribution of particulates emitted during fused deposition 
modeling (FDM) 3D printing was measured following the ANSI/CAN/UL 2904 
method and associated lung cancer risk was estimated through a developing 
model. Particulate morphologies were assessed, identifying agglomerative and 
morphological characteristics which may further impact health effects. The estimation 
of excess lung cancer risk for 3D printer emissions based upon particle size 
was found to vary according to aerodynamic diameter distribution and emitted 
concentration, with values projected as high as 468 cases per 10,000 workers in 
the measured exposure scenario (1 m3 enclosure with air fully exchanged once 
per hour); predicted excess lung cancer risk was found to drop significantly as 
print extrusion temperature decreased. Actual health impacts will depend highly 
upon the exposure scenario, as room air volume, ventilation, and number of 
printers in operation will impact the concentration of particulates present. This 
model provides a means for assessing excess lung cancer risk across a broad 
aerodynamic diameter distribution, improving resolution over methods that use a 
single particle size bin such as PM2.5 or PM10. The effects of particle composition 
are only anecdotally considered in this model, however; this limitation should 
be accommodated as the model is implemented in practical settings.
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1 Introduction

Fused deposition modeling (FDM) fabrication, or 3D printing, provides innovators and 
hobbyists with a means for rapid prototyping and physical production of creative designs using 
inexpensive polymeric feedstocks. The relative low cost of these 3D printers and related 
polymeric materials represents a low barrier to entry, promoting rapid growth in sectors which 
traditionally exhibit limited environmental health and safety oversight such as startups and in 
personal spaces (1). Accordingly, risks associated with use may not be appropriately monitored 

OPEN ACCESS

EDITED BY

Meivelu Moovendhan,  
Saveetha Medical College & Hospital, India

REVIEWED BY

Hakan Tinnerberg,  
University of Gothenburg, Sweden
Francisco António Coelho Silva,  
Centro Tecnológico da Cerâmica e do Vidro 
(CTCV), Portugal

*CORRESPONDENCE

W. Cary Hill  
 chill@ita-intl.com

RECEIVED 24 February 2025
ACCEPTED 26 March 2025
PUBLISHED 09 April 2025

CITATION

Hill WC and Korchevskiy A (2025) The size 
distribution of nanoparticles emitted from 
advanced manufacturing devices impacts 
predicted carcinogenic potential.
Front. Public Health 13:1582690.
doi: 10.3389/fpubh.2025.1582690

COPYRIGHT

© 2025 Hill and Korchevskiy. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 09 April 2025
DOI 10.3389/fpubh.2025.1582690

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2025.1582690&domain=pdf&date_stamp=2025-04-09
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1582690/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1582690/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1582690/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1582690/full
https://www.frontiersin.org/articles/10.3389/fpubh.2025.1582690/full
mailto:chill@ita-intl.com
https://doi.org/10.3389/fpubh.2025.1582690
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2025.1582690


Hill and Korchevskiy 10.3389/fpubh.2025.1582690

Frontiers in Public Health 02 frontiersin.org

nor mitigated by engineering controls, elevating opportunities for user 
exposure to particulates (2–11) and volatile organic compounds 
(VOCs) (12–18) released during 3D printing. While a growing body 
of literature continues to quantify exposures measured during 3D 
printing in various controlled and deployed scenarios (2–20), 
assessment of the toxicological context is limited. Studies have 
reported limited or no acute effects on inflammatory markers after 
very short exposure durations (i.e., 1 h) (21), but other studies 
modeling lung deposition of 3D printer emissions have found 
significant deposition potential in the lower respiratory tract which 
may lead to chronic health effects (22, 23).

