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Background: Environmental exposure to heavy metals, such as arsenic, 
cadmium, and lead, is a known risk factor for cardiovascular diseases.

Objective: We aim to examine the associations between heavy metal exposure 
and the mortality of patients with cardiovascular diseases.

Methods: We analyzed data from the NHANES 2003–2018, including urine 
and blood metal concentrations from 4,924 participants. Five machine learning 
models—CoxPHSurvival, FastKernelSurvivalSVM, GradientBoostingSurvival, 
RandomSurvivalForest, and ExtraSurvivalTrees—were used to predict 
cardiovascular mortality. Model performance was assessed with the 
concordance index (C-index), integrated Brier score, time-dependent AUC, and 
calibration curves. SHAP analysis was conducted using a reduced background 
dataset created via K-means clustering.

Results: GradientBoostingSurvival (GBS) showed the best performance for 
hypertension (C-index: 0.780, mean AUC: 0.798). RandomSurvivalForest (RSF) 
was the top model for coronary heart disease (C-index: 0.592, mean AUC: 
0.626) and myocardial infarction (C-index: 0.705, mean AUC: 0.743), while 
CoxPHSurvival excelled for heart failure (C-index: 0.642, mean AUC: 0.672) and 
stroke (C-index: 0.658, mean AUC: 0.691). ExtraSurvivalTrees performed best 
in angina (C-index: 0.652, mean AUC: 0.669). Calibration curves confirmed the 
models’ accuracy. SHAP analysis identified age as the most influential factor, 
with heavy metals like lead, cadmium, and thallium significantly contributing 
to risk. A user-friendly web calculator was developed for individualized survival 
predictions.

Conclusion: Machine learning models, including GradientBoostingSurvival, 
RandomSurvivalForest, CoxPHSurvival, and ExtraSurvivalTrees, demonstrated 
strong performance in predicting mortality risk for various cardiovascular 
diseases. Key metals were identified as significant risk factors in cardiovascular 
risk assessment.
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Introduction

Cardiovascular diseases remain the leading cause of mortality 
worldwide, accounting for approximately 19 million deaths in 2021, 
with ischemic heart disease and stroke collectively responsible for 23% 
of global deaths (13 and 10% respectively), representing most of the 
cardiovascular-related mortality (1). Therefore, the precise prediction 
and effective management of cardiovascular risk in this population are 
critically important (2, 3). The rapid advancements in machine 
learning (ML) have sparked optimism for a more personalized, 
efficient, and effective strategy in managing cardiovascular disease and 
its associated cardiovascular complications (4).

Heavy metal pollution, including toxic metals like arsenic, 
cadmium, lead, and mercury, as well as essential trace metals such as 
chromium, copper, and zinc, poses significant health risks due to 
increased industrialization and anthropogenic activities (5, 6). 
Environmental exposure to heavy metals is a modifiable risk factor for 
CVDs (7–10). Evidence over the past two decades has shown that heavy 
metals contribute to CVD risk through their lasting effects on the 
cardiovascular system, including hypertension (11), atherosclerosis (12) 
and stroke (13). Furthermore, imbalances in essential trace metals, such 
as high copper or low magnesium and zinc levels, are associated with 
increased cardiovascular mortality (14). Several studies have developed 
machine learning models to predict CVDs using various factors (15–18). 
For example, Ambale-Venkatesh et al. employed random survival forests 
to predict six cardiovascular outcomes in an asymptomatic population, 
showing enhanced accuracy compared to traditional risk scores (19). 
However, no study has yet developed machine learning models to 
predict the survival of CVDs patients, including those with hypertension, 
coronary heart disease, heart failure, myocardial infarction, and stroke.

In this study, we used data from the National Health and Nutrition 
Examination Survey (NHANES, 2003–2018) to examine the 
associations between heavy metal exposure and the mortality of 
patients with CVDs. We developed five machine learning survival 
models to predict the mortality of CVD patients based on heavy metal 
exposure and compared their performance. Additionally, we employed 
an advanced ML technique, SHapley Additive exPlanations (SHAP), 
to evaluate the contribution of each heavy metal to the survival models, 
thereby enhancing the potential for early intervention. Furthermore, 
we developed a user-friendly web calculator that allows clinicians and 
patients to compute individualized survival predictions for different 
cardiovascular diseases, offering a practical tool for risk assessment and 
informed decision-making. Our findings have significant public health 
implications, as they highlight the importance of reducing exposure to 
heavy metals and provide a valuable tool for identifying high-risk 
individuals who may benefit from targeted interventions and increased 
monitoring. By addressing the environmental factors contributing to 
CVD mortality, we can work towards reducing the global burden of 
these diseases and improving overall population health.

Methods

Population

This study utilized data from the National Health and Nutrition 
Examination Survey (NHANES), an ongoing, nationally representative 
survey designed by the U.S. Centers for Disease Control and 
Prevention (CDC) to monitor the health and nutritional status of the 
U.S. population. The survey procedures were approved by the 
Institutional Review Board of the National Center for Health Statistics 
(NCHS). Additional information about NHANES is accessible on its 
official website (National Center for Health Statistics, https://www.cdc.
gov/nchs/nhanes/index.htm). For this research, we  extracted data 
related to cardiovascular diseases, including hypertension, heart 
failure, coronary heart disease, myocardial infarction, and stroke, 
from the NHANES cycles conducted between 2003 and 2018. The 
total number of participants across these cycles was 80,312. The 
dataset contained detailed measurements of urine and blood metal 
concentrations, along with various covariates. A total of 66,264 
individuals were missing data on metal concentrations in blood or 
urine, which are crucial variables for this study. Additionally, missing 
data was observed for essential diagnosis variables, with 28 individuals 
missing hypertension data, 38 missing heart failure data, 57 missing 
coronary heart disease data, 20 missing myocardial infarction data, 38 
missing angina data, and 16 missing stroke data. Furthermore, 160 
individuals had missing BMI data, which is an important covariate in 
the analysis of cardiovascular disease risk factors. The KNN 
imputation method was applied to address the missing BMI data (less 
than 20% missing data), ensuring a complete dataset for analysis. The 
final cohort for analysis included participants with complete datasets, 
yielding a total sample size of 4,924. A comprehensive flowchart 
illustrating the participant selection process is provided in 
Supplementary Figure S1. Our primary outcome of interest was 
all-cause mortality.

