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generation: balancing innovation
with privacy in public health

Mingpei Liang*

A�liated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi, China

Introduction: The integration of artificial intelligence (AI) into medical text

generation is transforming public health by enhancing clinical documentation,

patient education, and decision support. However, the widespread deployment

of AI in this domain introduces significant ethical challenges, including

fairness, privacy protection, and accountability. Traditional AI-driven medical

text generation models often inherit biases from training data, resulting in

disparities in healthcare communication across di�erent demographic groups.

Moreover, ensuring patient data confidentiality while maintaining transparency

in AI-generated content remains a critical concern. Existing approaches either

lack robust bias mitigation mechanisms or fail to provide interpretable and

privacy-preserving outputs, compromising ethical compliance and regulatory

adherence.

Methods: To address these challenges, this paper proposes an innovative

framework that combines privacy-preserving AI techniques with interpretable

model architectures to achieve ethical compliance in medical text generation.

The method employs a hybrid approach that integrates knowledge-based

reasoning with deep learning, ensuring both accuracy and transparency.

Privacy-enhancing technologies, such as homomorphic encryption and secure

multi-party computation, are incorporated to safeguard sensitive medical data

throughout the text generation process. Fairness-aware training protocols are

introduced tomitigate biases in generated content and enhance trustworthiness.

Results and discussion: The proposed approach e�ectively addresses critical

challenges of bias, privacy, and interpretability in medical text generation. By

combining symbolic reasoning with data-driven learning and embedding ethical

principles at the systemdesign level, the framework ensures regulatory alignment

and improves public trust. This methodology lays the groundwork for broader

deployment of ethically sound AI systems in healthcare communication.

KEYWORDS

medical AI, ethical challenges, bias mitigation, text generation, privacy protection, AI

ethics, healthcare regulation, legal compliance

1 Introduction

The increasing use of artificial intelligence (AI) in medical text generation has

revolutionized public health communication, clinical documentation, and patient

education (1). Not only does AI-driven medical text generation improve efficiency

in handling vast amounts of health data, but it also enhances accessibility by

providing accurate and timely medical information (2). Moreover, AI models have

shown the ability to bridge language barriers, making healthcare more inclusive (3).

However, the sensitive nature of medical data introduces significant ethical challenges,

including patient privacy, data security, and bias mitigation (4). Ensuring ethical AI

deployment in this field requires a delicate balance between innovation and privacy
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protection, as mishandling such information could lead to

severe consequences such as loss of trust, regulatory violations,

and potential harm to individuals (5). Given the complexity

of these challenges, research efforts have focused on different

methodological approaches over time to enhance AI-driven

medical text generation while safeguarding ethical standards (6).

To address the limitations of early medical text generation

methods, researchers initially relied on symbolic AI and knowledge

representation techniques (7). These traditional approaches

leveraged rule-based systems and expert-defined ontologies to

generate structured and accurate medical text (8). By encoding

medical knowledge in logical frameworks, these methods ensured

transparency, interpretability, and compliance with regulatory

standards (9). However, rule-based systems suffered from rigidity

and could not generalize beyond predefined scenarios, limiting

their scalability (10). Furthermore, these approaches required

extensivemanual effort to construct andmaintain knowledge bases,

making them inefficient for real-world applications where medical

knowledge evolves rapidly (11). Despite these limitations, symbolic

AI played a crucial role in establishing the foundation for ethical

medical text generation, particularly in ensuring explainability and

trustworthiness (12).

To overcome the rigidity of symbolic AI, researchers turned

to data-driven approaches and machine learning techniques (13).

These models utilized statistical learning and supervised learning

algorithms trained on large datasets of medical texts (14).

By extracting patterns from real-world data, machine learning

methods significantly improved text generation quality and

adaptability (15). These models reduced the manual burden of

encoding knowledge and allowed for automated content generation

in diverse medical contexts (16). Nevertheless, concerns regarding

data privacy and bias have become prominent, as machine

learning models have learned from historical records that may

contain sensitive patient information or reflect systemic biases.

Ethical challenges arose regarding the potential propagation of

misinformation, the necessity of de-identification techniques, and

the risk of model hallucination (17). While machine learning

approaches introduced adaptability and efficiency, they also

heightened the need for robust privacy-preserving mechanisms

and fairness-aware model training. The advent of deep learning

and pre-trained language models, such as transformer-based

architectures, has further advanced medical text generation (18).

These models leverage vast corpora of medical literature, clinical

notes, and patient interactions to generate highly coherent and

context-aware medical text. Notably, techniques such as federated

learning, differential privacy, and bias mitigation strategies have

been integrated into modern AI systems to address ethical

concerns (19). Deep learning models enable scalable and dynamic

text generation, enhancing the accuracy and personalization

of AI-driven medical communication (20). However, challenges

remain in ensuring that these models comply with regulatory

frameworks such as HIPAA and GDPR, preventing unintended

privacy breaches, and maintaining fairness in medical decision-

making (21). Furthermore, the black-box nature of deep learning

models raises concerns about explainability and accountability,

which are crucial for building trust in AI-generated medical

content (22).

Given the limitations of previous approaches, we propose a

novel framework that strikes a balance between innovation and

privacy in medical text generation. Our method integrates privacy-

preserving AI techniques with interpretable model architectures

to ensure ethical compliance. We employ a hybrid approach

that combines knowledge-based reasoning with deep learning

to maintain both accuracy and transparency. By incorporating

privacy-enhancing technologies such as homomorphic encryption

and secure multi-party computation, our model ensures that

sensitive medical data remains protected throughout the text

generation process. We introduce fairness-aware training protocols

to mitigate biases in generated content and enhance the

trustworthiness of the output. This approach addresses critical

ethical concerns while enabling AI to drive advancements in

public health communication, making it a robust solution for

real-world applications.

The proposed method has several key advantages:

• Our method incorporates homomorphic encryption and

federated learning to ensure that patient data remains

confidential while enabling AI-driven medical text generation.

This enhances data security and regulatory compliance

without compromising performance.

• Unlike traditional deep learning models, our approach

integrates explainable AI techniques, ensuring that medical

professionals and patients can understand and validate AI-

generated content. Fairness-aware training reduces biases and

promotes ethical medical communication.

• Experimental results demonstrate that our method achieves

superior text quality while maintaining privacy guarantees.

Compared to existing models, our approach reduces privacy

risks by 40% while improving text coherence and factual

accuracy, making it a reliable solution for ethical AI-driven

medical text generation.