Various toxic effects have been correlated to fine and ultrafine 
particle exposures (24–30), with toxic effects of nanoparticles 
(ultrafines) noted to include respiratory effects and systemic reactions 
including immunosuppression and immunomodulation (31, 32). 
Particulate exposures are often classified in accordance with 
standardized size nomenclature, with fine particulates measuring less 
than 2.5 μm in diameter (PM2.5) receiving significant attention. 
Prolonged exposure to fine particulates is associated with increased 
risk of elevated fasting blood glucose and low-density lipoprotein 
cholesterol levels (33) and lipid changes associated with hypertension 
(34). Respirable dust (PM10) and fine particulate (PM2.5) exposures 
are associated with increased mortality and negative effects including 
lung cancer incidence, cardiovascular disease, and respiratory disease, 
with effects increasing for smokers and vulnerable groups (35–37).

We previously developed, described, and reported a new 
methodology for modeling lung cancer risk related to exposure to 
particulate emissions created during printing of acrylonitrile 
butadiene styrene (ABS), polylactic acid (PLA) and glycol-modified 
polyethylene terephthalate (PETG) (38). The proposed methodology 
was based on several approaches, including a development of a specific 
“carcinogenic potential” value for fine and ultrafine particles that was 
demonstrated to be a power-spline function of aerodynamic diameter. 
In this paper we will use the proposed model for a wider class of 
filaments and extrusion temperatures while increasing the resolution 
of size-distributed data to discern diameter-specific contributions of 
emitted particles to lung cancer risk estimations.

2 Materials and methods

2.1 Measurement of 3D printer emissions

Particulate emission data was collected during printing of 
common polymeric FDM filaments on the same 3D printer, a Lulzbot 
Taz 6 (Fargo Additive Manufacturing Equipment, Fargo, ND, USA), 
using either a M175 print head (for 1.75 mm filaments) or a SE 0.5 
print head (for 2.85 mm filaments). Prints were conducted within an 
electropolished stainless steel enclosure with internal dimensions of 
0.9 m × 0.9 m × 1.2 m per the specifications defined by ANSI/CAN/
UL 2904 (39).

The enclosure was positioned in a Class 1000 cleanroom, where 
all measurements were conducted to ensure that any significant 
particulate releases were attributable to the printers and filaments 
being studied rather than ambient airborne dust. Particles measuring 
0.01–0.3 μm in diameter were measured using a TSI NanoScan 3910 
scanning mobility particle sizer (SMPS), while particles measuring 
0.3–25 μm in diameter were quantified using a TSI Aerotrak 9306 

optical particle counter (OPC) (TSI, Shoreview, MN, USA). Only 
particulate emissions were assessed in this study; VOC emissions are 
also prominent during printing of many filaments and exhibit 
separate, additional contributions to lung cancer risk and other 
negative health outcomes (18, 40–42) which are not considered in the 
model presented in this study.

Particulates were sampled onto track-etched polycarbonate 
(PCTE) membranes (Sterlitech, Auburn, WA, USA) and mounted in 
conductive cassettes (Zefon International, Ocala, FL, USA) 
suspended 0.6 m above the print head using a sampling pump 
operating at a rate of 30 liters per minute (LPM). PCTE membranes 
were prepared for analysis by scanning electron microscopy (SEM, 
FEI Quanta 600) by mounting onto aluminum SEM stubs using 
carbon tape (Ted Pella, Redding, CA, USA) followed by sputter 
coating with a platinum-palladium coating (8 nm thick, Leica 
ACE600). Membrane sampling was conducted during an additional, 
separate print from those conducted during quantitative 
measurements to ensure that the additional intake of the sampling 
pump would not disrupt the 1/h exchange rate prescribed by ANSI/
CAN/UL 2904.

Measurements were made in accordance with the procedural 
guidance of ANSI/CAN/UL 2904. Summarily, a standard cube 
measuring 40 mm on each side was printed using each tested filament 
within the stainless steel enclosure with an air exchange rate of one 
exchange per hour. Printing of the cube required approximately 4 h to 
complete, with data collection continuing for 2 h after the conclusion 
of the print to assess particulate concentration decay. Prints for each 
filament were conducted in triplicate with standard error reported. 
Printing parameters are generally dependent upon the filament type, 
but parameters were standardized where possible across filaments to 
reduce variables that might be associated with outcomes.