Data collection

Demographic information for participants was obtained from the 
NHANES questionnaire data. The collected characteristics included 
gender (male and female), age (in years), race/ethnicity (Mexican 
American, Other Hispanic, Non-Hispanic White, Non-Hispanic 
Black, and other races), educational level (high school or lower, more 
than high school), weight (kg), height (cm), and body mass index 
(BMI, kg/m2). Cardiovascular disease status was determined through 
self-reported physician diagnoses using a standardized medical 
conditions questionnaire during individual interviews. Participants 
were asked, “Have you  ever been told you  have congestive heart 
failure?,” “Have you ever been told you have coronary heart disease?,” 
“Have you ever been told you had a heart attack?,” “Have you ever 
been told you had a angina?,” “Have you ever been told you had a 
stroke?,” and “Have you ever been told you have high blood pressure?” 
with responses recorded as either “yes” or “no”. Blood and urine 
samples were collected by trained personnel, stored at −20°C, and 
subsequently sent to the Laboratory Science Division of the National 
Center for Environmental Health at the CDC for analysis. Detailed 
procedures for blood and urine sample collection and processing for 
cadmium concentration measurements are outlined in the NHANES 
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Laboratory Technologists Procedures Manual.1 For our analysis, 
we included 21 heavy metals measured in both urine and blood, with 
all relevant details presented in Table 1. The mortality status of the 
follow-up population was determined using the NHANES public-use 
linked mortality file, updated as of December 31, 2019, and matched 
to the National Death Index (NDI) through a probability-based 
algorithm by the NCHS. Cause-specific mortality was classified based 
on the International Statistical Classification of Diseases, 10th 
Revision (ICD-10), including heart diseases (codes 054–064), 
malignant neoplasms (codes 019–043), and other causes (code 010).

Data preprocessing and variable selection

In this study, both categorical variables (gender, race/ethnicity, 
education level) and numerical variables (age, BMI, urine total arsenic, 
arsenic acid, arsenous acid, arsenobetaine, arsenocholine, 
dimethylarsinic acid, monomethylarsonic acid, blood and urine 
concentrations of lead, cadmium, mercury [including blood inorganic 
mercury], and urine concentrations of barium, cobalt, cesium, 
molybdenum, antimony, thallium, tungsten) were included in the 
machine learning models. To standardize the numerical data, 
MinMaxScaler was performed, rescaling all numerical values to a 
range of 0 to 10 to ensure uniformity in variable scales for model 
fitting. The scaled data were then converted to a float format to 
facilitate compatibility with the survival models. These standardized 
numerical variables were combined with the categorical variables into 
a single data frame for subsequent analysis. The target variables for 
survival analysis, namely “Survival months” (as the time variable) and 
“Survival status” (as the event indicator), were extracted from this data 
frame. “Survival status” was encoded as a Boolean variable, with True 
indicating an event occurrence and False indicating censoring. In 
order to ensure the reliability and accuracy of our analysis, 
we performed a thorough data preprocessing and variable selection 
process. We conducted a multicollinearity check on all variables to 
identify and remove those with high collinearity, which could 
potentially distort the results of our machine learning models. 
Specifically, we calculated the Variance Inflation Factor (VIF) for each 
variable and excluded all variables with a VIF exceeding the threshold 
of 10, as shown in Supplementary Table S1.

Training machine learning models

Machine learning workflow for survival analysis was shown in 
Figure 1. The dataset was split into training and testing sets in a 7:3 
ratio to facilitate model training and evaluation. The survival target 
was structured as an array containing both event status and survival 
duration, formatted to meet the input requirements of the survival 
analysis models. Using the training set, five machine learning 
algorithms (CoxPHSurvival, FastKernelSurvivalSVM, 
GradientBoostingSurvival, RandomSurvivalForest, and 
ExtraSurvivalTrees) were constructed to predict mortality among 
patients with cardiovascular conditions, including hypertension, 

1 https://www.cdc.gov/nchs/nhanes/Index.htm

coronary heart disease, heart failure, myocardial infarction, angina, 
and stroke (Figure 1). These models were implemented using the 
“NumPy”, “Pandas”, and “scikit-survival” Python packages on a 
Windows operating system. Detailed information on each algorithm 
is available in the Supplementary material and on the official scikit-
survival website (scikit-survival 0.23.0, https://scikit-survival.
readthedocs.io/en/stable/). The hyperparameter grid search for each 
model was performed to find the best model. Various machine 
learning models are trained and evaluated for predictive performance.

Performance metrics

The performance of the survival models was evaluated using the 
concordance index (C-index), integrated Brier score, time-dependent 
area under the curve (td-AUC), and calibration curves. The C-index 
(Harrell’s C-index) measured the models’ discriminatory power, while 
the Integrated Brier score (IBS) assessed prediction accuracy over 
time. We used the “integrated_brier_score” function to evaluate the 
prediction performance of the model (20). Specifically, we set the time 
interval from the 12th month to the 180th month (one time point 
every 12 months) and calculated the IBS in this interval to measure 

TABLE 1 Demographic characteristics of patients with cardiovascular 
disease.