2 Related research

2.1 Ethical challenges in AI-generated
medical texts

The integration of artificial intelligence (AI) in medical

text generation introduces significant ethical challenges that

must be carefully addressed to ensure patient safety and the

reliability of medical information (23). One of the primary

concerns is the potential for AI-generated texts to contain

inaccuracies or misleading information, which could negatively

impact clinical decision-making and patient care. AI-powered

medical transcription and summarization tools, for instance, have

been reported to fabricate or hallucinate content that was not

present in the original consultations (24). Such discrepancies

can lead to miscommunication between healthcare providers and

patients, potentially resulting in incorrect diagnoses, inappropriate

treatments, or loss of trust inmedical professionals. Another critical

ethical issue is the question of authorship and accountability.When

AI systems generate medical content, it becomes challenging to

determine who bears responsibility for errors or misinformation—

whether it is the developers, healthcare institutions, or the end-

users (25). This lack of clear accountability raises legal and ethical

concerns, particularly in high-stakes medical environments where

erroneous information could have life-threatening consequences.
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AI models trained on biased datasets risk perpetuating or

amplifying existing disparities in healthcare. If training data

disproportionately represent certain demographics, AI-generated

medical texts may reinforce biases in clinical recommendations,

leading to unequal treatment outcomes across different patient

groups. Addressing these concerns requires rigorous validation of

AI-generated content, continuous monitoring for biases, and the

implementation of robust accountability frameworks to maintain

the integrity of medical information (26). Ethical deployment of

AI in medical text generation must prioritize transparency, human

oversight, and adherence to regulatory guidelines to safeguard

patient welfare and uphold medical standards.

2.2 Balancing innovation and privacy in
health data utilization

The advancement of artificial intelligence (AI) in healthcare is

increasingly dependent on the extensive utilization of patient health

data. AI-driven models have the potential to revolutionize medical

diagnosis, predictive analytics, and personalized treatment plans

by uncovering complex patterns in large-scale datasets. However,

this innovation comes with significant challenges in maintaining

patient privacy and ensuring ethical data handling (27). As

health data often contain highly sensitive personal information,

unauthorized access or misuse can lead to severe ethical, legal, and

social implications. Striking a balance between leveraging AI for

medical advancements and protecting individual privacy is crucial

for fostering trust in AI-driven healthcare solutions. To address

these concerns, the collection, storage, and analysis of health data

must comply with stringent privacy regulations, such as the Health

Insurance Portability and Accountability Act (HIPAA) and the

General Data Protection Regulation (GDPR). Implementing robust

data governance frameworks is essential for ensuring that patient

information is handled responsibly and securely (28). Privacy-

preserving techniques, such as data anonymization, differential

privacy, and federated learning, offer effective strategies for

minimizing privacy risks while enabling the beneficial use of data

in AI applications (29). These approaches ensure that AI models

can learn from health data without exposing personally identifiable

information. Beyond technical safeguards, patient engagement

plays a crucial role in the ethical utilization of health data.

Transparent communication about how patient data is collected,

processed, and utilized in AI-driven healthcare applications is

crucial for maintaining public trust. Obtaining informed consent

and allowing individuals greater control over their health data

usage can help ensure that the benefits of AI innovations do not

come at the expense of personal privacy rights (29). As AI continues

to reshape healthcare, maintaining this delicate balance between

innovation and privacy will be fundamental to building ethical and

sustainable AI-driven medical systems.

2.3 Regulatory and legal considerations in
AI deployment

The deployment of artificial intelligence (AI) in healthcare

necessitates careful consideration of regulatory and legal

frameworks to ensure that AI-driven technologies operate

ethically, safely, and within the boundaries of the law (30).

Given the sensitive nature of medical data and the high stakes

involved in clinical decision-making, AI systems must comply with

existing data protection regulations, such as the Health Insurance

Portability and Accountability Act (HIPAA) and the General

Data Protection Regulation (GDPR), to safeguard patient privacy

and prevent data breaches (31). These regulations establish strict

guidelines on data collection, processing, and sharing, ensuring

that AI applications do not compromise patient confidentiality

or expose sensitive health information to unauthorized entities.

Beyond data protection, the deployment of AI in healthcare

presents unique legal challenges, particularly concerning liability

in cases of AI-induced errors. When AI-driven diagnostic or

treatment recommendation systems make incorrect predictions,

determining legal responsibility becomes complex—whether the

liability falls on the healthcare provider, AI developer, or medical

institution remains a subject of ongoing legal debate (32). Concerns

have been raised regarding the potential for AI to engage in the

unauthorized practice of medicine, especially in cases where AI

systems provide clinical guidance without direct human oversight.

Regulatory bodies worldwide are intensifying their scrutiny of

AI applications in healthcare to ensure compliance with ethical

standards and legal requirements (33). Authorities have issued

warnings to healthcare providers and technology developers about

the importance of responsible AI implementation, emphasizing

the need to mitigate algorithmic bias, prevent discrimination, and

uphold patient rights (34). Some jurisdictions are also considering

the introduction of AI-specific regulatory policies, which would

require rigorous validation and certification of AI models before

their deployment in clinical settings. To facilitate the ethical and

legal integration of AI in healthcare, it is essential to establish

comprehensive policies and regulatory frameworks that address

these challenges. This includes developing standardized evaluation

metrics for AI model performance, ensuring transparency in

AI decision-making processes, and enforcing accountability

mechanisms for AI-related medical errors (35). As AI continues

to transform the healthcare landscape, a well-defined regulatory

approach will be crucial in fostering trust, ensuring patient safety,

and enabling the responsible use of AI-driven medical innovations.

3 Method

3.1 Overview

The integration of artificial intelligence (AI) into healthcare

has introduced significant advancements in diagnostics, treatment

planning, and patient management. However, this integration

raises critical ethical concerns that must be addressed to ensure

the responsible and equitable deployment of AI technologies. A

key ethical concern in AI-driven healthcare is patient autonomy, as

discussed in Section 3.2. AI algorithms influence medical decision-

making by providing diagnostic recommendations and treatment

options. However, it is essential to ensure that these systems

support, rather than replace, human judgment. The balance

between AI-driven recommendations and clinician expertise raises

questions about informed consent and patients’ ability to challenge

AI-generated decisions. This issue is closely tied to the principle
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of transparency, as understanding how AI models arrive at their

conclusions is crucial for both medical professionals and patients.

Another major ethical challenge is the issue of bias and

fairness in AI systems. AI models are trained on historical

medical data, which may reflect existing biases in healthcare

practices. If not properly addressed, these biases can lead

to disparities in healthcare outcomes, disproportionately

affecting underrepresented or vulnerable populations. The

ethical imperative of fairness necessitates rigorous bias detection

and mitigation strategies in AI model development, as will be

discussed in Section 3.3. Accountability and liability in AI-driven

healthcare remain unresolved ethical and legal questions. When an

AI system provides incorrect diagnoses or suboptimal treatment

recommendations, determining responsibility—whether it lies

with the developers, healthcare providers, or the AI itself—

becomes complex. This challenge underscores the need for

well-defined regulatory frameworks, which will be explored in

Section 3.4.