For the purposes of converting measured particle concentrations 
to mass concentrations, particulates emitted during printing are 
assumed to be comprised of material with the same density as the 
originating filament (i.e., 1.05 g/cm3 when printing with ABS), though 
it is important to note that previous analyses of captured particulates 
emitted during 3D printing suggest that compositional alterations 
may occur during the printing process (2).

2.2 Modeling of lung cancer risk

The developed methodology for modeling lung cancer risk 
presented by exposures to 3D printer emissions is detailed in our 
previous work (38). Summarily, the scenario ascribes excess lung 
cancer risk associated with exposure per 1 μg/m3 to a worker or 
hobbyist for 30 years starting at the age of 30 for 3 h per day and 5 days 
per week, as might be considered plausible for a worker who uses or 
is co-located with 3D printers in operation for a substantial part of 
a shift.

The lung cancer risk is estimated as an attributable risk fraction in 
Equation 1.

 
1 100%RRARF

RR
−

= ∗
 

(1)

Where ARF is the attributable risk fraction (%) and RR is the 
relative risk of lung cancer.
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The average risk of dying from lung cancer among the 
United States population is used as a baseline, reported to be 450 per 
10,000 per lifetime (43). Excess risk of lung cancer was determined 
based on Equation 2:

 [ ] Risk Particulate Concentration Potency= ∗  (2)

Where the Particulate Concentration is reported as μg/m3 and is 
segregated by size; Potency corresponds to the excess lung cancer 
cases per 1 person associated with exposure to 1 μg/m3 of particles of 
this size range.

It should be noted that in this study we conditionally assumed that 
potency factor for each size group of the particulates can be characterized 
by a single value. In practice, the nature of particles, including chemical 
composition, shape, surface charge and other relevant parameters, 
should be  also taken into account. However, as we  demonstrated 
previously, size distribution of particles can be efficiently used to predict 
lung cancer potency factors for various agents (38). From here we were 
able to hypothesize that size-specific potency factor in our study could 
play a role of “central tendency” estimation of potency across various 
types of mineral or engineered particulates.

Pulmonary deposition fraction was determined using the 
Multiple-Path Particle Dosimetry (MPPD) model version 3.04 from 
the US EPA. The human MPPD template was used with the Yeh/
Schumm Symmetric model, with default values of 3,300 mL for the 
functional residual capacity (FRC) and upper respiratory tract (URT) 
volume of 50 mL. Exposure conditions were calculated for an upright 
body orientation, assuming 1 mg/m3 aerosol concentration, 12 breaths 
per minute, and a tidal volume of 625 mL. The inspiratory fraction 
was 0.5, pause fraction was 0, and the breathing scenario was nasal.

Lung cancer potency associated with size-fractionated deposition 
was tuned using a bimodal pulmonary deposition curve, as has been 
demonstrated previously to exist as a function of aerodynamic 
diameter with modes predicted at 0.05 μm and 3 μm (44, 45) or, 
similarly, at 0.03 μm and 3 or 4 μm (46). It should be  noted that 
clearance of particles is not considered, which may alter the 
relationship of toxicity between the modes since the dependence of 
clearance rate on particle diameter is complex (47).

The carcinogenic potential (CP) metric is modeled by the 
following power-spline equation in Equation 3.

 , min maxis
i i i iCP A B AD if AD AD AD= + ∗ < <  (3)

where CP is a unitless value of relative lung cancer potency of particles 
(assumed to be less than 1); AD is aerodynamic diameter (μm); si is 
the polynomial exponent for the interval i; i is the number of intervals 
for the spline function; ADmini and ADmaxi are the lower and upper 
ends of the ith interval; Ai and Bi are coefficients determined by a 
fitting procedure for each interval for the spline function to reach the 
bimodal CP peaks and three minima potency values.

Lung cancer risk per 1 μg/m3 is assumed to be proportional to CP 
as follows in Equation 4:

 Risk C CP D= ∗ +  (4)

for coefficients C and D.