Characteristics Overall (N = 4,924)

Gender, n (%)

  Male 2457 (49.9%)

  Female 2467 (50.1%)

Age, years 60.4 (14.9)

Race, n (%)

  Mexican American 610 (12.4%)

  Other Hispanic 380 (7.7%)

  Non-Hispanic White 2267 (46.0%)

  Non-Hispanic Black 1251 (25.4%)

  Other 416 (8.4%)

Education, n (%)

  High school or lower 2631 (53.4%)

  More than high school 2293 (46.6%)

Weight, kg 85.9 (22.6)

Height, cm 167 (10.3)

BMI, kg/m2 30.8 (7.12)

Hypertension, n (%) 4592 (93.3%)

Heart failure, n (%) 373 (7.6%)

Coronary heart disease, n (%) 485 (9.8%)

Angina, n (%) 315 (6.4%)

Myocardial infarction, n (%) 534 (10.8%)

Stroke, n (%) 491 (10.0%)

All-cause mortality, n (%) 1022 (20.8%)

Cardiovascular mortality, n (%) 356 (7.2%)

Follow-up time, months 91.1 (52.6)
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the prediction accuracy of the model at different follow-up time 
points. IBS provides an assessment of the overall calibration ability of 
the model by calculating the weighted integral of the Brier score (i.e., 
the mean square error between the predicted probability and the 
actual survival status) over the entire time window. Lower IBS values 
indicate that the deviation between the model’s survival probability 
prediction and the observed value is smaller and the prediction 
performance is better. Therefore, in this study, we used the integrated_
brier_score function provided by sksurv.metrics to perform integral 
calculations for the 12–180 month interval and used Bootstrap 
sampling (repeated 1,000 times) to estimate the 95% confidence 
interval to ensure the robustness of the estimation results. Time-
dependent AUCs provided insights into the models’ ability to 
distinguish between events at various time points. We  used the 
“cumulative_dynamic_auc” function provided by the sksurv.metrics 
module, which uses the cumulative/dynamic method based on inverse 
probability weighting (IPCW) to calculate the AUC over time. 
Calibration curves were used to compare predicted and observed 
survival probabilities, with 10-fold cross-validation ensuring robust 
estimates. These performance metrics, particularly C-index and 
td-AUC, were the primary criteria for model selection, while IBS and 
calibration curves were considered as supplementary factors to assess 
overall model performance.

SHAP analysis for model interpretation

To identify and interpret the most influential features in predicting 
cardiovascular outcomes, we  used SHapley Additive exPlanations 
(SHAP) with the Extra Trees model. Given the computational intensity 
of SHAP, we  first reduced the background dataset using K-means 
clustering on the training data to generate 50 cluster centers as the 

background data for SHAP analysis. A KernelExplainer was then 
created using this reduced background and the survival models. SHAP 
values for the test dataset were calculated to quantify each feature’s 
contribution to the model’s predictions. Feature importance was 
assessed by calculating the mean absolute SHAP values across all test 
samples, and the top 20 most important features were identified. To 
visualize the results, a SHAP decision plot was generated to show the 
cumulative impact of the top  20 features on model predictions, 
highlighting their positive or negative contributions. Additionally, a 
SHAP summary plot was created to depict the distribution and 
influence of these top features across the test set, offering insights into 
their significance in the model’s predictions.

Web-based calculator development

To translate our findings into a practical tool, we developed a 
web-based calculator using the Gradio library in Python. Gradio 
allows for the rapid creation of interactive web interfaces for machine 
learning models. The calculator’s user interface includes input fields 
for the key predictors identified in our analysis for different 
CVD. Upon clicking a “Make Predict” button, the user-provided 
inputs are preprocessed (including standardization of numerical 
features using the same StandardScaler used during model training), 
fed into the trained optimal model, and the predicted survival data. 
The source code and deployment details are available on Hugging Face 
Spaces (Hypertension: https://huggingface.co/spaces/MLML202512/
Hypertension; CHD: https://huggingface.co/spaces/MLML202512/
CHD; HF: https://huggingface.co/spaces/MLML202512/HF; MI: 
https://huggingface.co/spaces/MLML202512/MI; Stroke: https://
huggingface.co/spaces/MLML202512/Stroke); Angina: https://
huggingface.co/spaces/MLML202512/angina.

FIGURE 1

Machine learning workflow for survival analysis.
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Statistical analysis

Categorical variables were summarized as frequencies and 
percentages, while continuous variables were reported as medians and 
standard deviations. Differences across the NHANES cycles were 
evaluated using either the Chi-squared test or the Kruskal-Wallis H 
test. A two-sided p-value of less than 0.05 was considered statistically 
significant. All statistical analyses were conducted using Python 
(version 3.12.0) and R software (version 4.4.0).

Results

Characteristics of the study population

Table 1 presented the demographic and clinical characteristics 
of the 4,924 participants with cardiovascular disease. The cohort had 
a nearly equal gender distribution (49.9% male and 50.1% female) 
with a mean age of 60.4 ± 14.9 years. Most participants were 
Non-Hispanic White (46.0%), followed by Non-Hispanic Black 
(25.4%), Mexican American (12.4%), Other Hispanic (7.7%), and 
Other (8.4%). In terms of education, 53.4% had a high school 
education or lower. The average weight was 85.9 ± 22.6 kg, and the 
mean BMI was 30.8 ± 7.12 kg/m2. Hypertension was prevalent in 
93.3% of the participants, while heart failure, coronary heart disease, 
myocardial infarction, angina, and stroke were present in 7.6, 9.8, 
10.8, 6.4, and 10.0% of the cohort, respectively. All-cause mortality 
occurred in 20.6% of the participants, with cardiovascular mortality 
accounting for 7.2%. The mean follow-up period was 
91.1 ± 52.6 months.

Concentrations of heavy metals

As shown in Table 2, we presented the concentrations of various 
heavy metals in urine and blood across different NHANES survey 
cycles from 2003 to 2018. Significant changes over time were observed 
in several heavy metals. In urine, the concentrations of total arsenic, 
arsenous acid, arsenic acid, dimethylarsinic acid, monomethylarsonic 
acid, barium, cadmium, lead, antimony, and tungsten showed 
significant trends (all p-values < 0.05). Similarly, significant trends 
were noted in blood concentrations of cadmium and lead across the 
survey cycles (all p-values < 0.05). These changes highlight potential 
shifts in exposure to heavy metals over the 16-year period.

Evaluation and comparison of models

The performance of each model was evaluated using the 
concordance index (C-index), time-dependent AUC, and calibration 
curves. The C-index measured the discriminative ability of each 
model, where higher values indicate better differentiation between 
patients with varying survival times (Table 3). Time-dependent AUC 
was utilized to graphically demonstrate the models’ predictive 
accuracy over time, with higher mean AUC values indicating better 
performance (Figure 2). Calibration curves assessed the alignment 
between predicted and observed survival probabilities, ensuring well-
calibrated predictions (Figure 3; Supplementary Figures S2–S7).