While existing studies on ethical AI often treat fairness,

privacy, and transparency as isolated constraints or add-ons

during post-processing, our approach is unique in that it embeds

these ethical principles directly into the learning objective as

regularization terms. We formulate a multi-objective optimization

problem that simultaneously minimizes prediction loss while

penalizing disparities (fairness), reducing information leakage

(privacy), and aligning with interpretable models (transparency).

This integrated modeling is not only theoretically grounded—

with formal definitions of fairness via equalized odds and

demographic parity, privacy via differential privacy guarantees,

and transparency via surrogate modeling and Shapley values—

but also practically efficient. Unlike prior frameworks that rely

solely on empirical rebalancing or rule-based filters, our model

dynamically adjusts its ethical trade-offs using an adaptive penalty

mechanism and ethical drift monitoring. The proposed Ethical

Risk Function, defined as a composite of fairness, privacy, and

transparency risks, introduces a principled decision criterion for

model deployment and retraining. Compared to conventional

approaches, such as DEXPERTS or adversarial de-biasing models

that handle fairness in isolation, our ethically constrained AI model

(ECAM) enables the coupling of ethical dimensions, allowing

for richer and more robust ethical compliance in real-world

clinical applications.

3.2 Preliminaries

The deployment of artificial intelligence (AI) in healthcare

necessitates a rigorous formalization of ethical concerns to ensure

fairness, accountability, privacy, and transparency. This section

introduces a structured framework to mathematically represent

these concerns, enabling their systematic analysis and mitigation

in AI-driven medical decision-making.

Let D = {(xi, yi)}
n
i=1 represent a healthcare dataset, where

xi ∈ R
d denotes patient features, and yi ∈ Y represents the

corresponding medical outcome. An AI model fθ :R
d → Y

is trained to approximate the function y = f ∗(x) that maps

patient data to medical outcomes. Ethical concerns in AI-driven

healthcare can be mathematically formulated through fairness,

privacy, transparency, and accountability. Fairness can be defined

by ensuring that model predictions are independent of sensitive

attributes such as race, gender, or socioeconomic status. Let si ∈ S

denote sensitive attributes. One common criterion is demographic

parity, expressed as follows:

P(fθ (x) = y | s = s1) = P(fθ (x) = y | s = s2), ∀s1, s2 ∈ S. (1)

Transparency and interpretability are essential for

ensuring trust and informed decision-making in healthcare

AI systems. This can be achieved by approximating a

complex model fθ with an interpretable surrogate function g,

such that

‖fθ (x)− g(x)‖ ≤ τ , ∀x ∈ D, (2)

where τ represents the permissible approximation error. Shapley

values offer a game-theoretic approach to feature importance

attribution, calculated as follows:

φj =
∑

S⊆{1,...,d}\{j}

|S|!(d − |S| − 1)!

d!

[

v(S ∪ {j})− v(S)
]

, (3)

where v(S) represents the model’s predictive performance when

using only features in subset S. Accountability and liability in

AI-driven medical decision-making can be defined by assessing

whether an erroneous prediction results in potential harm to

patients. Given a model’s prediction fθ (xi) and the corresponding

ground truth yi, an accountability function A :R
d × Y → {0, 1}

determines liability as follows:

A(xi, yi) =

{

1, if L(fθ (xi), yi) > τerror,

0, otherwise,
(4)

where L is a loss function, and τerror is a threshold that defines

harmful predictions.

To achieve ethical AI deployment, a multi-objective

optimization problem is defined that balances predictive accuracy

with fairness, privacy, and transparency. This is formulated

as follows:

min
θ

E(x,y)∼D

[

L(fθ (x), y)+ λ1Rfair(fθ )+ λ2Rpriv(fθ )

+ λ3Rtransp(fθ )
]

, (5)

where Rfair, Rpriv, and Rtransp represent regularization terms for

fairness, privacy, and transparency, respectively. The parameters

λ1, λ2, and λ3 control the trade-offs between these ethical

considerations and the model’s predictive performance.

3.3 Ethically constrained AI model for
healthcare

To address the ethical challenges in AI-driven healthcare,

we propose a novel model (as shown in Figure 1), denoted as

the ethically constrained AI model (ECAM), which explicitly

incorporates fairness, privacy, and transparency constraints into

the learning process. This model ensures that AI-assisted medical
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FIGURE 1

Illustration of the ethically constrained AI model (ECAM) framework, demonstrating privacy protection through Discrete Cosine Transform (DCT) and

channel attention, and transparency enhancement via global and adaptive average pooling with learnable modulation. The architecture ensures

secure, interpretable, and fair AI-driven decision-making in healthcare.

FIGURE 2

Fairness-aware multimodal learning architecture. The framework integrates visual, audio, and language modalities into a unified representation while

enforcing fairness constraints. The model utilizes low-rank factorization techniques to mitigate bias and ensure equitable predictions across

demographic subgroups, promoting fairness in AI-driven decision-making systems.

decisions remain unbiased, interpretable, and privacy-preserving

while maintaining high clinical efficacy.

3.3.1 Fairness enforcement
To mitigate bias, we impose a fairness constraint using the

equalized odds criterion (as shown in Figure 2), ensuring that

predictions are independent of sensitive attributes given the

true label. Fairness in AI-driven healthcare systems is critical

to prevent discrimination against underrepresented groups,

which may result from historical biases embedded in training

data. Given a healthcare dataset D = {(xi, yi, si)}
n
i=1, where

xi represents patient features, yi denotes medical outcomes,

and si captures sensitive attributes such as race, gender, or

socioeconomic status, fairness is achieved by ensuring that

the prediction fθ (x) remains consistent across subgroups

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1583507
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liang 10.3389/fpubh.2025.1583507

defined by si. We define the fairness regularization term

as follows:

Rfair(fθ ) =
∑

s1 ,s2∈S

∑

y∈Y

∣

∣P(fθ (x) = y | s = s1)

− P(fθ (x) = y | s = s2)
∣

∣ , (6)

where S represents the set of sensitive attributes and Y represents

possible outcomes. This regularization penalizes deviations in

model predictions across demographic groups. An alternative

measure of fairness is demographic parity, which requires that the

prediction fθ (x) be statistically independent of sensitive attributes:

P(fθ (x) = y | s = s1) = P(fθ (x) = y | s = s2), ∀s1, s2 ∈ S. (7)

To implement fairness constraints during model training, we

modify the objective function by adding a fairness penalty term.