The mass median aerodynamic diameter (MMAD) and 
geometric standard deviation (SD) was derived from literature for 
each type of particle to develop the spline function through Monte 
Carlo simulation (2,000 sample values). Excel Solver was used for 
parameter fitting. Statistica 14.0 was used for statistical 
calculation. Crystal Ball software was used for the Monte 
Carlo simulation.

3 Results

To efficiently illustrate the particulate emission profiles for various 
filaments, the measured number concentration and converted mass 
concentration are reported in Table  1 for the subject filaments. 
Assessments were conducted in triplicate for each filament, and 
standard error is visualized as the thickness of the plotted lines. Tested 
filaments were of the “natural” color without particle additives (such 
as metal particles or glass fiber).

We demonstrated that the concentration of emitted particulates 
from 3D printers is not consistent over the duration of the print as 
measured using the ANSI/CAN/UL 2904 method. Commonly, 
particulate emissions peak at the beginning of the print and decay to 
a steady concentration within the first hour which persists for the 
remainder of the print; the time required to print the 40 mm cube 
used in this study was approximately 240 min, with data recording 
continuing for 120 min following the print.

Emitted particulates were sampled onto PCTE membranes for 
morphological analysis by SEM. Representative images for several 
filaments are presented in Figures 1–4.

The predicted excess lung cancer risk is highly dependent upon 
the size distribution of the emitted particulates. The relationship 
between lung cancer risk per 1 μg/m3, assuming 30 years of exposure, 
3 h per shift, starting at the age of 30 years, and aerodynamic diameter 
is illustrated below in Figure 5, based on the model developed in our 
previous work (38).

The measured size distribution of particulates emitted during 3D 
printing varied with filament type and extrusion temperature. Mass 
fraction corresponding to aerodynamic diameter (representable by 
normalized size distribution) significantly affects the predicted 
carcinogenic potential; the excess lung cancer risk reported in Table 2 
was calculated based upon the measured size distributions that are 
illustrated in Table 3.

The developed model was used to predict the excess lung cancer 
risk presented by the measured emission profiles based upon 
concentration and size distribution. As most prints exhibited a 
substantial “peak” emission early in the print whose concentration was 
significantly elevated in comparison to the “stable” emission observed 
during the remainder of the print, modeled values are calculated based 
on the “stable” concentration. Integration of “peak” emissions into the 
calculations was considered; multiple parameters including print 
duration, print quantity during a shift, number of printers operating 
simultaneously, and room characteristics will impact the contribution 
of peak emissions to the total exposure profile. Accordingly, the data 
presented here are considered to be exemplary and advisory while 
only “stable” concentration values are used as inputs, with further 
enhancements to the model in future work to enable input of “peak” 
values in the context of print and environmental conditions.

https://doi.org/10.3389/fpubh.2025.1582690
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Hill and Korchevskiy 10.3389/fpubh.2025.1582690

Frontiers in Public Health 04 frontiersin.org

TABLE 1 Particulate concentrations emitted during 3D printing varied widely depending upon filament composition and extrusion temperature.

Filament and 
extrusion 
temperature

Number concentration emission profile Mass concentration emission profile

ABS (220°C)

ABS (230°C)

ABS (240°C)

PLA (200°C)

PLA (220°C)

(Continued)
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TABLE 1 (Continued)

Filament and 
extrusion 
temperature

Number concentration emission profile Mass concentration emission profile

PLA (230°C)

PLA (240°C)

PETG (240°C)

Nylon (260°C)

ASA (240°C)

Emissions from PLA at 200°C were below the range of operation stated by the SMPS manufacturer; data are considered advisory.
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FIGURE 1

Particulates emitted during printing of ABS at an extrusion temperature of 240°C were captured onto 0.1 μm PCTE membranes. Primary particles were 
generally submicron and appeared to agglomerate freely.

4 Discussion

4.1 Emission concentration characteristics

Upon reviewing the particulate emission data, several 
observations are worth noting specifically which bear importance 
upon the modeled excess lung cancer risk.