For hypertension, the best model was GradientBoostingSurvival 
(GBS), with a C-index of 0.780 (95% CI: 0.748–0.809) and the highest 
mean AUC of 0.798 (Figure 2A). The calibration curve for GBS also 
indicated good agreement between predicted and actual survival 
probabilities (Figure 3A; Supplementary Figure S2). For coronary heart 
disease (CHD), RandomSurvivalForest (RSF) performed best, achieving 
a C-index of 0.592 (95% CI: 0.494–0.688) and the highest mean AUC 
of 0.626 (Figure 2B). The RSF calibration curve demonstrated close 
alignment with the ideal reference line, indicating accurate risk 
prediction (Figure 3B; Supplementary Figure S3). For heart failure, 
CoxPHSurvival was identified as the top-performing model, with a 
C-index of 0.642 (95% CI: 0.556–0.720) and a mean AUC of 0.672 
(Figure  2C). Its calibration curve further confirmed its superior 
performance, showing a strong fit with observed probabilities 
(Figure  3C; Supplementary Figure S4). For myocardial infarction, 
RandomSurvivalForest (RSF) once again emerged as the optimal model, 
achieving the highest C-index of 0.705 (95% CI: 0.614–0.788) and a 
mean AUC of 0.743 (Figure 2D). The model’s calibration curve for 
myocardial infarction indicated generally reliable prediction accuracy, 
with the average calibration line closely following the perfectly calibrated 
reference line for most predicted survival probabilities between 0.5 and 
1.0 (Figure 3D; Supplementary Figure S5). However, there appears to 
be some underestimation in the lower probability range (around 0.4), 
where the observed survival probability was higher than predicted. For 
stroke, CoxPHSurvival stood out with a C-index of 0.658 (95% CI: 
0.576–0.739) and a mean AUC of 0.691 (Figure 2E). Its calibration curve 
exhibited excellent agreement between the predicted and observed 
survival probabilities, underscoring its predictive reliability (Figure 3E; 
Supplementary Figure S6). Finally, for angina, ExtraSurvivalTrees 
performed best with a C-index of 0.652 (95% CI: 0.529–0.772) and a 
mean AUC of 0.669 (Figure 2F). The model’s calibration curve verified 
its excellent fit with observed probabilities, confirming its superior 
performance (Figure 3F; Supplementary Figure S7).

Visualization of feature importance

Figure 4 illustrates the SHAP values for key features influencing 
the risk of various cardiovascular diseases. Age emerges as the most 
significant factor across most of conditions, with older age (shown in 
red) being associated with a higher risk (Figures  4A–E; 
Supplementary Figures S9A–E). In the case of hypertension (Figure 4A; 
Supplementary Figure S9A), positive contributions to the model are 
observed from blood lead, urine cadmium, blood cadmium, urine 
antimony, and urine barium. Conversely, negative contributions are 
noted for urine thallium, blood total mercury, male sex, lower BMI, 
and urine mercury. For coronary heart disease (Figure  4B; 
Supplementary Figure S9B), factors such as higher education level, 
blood lead, blood inorganic mercury, urine cobalt, urine arsenocholine, 
and urine arsenic acid contribute positively to the model. In contrast, 
lower BMI, urine cesium, urine thallium, blood cadmium, urine 
molybdenum, and urine arsenous acid exert negative effects. Regarding 
heart failure (Figure 4C; Supplementary Figure S9C), variables like 
urine cobalt, urine total arsenic, and urine lead demonstrate minimal 
influence, as indicated by SHAP values concentrated around zero, 
reflecting their limited predictive power. For myocardial infarction 
(Figure 4D; Supplementary Figure S9D), positive contributions are 
made by blood lead, blood cadmium, and urine arsenic acid, while 
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TABLE 2 Demographic characteristics of heavy metals across each cycle of the NHANES database (2003–2018).

Heavy metal Cycles of NHANES p-value

2003–2004 2005–2006 2007–2008 2009–2010 2011–2013 2013–2014 2015–2016 2017–2018 Total

(N = 568) (N = 465) (N = 625) (N = 703) (N = 583) (N = 666) (N = 639) (N = 675) (N = 4,924)

Urine

Total Arsenic (μg/L) 20.9 (65.3) 26.5 (72.7) 14.8 (29.6) 21.9 (52.2) 20.5 (60.8) 18.7 (51.8) 18.2 (44.8) 17.8 (39.2) 19.7 (52.6) <0.001

Arsenic acid (μg/L) 0.74 (0.17) 0.78 (0.65) 0.71 (0.04) 0.72 (0.07) 0.63 (0.12) 0.57 (0.13) 0.58 (0.10) 0.60 (0.17) 0.66 (0.24) <0.001

Arsenous acid (μg/L) 0.83 (0.23) 0.89 (0.31) 0.86 (0.11) 0.87 (0.21) 0.46 (0.28) 0.44 (0.44) 0.31 (0.37) 0.24 (0.34) 0.60 (0.40) <0.001

Arsenobetaine (μg/L) 11.6 (54.2) 15.9 (59.1) 6.1 (22.4) 10.8 (38.1) 12.3 (53.3) 12.0 (50.2) 11.8 (41.8) 10.0 (30.8) 11.1 (44.5) <0.001

Arsenocholine (μg/L) 0.43 (0.24) 0.45 (0.23) 0.43 (0.08) 0.47 (0.61) 0.25 (0.35) 0.16 (0.59) 0.18 (0.46) 0.20 (0.10) 0.31 (0.55) <0.001

Dimethylarsinic acid 

(μg/L) 4.99 (5.53) 5.86 (9.43) 5.05 (5.23) 5.69 (9.75) 6.20 (8.58) 5.17 (6.63) 4.97 (5.50) 5.00 (6.77) 5.34 (7.35) 0.015

Monomethylarsonic acid 

(ng/mL) 0.90 (0.76) 0.98 (1.37) 0.89 (0.58) 1.11 (6.66) 0.84 (0.49) 0.60 (0.74) 0.49 (0.49) 0.45 (0.51) 0.77 (2.61) <0.001