Let L(fθ (x), y) denote the standard prediction loss. The fairness-

regularized objective function is given by the following equation:

min
θ

E(x,y,s)∼D

[

L(fθ (x), y)+ λfairRfair(fθ )
]

, (8)

where λfair controls the trade-off between prediction accuracy

and fairness. During training, the model adjusts its parameters to

minimize both prediction error and group disparities. To further

ensure fairness, we apply a reweighting strategy by assigning higher

weights to underrepresented groups. The weight for each sample is

defined as follows:

wi =
P(si)

P(yi | si)
, (9)

where P(si) represents the marginal probability of the sensitive

attribute and P(yi | si) represents the conditional probability of

the outcome given the sensitive attribute. This approach ensures

that underrepresented groups contribute more significantly to

the training process. Moreover, fairness evaluation metrics such

as disparate impact and statistical parity difference are used to

assess the model’s performance across demographic subgroups. By

integrating equalized odds, demographic parity, and reweighting

techniques, the proposed fairness enforcement strategy ensures

that AI-assisted medical decisions remain unbiased, promoting

equitable healthcare outcomes for all patients.

3.3.2 Privacy protection
We integrate differential privacy into the model by introducing

controlled noise into the learning process. We employ a

differentially private stochastic gradient descent (DP-SGD)

algorithm, which ensures that the contribution of any single

patient to the model is bounded.

This ensures that outlier gradients do not dominate the

training process, thus reducing privacy risks. The overall privacy

guarantee accumulates over multiple training iterations, as per

the composition theorem. Let T denote the number of training

steps; the total privacy loss after T iterations is given by the

following equation:

ǫtotal =

√

2T log

(

1

δ

)

1g

σ
. (10)

To balance privacy and model performance, the trade-off

between noise scale and utility is controlled by the privacy budget

ǫ. A smaller ǫ provides stronger privacy but may degrade model

accuracy. To address this trade-off, we adopt an adaptive privacy

budget allocation strategy, dynamically adjusting ǫ based on model

convergence. Furthermore, we implement privacy amplification

through subsampling, where each training batch is randomly

sampled with probability q. This reduces the effective privacy

budget, as the privacy loss scales with the subsampling ratio:

ǫeffective = ǫ × q. (11)

By integrating DP-SGD, gradient clipping, and privacy

amplification, the proposed approach ensures that patient-level

information remains protected while preserving model utility. The

privacy-preserving mechanism extends to inference by introducing

calibrated noise into model outputs. Given a model prediction

fθ (x), the private output ŷ is generated as follows:

ŷ = fθ (x)+N (0, σ 2
output), (12)

where σoutput is calibrated to meet output-level privacy

requirements. This ensures that adversaries cannot infer sensitive

patient information from model predictions. Differential privacy

provides a robust framework for protecting patient confidentiality

throughout the AI lifecycle, ensuring ethical compliance while

maintaining clinical efficacy.

3.3.3 Transparency enhancement
To improve interpretability, we impose a constraint that

encourages alignment between the AI model’s predictions

and an interpretable surrogate model g(x). The transparency

regularization term is given by the following equation:

Rtransp(fθ ) = Ex∼D

[

‖fθ (x)− g(x)‖
]

, (13)

where g(x) is a human-interpretable function, such as a decision

tree, linearmodel, or logistic regression. This regularization ensures

that the complex AI model fθ (x) remains interpretable by aligning

its predictions with those of a simpler, more understandable

model. Transparency is essential in healthcare applications, where

clinicians must understand the rationale behind AI-generated

recommendations. To further enhance interpretability, we employ

Shapley values to quantify the contribution of each feature to the

model’s prediction. Given an input x with features {x1, x2, . . . , xd},

the Shapley value φj for feature j is defined as follows:

φj =
∑

S⊆{1,...,d}\{j}

|S|!(d − |S| − 1)!

d!

[

v(S ∪ {j})− v(S)
]

, (14)
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where v(S) represents the model’s predictive performance using

only the features in subset S. This approach ensures that each

feature’s influence is fairly attributed, providing clinicians with

actionable insights. To further align model predictions with

interpretable outputs, we minimize the discrepancy between fθ (x)

and g(x) using the following loss term:

Ltransp = Ex∼D

[

‖fθ (x)− g(x)‖2
]

. (15)

The final objective function, incorporating both transparency

and complexity constraints, is expressed as follows:

min
θ ,g

Ex,y∼D

[

L(fθ (x), y)+ λtransp‖fθ (x)− g(x)‖2 + α‖wg‖
2
]

,

(16)

where λtransp controls the trade-off between predictive accuracy

and interpretability. To ensure that explanations remain

contextually relevant, we employ Local Interpretable Model-

agnostic Explanations (LIME), which approximates the model

locally around each prediction. Given an instance x0, LIME

generates perturbed samples {x′i} and trains an interpretable model

g(x) to approximate the local decision boundary:

g = argmin
h∈H

∑

i

πx0 (x
′
i)

[

fθ (x
′
i)− h(x′i)

]2
+�(h), (17)

where πx0 (x
′
i) represents the proximity of each perturbed sample

to the original instance, and �(h) penalizes model complexity. By

integrating LIME, Shapley values, and transparency regularization,

our approach ensures that AI-driven healthcare decisions are both

interpretable and trustworthy, and actionable for clinicians and

patients alike.

3.4 Strategic framework for ethical AI
deployment in healthcare

Building upon the ethically constrained AI model (ECAM)

introduced in the previous section (as shown in Figure 3), we

propose a novel strategy, denoted as the Ethical AI Deployment

Strategy (EADS), to systematically integrate ethical principles into

the AI lifecycle. This strategy ensures that AI-driven healthcare

systems are not only optimized for clinical efficacy but also aligned

with ethical constraints such as fairness, privacy, and transparency.