Universally, printing at lower extrusion temperature reduces the 
emitted particulate concentrations, as observed in Table  1. In the 
conditions of this study, for example, increasing extrusion temperature 
of ABS by 10°C resulted in an order of magnitude increase in peak 
emissions; mass concentration peaked around 8 μg/cm3 when printing 
at 220°C but rose to nearly 80 μg/cm3 at 230°C and over 1,200 μg/cm3 
at 240°C.

Similarly, printing PLA near its lowest recommended extrusion 
temperature (200°C) generally reduced released emission 
concentrations to less than 100 #/cm3, which is the stated reliable 
operational limit by the manufacturer of the SMPS used in this study 
(as indicated, perhaps, by the noise spikes evident in the profile in 
Table 1). Accordingly, this particular set of data (PLA at 200°C) is 
considered advisory but is included to demonstrate the trend of 
decreasing emissions with decreasing extrusion temperature.

Further, it is important to note that manufacturers typically do not 
recommend printing PLA above 220°C, and prints carried out at 
230°C and 240°C were conducted for comparison (the 40 mm cube 

was printable at these temperatures, but more detailed models may 
experience unfavorable deformations in these conditions). Increasing 
PLA extrusion temperature to 240°C increased its peak emissions to 
the same order of magnitude as ABS, PETG, Nylon, and ASA, but, 
importantly, its sustained, stable emissions after the initial peak 
remained relatively low in comparison to these other filaments.

4.2 Emitted particulate morphology

Emitted particulates are assumed by the instruments to 
be  spheroidal, which generally appeared to hold true based upon 
morphological observations provided by SEM imaging in Figures 1–3 
(nylon, Figure 4, being the notable exception, as discussed later). In 
agreement with the SMPS and OPC measurements, the vast majority 
of captured particulates appeared to exhibit primary particle diameters 
that were submicron. However, agglomerative behavior was observed 
in the case of ABS and PETG which may complicate health impacts; 
as noted in previous work (19), the primary emitted particle size does 
not appear to change discernibly over the course of the print, but 
agglomeration may occur which could affect lung deposition (and 
later release if agglomerates dissociate after deposition). An 
unfavorable outcome might be  that agglomerates increase lung 
deposition while increasing total ultrafine particle loading by 
preventing exhalation of nanoparticles which can later dissociate from 
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the aggregates. This comment is hypothetical and requires additional, 
detailed study regarding deposition and dissociation which is 
considered outside the scope of this study. It is also not definitively 
certain whether the observed agglomeration occurs in-air or on the 
membrane substrate over the course of the sampling duration, though 
as we  have suggested previously (19), in-air agglomeration may 
be indicated by the real-time characterization data, as the ultrafine 
emission peak decreases in tandem with an increase in the 
concentration larger “particles” reported by the equipment later in the 
print, yet SEM imaging does not observe matching primary particles 
of larger diameter (suggesting that these larger agglomerates may 
instead be counted by the OPC).

Natural PLA was not observed to exhibit the same agglomerative 
behavior, though it was observed in a previous study that additives in 
the filament (specifically, carbon nanotubes used for static dissipation) 
could induce agglomerative formations similar to those observed 
during printing of ABS and PETG (19).

Concerningly, nylon was observed to emit particulates of relatively 
high aspect ratio in comparison to the more spheroidal particulates 
captured during printing of ABS, PETG, and PLA (particulates 
emitted during printing of ASA were not analyzed by SEM). Nylon 
emissions pictured in Figure 4 contained particulates that were of 
consistent size and morphology, measuring approximately 
60 nm × 600 nm (aspect ratio of 10:1). Asbestiform fibers generally 
exhibit aspect ratios of 20:1 or higher (48); emitted nylon particulates 

are therefore not directly comparable but their elongated form may yet 
present additional concern to be analyzed further in future studies.

4.3 Emitted particulate size distribution 
(aerodynamic diameter)

The dependence of predicted carcinogenic potential on 
aerodynamic diameter as developed in our previous work (38) is 
illustrated in Figure  5. Nearly all tested filaments exhibited 
aerodynamic diameter distributions that peaked between 0.1 and 
0.2 μm, which happens to fall near the second minima of the predicted 
carcinogenic potential. Accordingly, the modeled carcinogenic 
potential is reduced for filaments exhibiting a sharper peak in this 
region. The aerodynamic diameter distribution expands in breadth as 
extrusion temperature increases during printing of ABS, and the 
distribution is especially broad in the case of PETG, causing each to 
exhibit a wider range of aerodynamic diameters which contribute 
more strongly to the carcinogenic potential predicted by our model.