Lead (ng/mL) 1.01 (1.14) 0.97 (0.88) 0.79 (0.85) 0.80 (0.91) 0.65 (0.86) 0.51 (0.48) 0.57 (0.90) 0.50 (0.50) 0.71 (0.85) <0.001

Mercury (ng/mL) 0.67 (0.95) 0.82 (1.04) 0.72 (1.04) 0.63 (0.77) 0.71 (2.35) 0.58 (1.91) 0.36 (1.21) 0.36 (0.86) 0.59 (1.38) <0.001

Barium (ng/mL) 1.95 (3.94) 1.79 (2.18) 2.02 (5.15) 1.87 (2.41) 1.66 (4.18) 1.58 (3.19) 1.58 (2.19) 1.46 (2.19) 1.73 (3.34) <0.001

Cadmium (ng/mL) 0.56 (0.60) 0.51 (0.51) 0.48 (0.51) 0.46 (0.49) 0.48 (0.61) 0.41 (0.47) 0.40 (0.39) 0.41 (0.50) 0.45 (0.51) <0.001

Cobalt (ng/mL) 0.46 (1.16) 0.68 (2.40) 0.46 (0.68) 0.60 (1.81) 0.48 (1.37) 0.61 (1.76) 0.59 (1.08) 0.63 (1.39) 0.56 (1.51) <0.001

Cesium (ng/mL) 6.15 (13.8) 5.50 (3.65) 5.11 (4.62) 4.73 (3.09) 4.92 (3.16) 4.92 (3.28) 5.08 (3.73) 5.12 (3.38) 5.16 (5.79) 0.069

Molybdenum (ng/mL) 55.9 (72.9) 54.1 (49.4) 57.7 (55.3) 53.1 (47.1) 53.7 (50.5) 45.3 (39.3) 50.8 (46.3) 45.6 (39.7) 51.8 (50.7) <0.001

Antimony (ng/mL) 0.10 (0.09) 0.10 (0.11) 0.08 (0.08) 0.07 (0.10) 0.07 (0.09) 0.07 (0.19) 0.08 (0.17) 0.07 (0.13) 0.08 (0.13) <0.001

Thallium (ng/mL) 0.17 (0.14) 0.17 (0.12) 0.17 (0.18) 0.17 (0.15) 0.19 (0.14) 0.17 (0.13) 0.19 (0.32) 0.18 (0.13) 0.18 (0.18) 0.003

Tungsten (ng/mL) 0.10 (0.12) 0.14 (0.32) 0.17 (0.41) 0.10 (0.13) 0.12 (0.22) 0.10 (0.21) 0.10 (0.15) 0.10 (0.21) 0.11 (0.24) <0.001

Blood

Lead (μg/dL) 2.40 (1.66) 2.31 (1.64) 2.06 (1.50) 1.93 (1.62) 1.69 (1.82) 1.51 (1.41) 1.49 (1.39) 1.42 (1.17) 1.83 (1.57) <0.001

Cadmium (μg/L) 0.60 (0.65) 0.60 (0.70) 0.57 (0.59) 0.54 (0.51) 0.55 (0.56) 0.56 (0.60) 0.53 (0.57) 0.56 (0.72) 0.56 (0.61) <0.001

Total mercury (μg/L) 1.33 (1.42) 1.64 (2.02) 1.37 (1.73) 1.69 (2.79) 1.51 (1.87) 1.56 (2.58) 1.45 (2.10) 1.43 (2.17) 1.50 (2.16) <0.001

Inorganic mercury 

(μg/L) 0.37 (0.18) 0.34 (0.17) 0.32 (0.17) 0.30 (0.24) 0.27 (0.24) 0.29 (0.53) 0.25 (0.18) 0.25 (0.81) 0.29 (0.40) <0.001

https://doi.org/10.3389/fpubh.2025.1582779
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Jin et al. 10.3389/fpubh.2025.1582779

Frontiers in Public Health 07 frontiersin.org

negative contributions are associated with urine barium, blood total 
mercury, urine thallium, urine mercury, and urine cesium. In the case 
of stroke (Figure 4E; Supplementary Figure S9E), positive contributions 
arise from urine cadmium, urine arsenic acid, urine molybdenum, 
blood cadmium, urine barium, urine cobalt, and urine arsenocholine, 
whereas negative contributions are linked to urine mercury, blood 
lead, urine thallium, urine antimony, urine dimethylarsinic acid, lower 
education, male sex, blood total mercury, and lower BMI. Lastly, In the 

case of angina (Figure  4F; Supplementary Figure S9F), positive 
contributions to the model are observed from blood lead, urine cobalt, 
urine barium, urine arsenic acid, blood inorganic acid. Conversely, 
negative contributions are noted for female sex, urine thallium, urine 
mercury, urine antimony. SHAP waterfall plots presented the profiles 
of patients at either increased or decreased mortality of cardiovascular 
diseases and provided promising individualized care planning based 
on the best model (Supplementary Figures S8A–E).

TABLE 3 Discriminative ability and calibration of each model in predicting all-cause mortality among cardiovascular disease patients.

Diseases c-index (95% CI) Brier score (95% CI)

Hypertension

  CoxPHSurvival 0.778 (0.749-0.806) 0.110 (0.099-0.121)

  FastKernelSurvivalSVM 0.776 (0.746-0.805) /

  GradientBoostingSurvival 0.780 (0.748-0.809) 0.111 (0.100-0.124)

  RandomSurvivalForest 0.779 (0.749-0.808) 0.111 (0.100-0.123)

  ExtraSurvivalTrees 0.780 (0.750-0.809) 0.112 (0.100-0.123)

Coronary heart disease

  CoxPHSurvival 0.549 (0.473-0.628) 0.208 (0.174-0.248)

  FastKernelSurvivalSVM 0.570 (0.481-0.655) /

  GradientBoostingSurvival 0.580 (0.487-0.665) 0.202 (0.170-0.241)

  RandomSurvivalForest 0.592 (0.494-0.688) 0.199 (0.166-0.236)