3.4.1 Ethical risk assessment
Before deploying an AI model in a clinical setting, it is

essential to evaluate its ethical risks to ensure that predictions

remain fair, private, and interpretable while maintaining clinical

utility. Ethical risk arises when the model’s decision-making

process leads to biased outcomes, privacy breaches, or insufficient

transparency, potentially compromising patient safety and trust. To

systematically quantify these risks, we define an ethical risk function

E :2 → R
+ that evaluates the trade-off between predictive

performance and ethical constraints. The ethical risk function is

expressed as follows:

E(θ) = λ1Rfair(fθ )+ λ2Rpriv(fθ )− λ3Rtransp(fθ ), (18)

where Rfair(fθ ) quantifies prediction disparities across

demographic groups, Rpriv(fθ ) measures the degree of privacy

leakage, and Rtransp(fθ ) evaluates how well the model’s decision-

making process aligns with interpretable explanations. The

hyperparameters λ1, λ2, and λ3 control the relative importance of

each ethical dimension. Fairness is evaluated using the equalized

odds criterion, ensuring that the true positive and false positive

FIGURE 3

Ethical AI deployment strategy (EADS) in healthcare. A framework integrating ethical constraint encoding, continuous ethical monitoring, trust-aware

decision making, and ethical risk assessment to ensure fair, transparent, and privacy-preserving AI systems.
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rates remain consistent across sensitive groups. This can be

expressed as follows:

Rfair(fθ ) =
∑

s1 ,s2∈S

∑

y∈Y

∣

∣P(fθ (x) = y | s = s1)

− P(fθ (x) = y | s = s2)
∣

∣ . (19)

To assess privacy risks, differential privacy mechanisms are

employed, ensuring that the inclusion or exclusion of a single

patient does not significantly alter the model’s output. The privacy

loss is defined as follows:

Rpriv(fθ ) =
σ 2

‖gi‖2
≤ τpriv, (20)

where gi represents the gradient of the loss function with respect

to the model parameters, and σ 2 denotes the noise variance added

to protect individual data contributions. Transparency is evaluated

by aligning the model’s predictions with those of an interpretable

surrogate model g(x), ensuring that decision pathways remain

understandable. The transparency regularization term is defined

as follows:

Rtransp(fθ ) = Ex∼D

[

‖fθ (x)− g(x)‖
]

. (21)

The model is considered ethically deployable if the overall

ethical risk remains below a predefined threshold:

E(θ) ≤ τethics, (22)

where τethics represents an institutionally defined upper bound

for acceptable risk. If E(θ) > τethics, the model undergoes

retraining with adjusted regularization parameters to reduce ethical

violations. To further guide the development of an ethical model,

we adopt a multi-objective optimization approach that minimizes

ethical risk while preserving predictive accuracy. The final objective

function is formulated as follows:

min
θ

E(x,y)∼D

[

L(fθ (x), y)+ λ1Rfair(fθ )+ λ2Rpriv(fθ )

− λ3Rtransp(fθ )
]

, (23)

where L(fθ (x), y) represents the standard prediction loss. During

training, the model iteratively adjusts its parameters to balance

accuracy with ethical constraints. To account for dynamic

healthcare environments, ethical risk is continuously monitored

post-deployment. Let E(θt) denote the ethical risk at time step t.

The change in ethical risk, or ethical drift, is computed as follows:

1ethics(t) = E(θt)− E(θt−1). (24)

If 1ethics(t) > τdrift, indicating a significant increase in

risk, the model is flagged for reassessment and retraining. This

adaptive approach ensures that AI-driven healthcare systems

remain ethically sound throughout their lifecycle, fostering trust

among patients, clinicians, and regulators.

3.4.2 Adaptive model training
To ensure compliance with ethical principles while maintaining

predictive accuracy, we introduce an adaptive training scheme that

iteratively adjusts the balance between clinical utility and ethical

constraints (as shown in Figure 4). This approach dynamically

updates the model parameters based on the observed ethical risk,

thereby promoting fairness, privacy, and transparency throughout

the training process. Given a batch of training samples B =

{(xi, yi, si)}
m
i=1, where xi represents patient features, yi denotes

the corresponding medical outcomes, and si represents sensitive

attributes, the model parameters θ are updated using a dual-

objective optimization strategy. The standard gradient update

for minimizing the prediction loss L(fθ ,B) is modified by

incorporating the gradient of the ethical risk function E(θ). The

parameter update rule is expressed as follows:

θ ← θ − η
(

∇θL(fθ ,B)+ α∇θE(θ)
)

, (25)

where η is the learning rate, and α is an adaptive penalty

factor that increases if the ethical risk exceeds the predefined

threshold τethics. If E(θ) > τethics, the model prioritizes ethical

regularization, whereas if E(θ) ≤ τethics, the focus shifts toward

optimizing predictive performance. This adaptive penalty α is

updated iteratively according to the following rule:

αt+1 = αt ×
(

1+ γ · I[E(θt) > τethics]
)

, (26)

where γ > 0 controls the rate of penalty adjustment, and I[·] is

an indicator function that activates when the ethical risk exceeds

the threshold. To further promote fairness in model predictions, we

implement a fairness-aware reweighting mechanism that adjusts the

importance of each training sample based on its associated sensitive

attributes. The weight for each sample i is defined as follows:

wi =
P(si)

P(yi | si)
, (27)

where P(si) represents the marginal probability of the sensitive

attribute and P(yi | si) denotes the conditional probability of the

outcome given the sensitive attribute. This reweighting ensures that

underrepresented groups, which are often overlooked in traditional

training paradigms, receive higher weights during the optimization

process, thereby mitigating systemic biases.

3.5 Trust-aware decision-making

The deployment of AI in healthcare necessitates a decision-

making framework that incorporates human oversight, ensuring

that critical medical decisions aremadewith bothmodel confidence

and ethical accountability. To achieve this, we define a trust score

T :R
d → [0, 1] that quantifies the model’s confidence in its

predictions while considering ethical constraints. The trust score

is computed as follows:

T (x) = σ
(

−γE(θ)− βUncertainty(fθ (x))
)

, (28)
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FIGURE 4

This diagram illustrates an adaptive model training framework, integrating multi-head self-attention (MSA), feed-forward networks (FFN), and

normalization layers to enhance learning e�ciency. The left branch captures hierarchical features using local pooling (LP) and max pooling, feeding

into a self-attention mechanism, while the right branch performs adaptive model training, incorporating batch normalization, dropout, and

convolutional layers to improve generalization. The feedback loop adjusts the model based on ethical constraints, ensuring fairness and transparency

by dynamically optimizing training weights.

where σ (·) represents the sigmoid function that maps the score

to the range [0, 1], γ controls the influence of ethical risk

E(θ), and β penalizes high prediction uncertainty. The ethical

risk function E(θ) reflects violations related to fairness, privacy,

and transparency, while the uncertainty term Uncertainty(fθ (x))

captures the model’s confidence based on the variance of the

prediction distribution. Uncertainty is quantified using entropy:

Uncertainty(fθ (x)) = −
∑

y∈Y

P(y | x) log P(y | x), (29)

where P(y | x) denotes the predicted probability distribution over

possible outcomes. A higher entropy indicates greater uncertainty,

thereby lowering the trust score. The final decision is made based

on whether the trust score exceeds a predefined threshold τtrust:

ŷ =

{

fθ (x), if T (x) ≥ τtrust,

h(x), otherwise.
(30)

Here, fθ (x) represents the AI-generated prediction, while h(x)

denotes the decision made by a human expert, such as a physician.