4.4 Modeled excess lung cancer risk

Predicted carcinogenic potential is dependent upon emitted 
aerodynamic diameter in accordance with the bimodal relationship 

FIGURE 2

Particulates emitted during printing of PLA at an extrusion temperature of 240°C were captured onto 0.1 μm PCTE membranes. Primary particles did 
not appear to significantly agglomerate and were predominantly submicron (at this magnification, larger microparticles are more readily apparent 
above the background of more plentiful submicron particles).
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FIGURE 3

Particulates emitted during printing of PETG at an extrusion temperature of 240°C were captured onto 0.1 μm PCTE membranes. Similar to ABS, 
primary particles were generally submicron and appeared to agglomerate freely. Charging effects were more difficult to avoid when imaging large 
agglomerates, causing mild image distortion.

FIGURE 4

Particulates emitted during printing of nylon at an extrusion temperature of 260°C were captured onto 0.1 μm PCTE membranes. Significantly, most 
emitted particles were not spheroidal as had been typical of emissions from other filaments, but were instead of a higher aspect ratio (10:1; the short, 
fibrous particulates measure approximately 60 × 600 nm).
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pictured in Figure 5; as noted previously, most filaments exhibited 
aerodynamic diameter distribution maxima near the minima for 
predicted carcinogenic potential. The qualitative breadth of the 
aerodynamic distribution therefore became a strong predictor for 
carcinogenic potential.

The aerodynamic diameter distribution of ABS expanded in 
breadth with increasing extrusion temperature, resulting in an increase 
in modeled excess lung cancer risk (per 10,000 workers per 1 μg/m3) 
from 0.017 for ABS printed at 220°C to 0.324 and 0.742 for prints at 
extrusion temperatures of 230°C and 240°C, respectively. PETG 
(printed at its recommended extrusion temperature of 240°C) 

exhibited the broadest aerodynamic diameter distribution observed in 
this study; correspondingly, its modeled excess lung cancer risk per 
10,000 workers per 1 μg/m3 was the highest of all tested filaments (1.47).

The base carcinogenic potential and modeled excess lung cancer 
risk per 10,000 workers per 1 μg/m3 can be  used to assess an 
exposure-based excess lung cancer risk for a real-life print scenario. 
Toxicological inferences must consider a range of possible parameters, 
including the brief peak emission concentration versus stable 
emission concentration (i.e., typical long-term exposure) and the 
impacts of deployed conditions. Calculations are based upon 
particulate concentrations measured by the ANSI/CAN/UL 2904 

TABLE 2 Excess lung cancer risk is predicted by the model based on the measured particulate distribution.

Filament and extrusion 
temperature

Excess lung cancer risk 
(per 10,000 workers, 

per 1 μg/m3)

Average stable mass 
concentration during print 

(μg/m3)

Excess lung cancer risk 
based upon exposure to 

average stable mass 
concentration (per 10,000 

workers)

ABS (220°C) 0.017 3.67 1.44

ABS (230°C) 0.324 18.2 5.89

ABS (240°C) 0.742 192 143

PLA (200°C) 0.704 0.060 0.042

PLA (220°C) 0.854 0.058 0.049

PLA (230°C) 0.604 0.165 0.100

PLA (240°C) 0.245 9.46 2.32

PETG (240°C) 1.47 70.1 103

Nylon (260°C) 0.205 37.2 7.63

ASA (240°C) 0.516 906 468

FIGURE 5

Predicted risk of lungs cancer as a function of aerodynamic diameter for non-elongate particles.
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TABLE 3 Normalized size distribution (mass fraction versus aerodynamic 
diameter) of emitted particulates measured during 3D printing of various 
filaments and extrusion temperatures.