  ExtraSurvivalTrees 0.584 (0.484-0.684) 0.200 (0.167-0.234)

Angina

  CoxPHSurvival 0.642 (0.523-0.752) 0.203 (0.153-0.260)

  FastKernelSurvivalSVM 0.616 (0.502-0.735) /

  GradientBoostingSurvival 0.626 (0.517-0.734) 0.202 (0.154-0.255)

  RandomSurvivalForest 0.629 (0.519-0.735) 0.198 (0.152-0.252)

  ExtraSurvivalTrees 0.652 (0.529-0.772) 0.189 (0.146-0.246)

Heart failure

  CoxPHSurvival 0.642 (0.556-0.720) 0.218 (0.179-0.265)

  FastKernelSurvivalSVM 0.605 (0.494-0.711) /

  GradientBoostingSurvival 0.591 (0.488-0.702) 0.217 (0.182-0.258)

  RandomSurvivalForest 0.591 (0.492-0.698) 0.215 (0.182-0.253)

  ExtraSurvivalTrees 0.587 (0.494-0.694) 0.217 (0.184-0.251)

Myocardial infarction

  CoxPHSurvival 0.681 (0.595-0.761) 0.179 (0.143-0.219)

  FastKernelSurvivalSVM 0.694 (0.608-0.775) /

  GradientBoostingSurvival 0.696 (0.610-0.777) 0.174 (0.141-0.212)

  RandomSurvivalForest 0.705 (0.614-0.788) 0.168 (0.134-0.209)

  ExtraSurvivalTrees 0.705 (0.617-0.788) 0.168 (0.136-0.206)

Stroke

  CoxPHSurvival 0.658 (0.576-0.739) 0.180 (0.141-0.222)

  FastKernelSurvivalSVM 0.651 (0.569-0.729) /

  GradientBoostingSurvival 0.643 (0.555-0.725) 0.181 (0.145-0.220)

  RandomSurvivalForest 0.636 (0.547-0.722) 0.182 (0.146-0.219)

  ExtraSurvivalTrees 0.636 (0.547-0.722) 0.180 (0.147-0.218)
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Web-based calculator implementation

To enhance the practical application of our research findings, 
we developed interactive online calculators for predicting various CVDs. 

These web-based tools were built using the Gradio framework in Python, 
which facilitates the creation of user-friendly interfaces for machine 
learning models. Each calculator features intuitive input fields 
corresponding to the significant predictors identified in our analysis for 

FIGURE 2

Summary of time-dependent area under the curve (td-AUC) performance for five survival models predicting cardiovascular disease mortality. 
(A) Hypertension; (B) Coronary heart disease; (C) Heart failure; (D) Myocardial infarction; (E) Stroke; (F) Angina.

FIGURE 3

Calibration plots of the best-performing models for each cardiovascular disease. (A) Hypertension: GradientBoostingSurvival, (B) coronary heart 
disease: RandomSurvivalForest, (C) heart failure: CoxPHSurvival, (D) myocardial infarction: RandomSurvivalForest, (E) stroke: CoxPHSurvival, (F) Angina: 
ExtraSurvivalTrees.

https://doi.org/10.3389/fpubh.2025.1582779
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Jin et al. 10.3389/fpubh.2025.1582779

Frontiers in Public Health 09 frontiersin.org

the respective CVD conditions. All calculators are publicly accessible 
through Hugging Face Spaces platform (Hypertension: https://
huggingface.co/spaces/MLML202512/Hypertension; CHD: https://
huggingface.co/spaces/MLML202512/CHD; HF: https://huggingface.co/
spaces/MLML202512/HF; MI: https://huggingface.co/spaces/
MLML202512/MI; Stroke: https://huggingface.co/spaces/MLML202512/
Stroke; Angina: https://huggingface.co/spaces/MLML202512/angina).

Discussion

In this study, we employed five interpretable machine learning 
approaches to assess the association between heavy metal exposure 
and cardiovascular disease mortality among patients in the NHANES 
database from 2003 to 2018. Each machine learning model 
demonstrated varying degrees of performance across different 

cardiovascular diseases. For hypertension, the GBS model 
outperformed others, achieving a high C-index of 0.780, the highest 
mean AUC of 0.798, and well-aligned calibration curves. For coronary 
heart disease, the RSF model was selected due to its highest mean 
AUC of 0.626 and strong calibration. For heart failure, the 
CoxPHSurvival model proved to be  the most effective, with the 
highest C-index (0.642), greatest mean AUC (0.672), and accurate 
calibration. For myocardial infarction, the RSF model demonstrated 
superior performance, with the highest C-index (0.705), a high mean 
AUC (0.743), and reliable calibration curves. For stroke, the 
CoxPHSurvival model was identified as the best, achieving the highest 
C-index (0.658) and mean AUC (0.691), along with well-fitted 
calibration curves. Lastly, for angina, the ExtraSurvivalTrees model 
was identified as the best, achieving the highest C-index (0.652) and 
mean AUC (0.669), along with well-fitted calibration curves. By 
integrating these models with SHAP analysis, we provide robust and 

FIGURE 4

The SHAP summary plots of the best-performing models for each cardiovascular disease. (A) Hypertension: GradientBoostingSurvival, (B) coronary 
heart disease: RandomSurvivalForest, (C) heart failure: CoxPHSurvival, (D) myocardial infarction: RandomSurvivalForest, (E) stroke: CoxPHSurvival, 
(F) Angina: ExtraSurvivalTrees.
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interpretable predictions for each cardiovascular condition. A user-
friendly web calculator was developed for individualized survival 
predictions. The findings from this research have significant public 
health implications by enhancing our understanding of how heavy 
metal exposures contribute to cardiovascular disease burden. Our 
predictive models and web-based calculators offer practical tools for 
healthcare providers to incorporate environmental exposure data into 
cardiovascular risk assessments.