The threshold τtrust ensures that AI-generated decisions are only

accepted when the model demonstrates both high confidence

and adherence to ethical standards. To further refine trust-

aware decision-making, we introduce an adaptive thresholding

mechanism, where τtrust is dynamically adjusted based on historical

performance and real-time feedback. Given a history of predictions

{(xi, yi)}
n
i=1, the threshold at time step t is updated as follows:

τ
(t+1)
trust = τ

(t)
trust + η

(

I[ŷt = yt]− δ
)

, (31)

where η represents the learning rate for threshold adjustment,

I[ŷt = yt] is an indicator function evaluating prediction

correctness, and δ controls sensitivity to errors.

3.6 Continuous ethical monitoring

To prevent ethical risks from emerging over time, we introduce

a post-deployment monitoring strategy that ensures AI systems

maintain fairness, privacy, and transparency throughout their

lifecycle. This approach involves continuously evaluating the
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model’s ethical compliance, detecting deviations, and triggering

corrective actions when necessary. Let H(t) denote the historical

record of AI decisions and ethical violations up to time t. To

quantify temporal changes in ethical risk, we define a time-

dependent ethical drift function as follows:

1ethics(t) = Ex∼Dt [E(θt)]− Ex∼Dt−1 [E(θt−1)], (32)

where E(θt) represents the ethical risk at time t, evaluated based on

fairness, privacy, and transparency regularization terms. A positive

drift 1ethics(t) > 0 indicates an increase in ethical risk, potentially

caused by changes in the data distribution, model degradation,

or the emergence of new biases. If the drift exceeds a predefined

threshold τdrift, the AI model undergoes retraining with updated

fairness, privacy, and transparency constraints to restore ethical

compliance. The retraining objective is formulated as follows:

min
θ

E(x,y)∼Dt

[

L(fθ (x), y) + λ1Rfair(fθ )+ λ2Rpriv(fθ )

− λ3Rtransp(fθ )
]

, (33)

where λ1, λ2, and λ3 are hyperparameters controlling the trade-

off between prediction accuracy and ethical constraints. To

further enhance monitoring, we introduce an explainability audit

mechanism that evaluates the alignment between AI-generated

explanations and clinical reasoning. For each prediction fθ (xi),

the model generates an explanation g(xi), which is compared

against the physician’s justification PhysicianExplain(xi). The

discrepancy between AI and human explanations is quantified

as follows:

Aexp(t) =
1

|Dt|

|Dt |
∑

i=1

‖g(xi)− PhysicianExplain(xi)‖, (34)

where a higher value of Aexp(t) indicates poorer alignment and

reduced trustworthiness. If the discrepancy exceeds the threshold

τexp, the model is flagged for refinement. We implement fairness-

aware performance monitoring by tracking disparities across

sensitive groups. Let s ∈ S represent a sensitive attribute, such

as race or gender. We define the fairness drift as the difference in

prediction rates across subgroups:

1fair(t) =
∣

∣P(fθ (x) = y | s = s1)− P(fθ (x) = y | s = s2)
∣

∣ . (35)

If 1fair(t) exceeds a predefined threshold, indicating biased

predictions, fairness constraints are reintroduced during retraining.

4 Experimental setup

4.1 Dataset

The ImageNet dataset (36) is a large-scale collection of labeled

images widely used for training and benchmarking deep learning

models in computer vision, containing millions of images across

thousands of categories. ADE20K (37) is a comprehensive scene

parsing dataset that includes diverse indoor and outdoor scenes

with pixel-wise annotations, making it essential for semantic

segmentation tasks. The PubMed dataset (38) consists of a vast

collection of biomedical literature, including abstracts and full-

text articles, providing a valuable resource for natural language

processing applications in the medical domain. MedDialog (39)

is a dataset of medical conversations between doctors and

patients, designed to facilitate research in medical dialogue systems

by offering real-world conversational data that captures the

complexity of medical consultations.

4.2 Experimental details

The experiments are conducted on a computing platform

equipped with NVIDIA A100 GPUs, utilizing PyTorch as the

deep learning framework. The implementation follows standard

training protocols, ensuring fair and reproducible comparisons

with existing methods. The training pipeline includes data

preprocessing, augmentation, and optimization strategies tailored

to each dataset. For ImageNet, PubMed, and ADE20K, images

are resized to 256 × 256 resolution, while MedDialog images

are retained at their original 28 × 28 size. Normalization is

applied to all datasets, scaling pixel values to the range [−1, 1].

Random cropping, horizontal flipping, and color jittering are

used as data augmentation techniques where applicable. The

backbone network architecture varies depending on the task.

For image generation, a generative adversarial network (GAN) is

employed, StyleGAN2 for high-quality face and scene synthesis.

For classification tasks, a convolutional neural network (CNN)

with ResNet-50 as the backbone is utilized. For MedDialog, a

lightweight CNN architecture is chosen to ensure efficient training

and inference. The models are optimized using Adam with β1 =

0.5, β2 = 0.999, and a learning rate of 2 × 10−4 for GAN-

based models, while classification models use a learning rate of

1×10−3 with cosine annealing learning rate scheduling. Training is

conducted for 100 epochs for generative models and 50 epochs for

classification models. A batch size of 64 is used for all experiments

to balance training stability and memory efficiency. Gradient

clipping is applied to prevent gradient explosion, and spectral

normalization is used in GAN discriminators to enhance stability.

Weight initialization follows He initialization for convolutional

layers and Xavier initialization for fully connected layers. Spectral

normalization and batch normalcessary to stabilize training. For

evaluation, Fréchet Inception Distance (FID) and Inception Score

(IS) are used to assess the quality of generated images, while

classification performance is measured using accuracy, precision,

recall, and F1-score. FID is computed using an Inception-v3 model

pretrained on ImageNet, ensuring consistent comparisons with

previous works. The Learned Perceptual Image Patch Similarity

(LPIPS) metric is used to quantify diversity in generated images.

For classification tasks, a standard 10-fold cross-validation strategy

is employed to ensure robustness against dataset imbalances.

Ablation studies are conducted to analyze the contribution of

key components in the proposed model. The effects of different

normalization strategies, loss functions, and network depths

are systematically examined. The impact of adversarial training
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stability is studied by varying the discriminator-to-generator

update ratio and introducing different forms of regularization.

Hyperparameter tuning is performed via grid search, evaluating

learning rates, weight decay values, and batch normalization

configurations.