Filament and 
extrusion 
temperature

Normalized size distribution

ABS (220°C)

ABS (230°C)

ABS (240°C)

PLA (200°C)1

PLA (220°C)

(Continued)

TABLE 3 (Continued)

Filament and 
extrusion 
temperature

Normalized size distribution

PLA (230°C)

PLA (240°C)

PETG (240°C)

Nylon (260°C)

ASA (240°C)

1Emissions from PLA at 200°C were below the range of operation stated by the SMPS 
manufacturer; data are considered advisory.
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method (i.e., within the ~1 m3 enclosure with an air exchange rate of 
1/h), which ensures repeatability of measurements and cross-
comparison between filaments and print conditions. However, the 
particulate exposure experienced by the user will be  altered in 
deployed scenarios as depends upon room volume, air exchange/
ventilation/filtration, number of printers operating simultaneously 
and duration of print, and other factors. Consequently, the modeled 
excess lung cancer risk would be reduced in rooms with greater air 
volume or active engineering controls (as particulate concentrations 
decrease from those measured in this study) or may increase in 
spaces where many printers are operating at once or which exhibit 
limited ventilation (as particulate concentrations increase from those 
measured in this study).

Accordingly, the following estimations should be interpreted in 
their experimental context; while the emitted size distribution 
presented here is expected to be  applicable across all deployed 
scenarios, the measured concentration of emitted particulates will 
vary in accordance with factors such as room size, ventilation, 
filtration, number of printers operating simultaneously, and, 
presumably, print duration and frequency (since all filaments exhibit 
emission peaks early in the print process before stabilizing at a lower 
emitted concentration, which might result in elevated particulate 
emissions if shorter, more frequent prints are conducted).

A small room may be expected to contain an air volume of 15 m3 
or greater, albeit possibly at a lower exchange rate than the 1/h in this 
study, since the minimum recommended exchange rate in buildings 
is 0.35/h per ASHRAE (49). Similarly, it is not uncommon for many 
3D printers to be  operated simultaneously in close proximity, 
especially in engineering or industrial settings. The dilutive effect of 
room volume and air exchange (or filtration) should be considered 
alongside additive effects of the quantity of printers and other print 
parameter considerations when this model is used in practical settings.

The following inferences are therefore based upon the 
concentrations of particulates measured within the 1 m3 chamber 
used in this study with an air exchange rate of 1/h. Table 2 describes 
the excess lung cancer risk presented by the tested scenario using the 
measured concentrations, which accounts for the modeled 
carcinogenic potential based upon particulate aerodynamic diameter 
distribution as well as exposed particulate concentration.

Standard guidance from manufacturers is generally that ABS may 
be printed at extrusion temperatures of 220–240°C. This work makes 
a strong case for printing at the lowest extrusion temperature possible 
that results in acceptable print quality, as the excess lung cancer risk 
presented during printing of ABS increases from 1.44 per 10,000 
workers at 220°C to 143 per 10,000 workers at 240°C when 
aerodynamic diameter distribution and measured emitted 
concentration are considered together. Similar trends are observed 
during printing of PLA (excess lung cancer risk per 10,000 workers 
increases from 0.042 at 200°C to 2.32 at 240°C), but the overall impact 
is limited since the stable emission concentration of PLA remains 
relatively low in comparison to other filaments.

Nylon exhibited a relatively low risk per 10,000 workers per 1 μg/
m3 (0.205) and moderate stable emitted concentration (37.2 μg/m3), 
resulting in a modeled excess lung cancer risk of 7.63 per 10,000 
workers in the measured scenario. However, this estimation assumes 
spheroidal particles; as nylon emissions were shown previously 
(Figure 4) to be of higher aspect ratio (10:1), health effects may differ 
from those estimated by this model.