Exposure to environmental factors, particularly heavy metals, is a 
key and modifiable component of cardiovascular disease (CVD) risk 
(21). Increasing evidence highlights the significant role that heavy 
metal exposure plays in the development and progression of CVD (11, 
13, 22–24). Machine learning techniques have been increasingly 
employed in previous research to develop predictive models for 
various adverse health outcomes related to environmental exposures 
(25–30). Limited research has explored the association between heavy 
metals and cardiovascular disease using machine learning methods. 
Li et al. established RF model to identify associations between heavy 
metals’ exposure and CHD among US NHANES 2003–2018 
participants (25). Li et al. employed nine ML models to establish a 
predictive model for hypertension utilizing heavy metal exposure data 
from the NHANES (26). However, the exploration of predictive 
models specifically linking heavy metal exposure to cardiovascular 
mortality remains relatively limited. A previous study offered insights 
into a potential positive association between concentrations of heavy 
metal mixtures and overall, cardiovascular, and cancer mortality in a 
large sample of the U.S. general population (31). Building on this 
research, we  developed five different machine learning models to 
evaluate the association between heavy metal exposure and 
cardiovascular diseases’ mortality in the U.S. general population.

We observed the significant temporal trends observed in Table 2 
for various heavy metal concentrations across different NHANES 
survey cycles from 2003 to 2018. These temporal trends may 
be  attributed to several factors, including changes in industrial 
practices, implementation of stricter environmental regulations, shifts 
in consumer product formulations, and evolving occupational 
exposure standards. The decline in lead and cadmium levels, in 
particular, likely reflects the success of targeted regulatory efforts in 
reducing industrial emissions, phasing out leaded gasoline, and 
restricting the use of these metals in consumer products. Conversely, 
changes in other metal concentrations may reflect emerging industrial 
applications or the identification of previously unrecognized exposure 
sources. These findings underscore the dynamic nature of 
environmental exposures and the potential impact of policy 
interventions on population-level heavy metal burden.

In this study, we utilized five machine learning models, with a 
particular focus on the Gradient Boosting Survival method, renowned 
for its rapid computational speed, strong generalization ability, and 
high predictive performance (32). Advanced techniques, such as KNN 
for missing value imputation and GridSearchCV for hyperparameter 
optimization, were also employed to enhance the analysis. Our results 
demonstrate that these methods significantly improve the prediction 
of all-cause mortality in patients with cardiovascular disease. 
Furthermore, recent studies have incorporated time-dependent AUCs 
to evaluate model performance across various time points, offering a 
dynamic assessment of predictive accuracy in survival analysis (33). 
For hypertension, both GradientBoostingSurvival (mean 
AUC = 0.798) and CoxPHSurvival (mean AUC = 0.794) demonstrate 

strong predictive performance, closely followed by 
FastKernelSurvivalSVM (mean AUC = 0.791). For coronary heart 
disease, RandomSurvivalForest initially shows a highest AUC. For 
heart failure, CoxPHSurvival (mean AUC = 0.672) emerges as the 
top-performing model, with other models showing relatively lower 
AUCs, particularly in the early time points. For myocardial infarction, 
RandomSurvivalForest (mean AUC = 0.743) has a slight edge over the 
other models, though their AUCs remain close. Lastly, for stroke, 
CoxPHSurvival (mean AUC = 0.691) leads in performance, while the 
others exhibit lower and more similar AUCs, highlighting the 
complexity of predicting stroke mortality.

In recent years, the interpretability of machine learning models 
has seen significant growth, with visualization techniques playing a 
key role in enhancing the understanding of complex black-box models 
(27, 28, 34). Permutation feature importance analysis is widely used 
across various machine learning models to evaluate and rank the 
significance of individual features (26). Previous studies have utilized 
SHAP plot to identify key features in predicting coronary heart disease 
outcomes among individuals exposed to heavy metals (25). The 
application of SHAP explanations helps in providing a detailed 
understanding of the conditional effects of individual instances. In this 
context, positive SHAP values signify that certain feature values are 
associated with an increased risk of cardiovascular mortality over the 
16-year NHANES survey, while negative SHAP values indicate a 
reduced mortality risk. In the present study, we  developed five 
predictive models for cardiovascular diseases using a large sample 
from the NHANES database. To interpret these models, we applied 
three techniques: feature importance analysis, SHAP summary plots, 
and SHAP waterfall plots, offering a comprehensive insight into the 
relationship between heavy metal exposure and cardiovascular 
mortality. Our analysis identified the top five heavy metals most 
significantly associated with different cardiovascular diseases. For 
hypertension, the key metals are thallium, lead, and mercury. In 
coronary heart disease, the top three include cesium, thallium, and 
lead. Heart failure is primarily associated with cobalt, antimony, and 
cesium. For myocardial infarction, the important metals are lead, 
mercury, and cadmium. Lastly, stroke is most associated with 
cadmium, mercury, and lead. These differential associations highlight 
the value of metal-specific prevention strategies tailored to individual 
cardiovascular disease risks.

Lead emerged as a significant metal associated with multiple 
cardiovascular diseases in our analysis. Lead exposure, even at low 
concentrations, contributes to cardiovascular disease through multiple 
mechanisms (7, 35). It induces oxidative stress and systemic 
inflammation (36), damaging endothelial cells (37) and altering 
vascular reactivity (38). Simultaneously, lead disrupts lipid 
metabolism—elevating LDL and triglycerides while lowering HDL—
thereby promoting a pro-atherosclerotic profile (5). Studies also 
suggest that lead accelerates telomere shortening, which in turn is 
linked to cellular senescence, impaired DNA repair, and heightened 
vascular aging (35). In addition, stored lead in bone can be mobilized 
over time, resulting in chronic, low-grade internal exposure that 
further exacerbates blood pressure elevation and vascular dysfunction 
(39). These combined processes—oxido-inflammatory damage, lipid 
disturbances, telomere attrition, and continued internal release—
ultimately increase the risk of hypertension, atherosclerosis, and other 
cardiovascular pathologies, underscoring the importance of 
minimizing lead exposure at all levels.
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Thallium also emerged as a critical heavy metal in our 
cardiovascular risk models. Thallium exposure, even at low doses, has 
been increasingly recognized as a risk factor for cardiovascular 
dysfunction through multiple biological pathways (35). Thallium 
closely mimics K+, enabling it to infiltrate neurons and myocardial 
cells readily, where it disrupts ionic homeostasis and mitochondrial 
function (40). Evidence suggests that thallium promotes oxidative 
stress – generating excess reactive oxygen species (ROS) – which, 
combined with potential interference in energy metabolism, damages 
vascular endothelial and cardiac cells (41, 42). Animal and human 
studies also indicate thallium can alter lipid metabolism, potentially 
increasing pro-atherogenic profiles (e.g., elevated LDL, decreased 
HDL) (43, 44). These combined insults – mitochondrial dysfunction, 
oxidative injury, and metabolic disturbances – create an environment 
conducive to hypertension, atherosclerosis, and other cardiovascular 
pathologies (45–47). Chronic low-level thallium exposure, including 
release from bone stores, amplifies these risks over time, underscoring 
the need to minimize Thallium contamination and rigorously monitor 
cardiovascular health among exposed populations (48). Similarly, 
mercury poses profound cardiovascular risks through heightened 
oxidative stress, endothelial dysfunction, and mitochondrial damage, 
which together escalate the likelihood of hypertension, atherosclerosis, 
and other vascular pathologies (49).