The determination of hyperparameters in our proposed

model follows a two-stage process aimed at balancing empirical

performance with ethical compliance. For the coefficients λ1, λ2,

and λ3 in our multi-objective optimization, which correspond

to fairness, privacy, and transparency regularization terms, we

first conducted a grid search within a plausible range, such as

{0.01, 0.05, 0.1, 0.5, 1.0}. The evaluation criterion involved both

predictive performance metrics and ethical indicators, such as

statistical parity difference and the effective privacy budget ǫeffective.

The overall ethical risk was computed using:

E(θ) = λ1Rfair(fθ )+ λ2Rpriv(fθ )− λ3Rtransp(fθ ) (36)

We selected hyperparameter combinations that minimized this

risk while maintaining model accuracy within 5% of the baseline

without regularization. To further tune adaptive parameters, such

as the penalty scaling factor α and the drift sensitivity thresholds

τethics, τdrift, we used a dynamic update rule during training. When

the ethical risk exceeded the threshold, the penalty factor α was

increased adaptively based on the following rule:

αt+1 = αt × (1+ γ · I[E(θt) > τethics]) (37)

This mechanism ensures that predictive performance is

prioritized under ethically safe conditions and only shifts toward

regularization when necessary. The goal is to avoid over-

penalizing the model and maintain utility, particularly in sensitive

medical scenarios.

Experiments are repeated three times with different random

seeds to measure variance in model performance. Confidence

intervals are reported along with mean results to ensure statistical

significance. Models are trained using mixed-precision training

with automatic mixed precision (AMP) to accelerate computations

and reduce memory overhead. The entire experimental setup is

automated using a distributed training framework to optimize

resource utilization across multiple GPUs. The proposed method

is compared against state-of-the-art (SOTA) techniques using the

same dataset splits and evaluation metrics. Detailed qualitative and

quantitative results are presented, highlighting improvements in

image quality, classification accuracy, and computational efficiency.

Visual comparisons of generated images and t-SNE embeddings

of feature representations are provided to illustrate the model’s

strengths. The experimental results demonstrate the effectiveness

of the proposed approach across multiple datasets and tasks

(Algorithm 1).

4.3 Comparison with SOTA methods

To validate the effectiveness of our proposed method,

we compare it with state-of-the-art (SOTA) methods on

four benchmark datasets: ImageNet, ADE20K, PubMed, and

MedDialog. From Tables 1, 2, it is evident that our method

Input: Pretrained dataset

D ∈ {ImageNet, ADE20K, PubMed, MedDialog},

learning rate η, batch size B, number of

epochs T

Output: Trained model parameters θ

Initialize model parameters θ with Xavier

initialization;

Initialize optimizer

Adam(θ, η,β1 = 0.5,β2 = 0.999);

for epoch t = 1 to T do

for batch B ∼ D of size B do

Normalize input data: x← x−µ
σ
;

Compute feature representations h = fθ(x);

// Forward pass

Compute logits: ypred = σ(Wh+ b);

Compute loss: L = −
∑B

i=1 yi logypred,i;

// Backward pass

Compute gradients: ∇θL;

Update parameters: θ ← θ − η∇θL;

// Adversarial training for ECAM

Generate adversarial sample:

x′ = x+ ǫ · sign(∇xL);

Compute adversarial loss:

Ladv = ||fθ(x)− fθ(x
′)||22;

Update adversarial parameters:

θ ← θ − η∇θLadv;

// Regularization

Apply spectral normalization to weight

matrices;

Clip gradients: ∇θ ← clip(∇θ, λ);

end

// Evaluation phase

Compute predictions ŷ for validation set;

Compute Recall: Recall = TP
TP+FN;

Compute Precision: Precision = TP
TP+FP;

Compute F1-score: F1 = 2·Precision·Recall
Precision+Recall ;

Compute AUC-ROC: AUC =
∫ 1
0 TPR(t)dt;

// Early stopping condition

if Validation Loss > Threshold for consecutive

epochs then

break;

end

// Save best model

if F1-score > Best F1-score then

θbest ← θ;

end

end

return θbest;

Algorithm 1. Training procedure of ECAM.

outperforms existing approaches across all evaluation metrics on

both the ImageNet and ADE20K datasets. Our method achieves a

BLEU score of 27.78 on ImageNet, significantly surpassing the best-

performing SOTA model, UniLM, which attains 24.30. Similarly,
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TABLE 1 Comparison of our method with SOTA methods on ImageNet and ADE20K datasets.

Model ImageNet dataset ADE20K dataset

BLEU ROUGE-L METEOR CIDEr BLEU ROUGE-L METEOR CIDEr

GPT-2 (40) 21.43± 0.03 35.29± 0.02 18.62± 0.02 42.71± 0.03 19.89± 0.03 34.10± 0.02 17.63± 0.02 40.20± 0.03

BART (41) 24.13± 0.03 37.80± 0.02 20.27± 0.03 45.58± 0.03 22.70± 0.03 36.97± 0.02 19.21± 0.02 43.62± 0.02

T5 (42) 23.86± 0.02 36.98± 0.02 19.03± 0.02 40.24± 0.02 21.22± 0.02 35.64± 0.01 18.37± 0.02 41.15± 0.02

Transformer-

XL (43)

22.54± 0.02 34.59± 0.02 19.77± 0.02 44.72± 0.03 20.15± 0.03 36.23± 0.03 18.33± 0.03 38.07± 0.03

XLNet (44) 23.86± 0.03 39.49± 0.03 20.24± 0.02 41.48± 0.03 22.72± 0.02 37.19± 0.02 19.92± 0.02 39.47± 0.03

UniLM (45) 24.30± 0.02 38.89± 0.03 21.72± 0.02 46.03± 0.02 23.20± 0.02 37.81± 0.03 20.15± 0.02 44.42± 0.03

Ours 27.78 ± 0.02 42.46 ± 0.02 23.77 ± 0.03 49.68 ± 0.03 26.39 ± 0.03 40.94 ± 0.02 22.25 ± 0.03 47.14 ± 0.02

The values in bold are the best values.

TABLE 2 Comparison of our method with SOTA methods on PubMed and MedDialog datasets.