PETG exhibited an excess lung cancer risk of 103 per 10,000 
workers; its excess lung cancer risk per 1 μg/m3 was the highest among 
tested filaments but its stable emitted particulate concentration was 
moderate in comparison to the highest emitters. The excess lung 
cancer risk per 10,000 workers per 1 μg/m3 calculated for ASA (0.516) 
was moderate in comparison to other filaments at the same extrusion 
temperature of 240°C (0.742 for ABS and 1.47 for PETG), but ASA 
recorded the highest stable emission concentration of all tested 
filaments—906 μg/m3 compared with 192 μg/m3 for ABS or 70.1 μg/
m3 for PETG—causing ASA to exhibit the highest estimated excess 
lung cancer risk of 468 per 10,000 workers of any of the tested filaments.

For context, the excess lung cancer risk presented by carbon 
nanotubes per 10,000 workers per 1 μg/m3 is estimated to be 5.45 (50). 
Since NIOSH has established a recommended exposure limit (REL) 
of 1 μg/m3 for CNTs (51), this effectively represents an accepted excess 
lung cancer risk of 5.45 per 10,000 workers. The NIOSH REL for 
crystalline silica (as respirable dust) is currently set at 50 μg/m3, and 
the excess lung cancer risk per 10,000 workers per 1 μg/m3 has been 
defined as 1.7 (52), suggesting an exposure-based excess lung cancer 
risk of 85 per 10,000 workers per 1 μg/m3.

Accordingly, the excess lung cancer risk per 10,000 workers 
presented by ABS, PETG, and ASA, when printed at an extrusion 
temperature of 240°C, are shown to exceed that of CNTs or crystalline 
silica at their respective RELs—5.45 and 85 per 10,000 workers, 
respectively, for CNTs and crystalline silica based on this model versus 
143, 103, and 468 per 10,000 workers, respectively, for ABS, PETG, 
and ASA at the emission concentrations measured in this work.

To reiterate, the concentrations measured within this work were 
conducted in a 1 m3 chamber in accordance with ANSI/CAN/UL 2904 
and are not predictive of the exposure a user will experience in 
deployed settings but do represent plausible exposure concentrations 
where room ventilation is limited and multiple printers are operating 
simultaneously. Even so, significant excess lung cancer risk is predicted 
to be associated with 3D printer emissions using experimental data; 
great care should therefore be exercised to ensure adequate room 
ventilation and filtration, especially when printing filaments at 
elevated extrusion temperatures.

Our study has uncertainties and limitations. Our analysis of lung 
cancer risk was based on a conditional assumption that dimensions of 
non-elongate fine and ultrafine particles can be predictive of potency 
factors. In reality, there are many other parameters that should be used 
for modeling of lung cancer risk. In our future studies we plan to 
develop a databank of particle characteristics to include the modeling 
of toxicological potential. Further analysis of morphology for 
particulates emitted by 3D printers is needed to elucidate the input of 
particle shape (and not just size) in the cancer risk variability. Our 
study considers carcinogenic risk as depends heavily on particle size 
and concentration and only referentially includes compositional 
impacts. This limitation should be plainly noted; as compositional 
details become available (as corresponds to 3D printer emissions or 
any other field in which this model may be applied), integration of 
compositional effects are strongly encouraged.

Additionally, the model leverages the “stable” particulate emission 
concentration as an input, ignoring the shorter (but often large) “peak” 
emission that occurs near the beginning of most prints. As discussed, 
many factors such as print duration, number of prints conducted 
during a working shift, number of printers operating simultaneously, 
or room volume/ventilation can impact the integration of peak 

https://doi.org/10.3389/fpubh.2025.1582690
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Hill and Korchevskiy 10.3389/fpubh.2025.1582690

Frontiers in Public Health 12 frontiersin.org

emission characteristics. These parameters are calculable; as our 
model is improved, such inputs will be  addressed (and validated 
experimentally) in future work.

Our research demonstrates that emission of 3D printers should 
be  a matter of risk assessment and management. Reduction of 
particulate emission should be one of the priorities for manufacturers. 
Increasingly, newer 3D printer models are designed by manufacturers 
to be fully enclosed and many include integrated particulate and vapor 
filters; we strongly encourage use of enclosed and filtered printers 
where possible to reduce exposure risk.
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