This study has several limitations. First, cardiovascular disease 
diagnoses were partly determined from participants’ self-reported 
information in the NHANES interview questionnaire, which may 
have led to information bias due to cognitive impairment or recall 
errors. Second, despite the strong performance of the survival 
models, further external validation with independent datasets is 
crucial to establishing their clinical utility and generalizability. 
Third, while our dataset contained sufficient cases of hypertension, 
the relatively smaller number of participants with other 
cardiovascular conditions (coronary heart disease, heart failure, 
myocardial infarction, and stroke) may have limited the statistical 
power for these analyses and potentially affected the robustness of 
our prediction models for these specific outcomes. This class 
imbalance could have resulted in models that perform well on 
majority cases but with reduced sensitivity for detecting 
relationships in the less prevalent conditions. Fourth, we  were 
unable to differentiate between ischemic and hemorrhagic stroke 
in our analysis due to limitations in the NHANES dataset, which 
does not provide this level of diagnostic detail. This is an important 
limitation since these stroke subtypes have distinct 
pathophysiological mechanisms and potentially different 
relationships with heavy metal exposures. Fifth, there is a temporal 
mismatch between sample collection and disease diagnosis, as 
heavy metal concentrations were measured at the time of NHANES 
participation, which may not reflect the levels present when 
cardiovascular diseases were initially diagnosed. This cross-
sectional nature of biomarker measurement means we  cannot 
establish whether the observed metal concentrations preceded 
disease development or resulted from physiological changes due to 
the diseases themselves. Sixth, this is an observational study, and 
while we identified significant associations between specific heavy 
metals and cardiovascular outcomes, these findings cannot 
establish causality. Seventh, our analysis does not account for 
cardiovascular medications or interventions as covariates. This 
omission may have confounded our assessment of 

metal-cardiovascular relationships, as treatments substantially 
modify disease outcomes. Future research should incorporate 
treatment data to better isolate the independent effects of heavy 
metal exposures on cardiovascular mortality.

Conclusion

In this study, we examined the association between heavy metal 
exposure and cardiovascular disease mortality among NHANES 
2003–2018 participants using various machine learning models. For 
hypertension, GradientBoostingSurvival showed superior predictive 
capabilities. CoxPHSurvival demonstrated the most consistent 
performance in predicting mortality for heart failure and stroke, 
while RandomSurvivalForest was the top model for coronary heart 
disease and myocardial infarction. ExtraSurvivalTrees performed 
best in angina. Key metals for hypertension included thallium, lead, 
and mercury. For coronary heart disease, cesium, thallium, and lead 
were most relevant, while heart failure was linked to arsenic acid, 
cobalt, and antimony. Myocardial infarction was associated with lead, 
total mercury, and cadmium, and stroke was associated with 
cadmium, mercury, and lead. For angina, lead and cobalt are the key 
heavy metal. Recognizing these metals as key cardiovascular risk 
factors calls for stronger public health actions—like better 
surveillance and regulation—to reduce harmful exposures. Clinically, 
advanced survival models help doctors identify high-risk patients 
sooner and tailor treatments for better outcomes. Furthermore, 
we developed a user-friendly web calculator that allows clinicians and 
patients to compute individualized survival predictions for different 
cardiovascular diseases, offering a practical tool for risk assessment 
and informed decision-making.
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Flowchart of participant selection.
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Calibration plots of machine learning models for hypertension.
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Calibration plots of machine learning models for coronary heart disease.

SUPPLEMENTARY FIGURE S4

Calibration plots of machine learning models for heart failure.

SUPPLEMENTARY FIGURE S5

Calibration plots of machine learning models for myocardial infarction.

SUPPLEMENTARY FIGURE S6

Calibration plots of machine learning models for stroke.

SUPPLEMENTARY FIGURE S7

Calibration plots of machine learning models for angina.

SUPPLEMENTARY FIGURE S8

SHAP waterfall plots for individual patients. SHAP was used in personalized 
decision analysis to depict patient profiles for mortality prediction. The red bars 
indicate that the variable contributes to an increased mortality risk, whereas the 
blue bars suggest an inhibitory effect. (A) Hypertension: 
GradientBoostingSurvival, (B) coronary heart disease: RandomSurvivalForest, 
(C) heart failure: CoxPHSurvival, (D) myocardial infarction: 
RandomSurvivalForest, (E) stroke: CoxPHSurvival, (F) Angina: ExtraSurvivalTrees.

SUPPLEMENTARY FIGURE S9

SHAP decision plots illustrating the model’s decision-making in predicting 
cardiovascular disease mortality from a global perspective as variables 
change. The red line indicates a higher predicted mortality risk, while the 
blue line signifies a lower risk. (A) Hypertension: GradientBoostingSurvival, 
(B) coronary heart disease: RandomSurvivalForest, (C) heart failure: 
CoxPHSurvival, (D) myocardial infarction: RandomSurvivalForest, (E) stroke: 
CoxPHSurvival, (F) Angina: ExtraSurvivalTrees.
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