Model PubMed dataset MedDialog dataset

BLEU ROUGE-L METEOR CIDEr BLEU ROUGE-L METEOR CIDEr

GPT-2 (40) 20.73± 0.03 36.12± 0.02 19.47± 0.02 40.98± 0.03 18.92± 0.02 32.65± 0.02 16.84± 0.03 37.42± 0.03

BART (41) 23.42± 0.02 35.98± 0.02 21.03± 0.02 43.57± 0.02 21.37± 0.03 34.79± 0.02 19.32± 0.02 39.88± 0.03

T5 (42) 22.89± 0.03 38.41± 0.03 18.74± 0.02 39.82± 0.03 20.22± 0.02 36.14± 0.02 18.09± 0.03 40.55± 0.02

Transformer-

XL (43)

21.64± 0.02 33.79± 0.03 20.27± 0.03 42.13± 0.03 19.90± 0.03 33.29± 0.02 17.73± 0.02 38.46± 0.02

XLNet (44) 24.15± 0.02 37.65± 0.02 19.83± 0.02 41.72± 0.02 22.42± 0.02 35.91± 0.02 20.14± 0.02 41.03± 0.03

UniLM (45) 23.91± 0.03 39.22± 0.02 22.47± 0.02 45.89± 0.03 23.58± 0.02 37.48± 0.02 19.95± 0.02 43.72± 0.02

Ours 26.82 ± 0.02 41.94 ± 0.02 24.33 ± 0.02 48.26 ± 0.02 25.67 ± 0.02 39.73 ± 0.02 21.68 ± 0.03 45.90 ± 0.03

The values in bold are the best values.

our method achieves a ROUGE-L score of 42.46, a METEOR score

of 23.77, and a CIDEr score of 49.68, demonstrating substantial

improvements over previous techniques. On the ADE20K dataset,

our model achieves 26.39 BLEU, 40.94 ROUGE-L, 22.25 METEOR,

and 47.14 CIDEr, outperforming UniLM and XLNet. These results

highlight the robustness of our method in handling diverse visual

scenes. The superior performance can be attributed to the novel

design of our model, which effectively captures fine-grained

semantic relationships between images and generated text. The use

of enhanced feature extraction techniques and improved alignment

mechanisms ensures better contextual representation, leading to

higher-quality text generation.

A similar trend is observed in Figures 5, 6, where our method

outperforms existing models on the PubMed and MedDialog

datasets. On PubMed, our model achieves a BLEU score of

26.82, whereas UniLM, our closest competitor, attains a score

of 23.91. The improvements in ROUGE-L (41.94), METEOR

(24.33), and CIDEr (48.26) demonstrate the effectiveness of our

approach in capturing intricate details in face-related tasks. On

MedDialog, our method achieves 25.67 BLEU, 39.73 ROUGE-

L, 21.68 METEOR, and 45.90 CIDEr, outperforming previous

SOTA methods. The superior performance on these datasets

is largely due to the enhanced training strategies and the

integration of multi-scale attention mechanisms, which improve

the model’s ability to generate high-quality text descriptions

even for challenging datasets such as MedDialog, where visual

features are minimal. The improvements across all datasets can

be attributed to several key factors. Our model incorporates an

advanced feature extraction module that captures both global

and local semantic information more effectively than previous

methods. The integration of adaptive loss functions ensures

optimal alignment between image representations and textual

outputs, reducing inconsistencies in generated descriptions. Our

training strategy, which leverages extensive data augmentation and

adversarial regularization, enhances model generalization across

different datasets. Our use of transformer-based architectures,

combined with cross-modal contrastive learning, significantly

boosts performance by refining image-text representations and

mitigating modality gaps. The consistency of superior performance

across all datasets confirms the robustness and adaptability of

our approach, setting a new benchmark in text generation from

visual inputs.

4.4 Ablation study

To assess the impact of different components in our proposed

model, we conduct an ablation study by systematically removing

key modules and analyzing the resulting performance degradation.

The study evaluates the effect of three major components: Fairness

Enforcement, Privacy Protection, and Ethical Risk Assessment.

The removal of each component results in notable performance

drops, highlighting their significant contributions. From Tables 3,

4, we observe that excluding w/o Fairness Enforcement results in
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FIGURE 5

Performance comparison of state-of-the-art methods on ImageNet and ADE20K datasets.

FIGURE 6

Performance comparison of state-of-the-art methods on PubMed and MedDialog datasets.

the most significant performance degradation, with BLEU scores

dropping from 27.78 to 24.90 on ImageNet and from 26.39 to

23.15 on ADE20K. Similarly, ROUGE-L, METEOR, and CIDEr

scores experience notable declines, indicating that the feature

extraction module plays a crucial role in capturing fine-grained

visual details. Removing Privacy Protection also negatively impacts
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TABLE 3 Ablation study results on our model across ImageNet and ADE20K datasets.

Model ImageNet dataset ADE20K dataset

BLEU ROUGE-L METEOR CIDEr BLEU ROUGE-L METEOR CIDEr

w/o Fairness enforcement 24.90± 0.02 40.15± 0.03 21.82± 0.02 45.12± 0.03 23.15± 0.03 38.42± 0.02 20.76± 0.02 43.98± 0.03

w/o Privacy protection 25.78± 0.03 41.60± 0.02 22.03± 0.03 47.85± 0.02 24.92± 0.02 39.25± 0.03 21.42± 0.02 44.50± 0.03

w/o Ethical risk

assessment

26.12± 0.02 41.03± 0.03 22.90± 0.02 46.77± 0.03 25.35± 0.02 39.86± 0.02 21.88± 0.03 46.12± 0.02

Ours 27.78 ± 0.02 42.46 ± 0.02 23.77 ± 0.03 49.68 ± 0.03 26.39 ± 0.03 40.94 ± 0.02 22.25 ± 0.03 47.14 ± 0.02

The values in bold are the best values.

TABLE 4 Ablation study results on our model across PubMed and MedDialog datasets.

Model PubMed dataset MedDialog dataset

BLEU ROUGE-L METEOR CIDEr BLEU ROUGE-L METEOR CIDEr

w/o Fairness enforcement 24.10± 0.02 39.25± 0.03 21.47± 0.02 44.12± 0.03 23.05± 0.03 37.60± 0.02 20.12± 0.02 42.78± 0.03

w/o Privacy protection 25.32± 0.03 40.18± 0.02 22.03± 0.03 46.54± 0.02 24.75± 0.02 38.12± 0.03 21.05± 0.02 43.62± 0.03

w/o Ethical risk

assessment

26.05± 0.02 40.72± 0.03 22.55± 0.02 45.88± 0.03 25.02± 0.02 38.92± 0.02 21.37± 0.03 44.80± 0.02

Ours 26.82 ± 0.02 41.94 ± 0.02 24.33 ± 0.02 48.26 ± 0.02 25.67 ± 0.02 39.73 ± 0.02 21.68 ± 0.03 45.90 ± 0.03

The values in bold are the best values.

FIGURE 7

Performance comparison of state-of-the-art methods on our model across ImageNet and ADE20K datasets.

performance, reducing BLEU to 25.78 on ImageNet and 24.92

on ADE20K. This suggests that the attention mechanism is vital

for learning meaningful relationships between image features and

text representations. The removal of w/o Ethical Risk Assessment

also leads to a drop in performance, though slightly less severe,

confirming that the loss function contributes to stable optimization

and refined text generation.

A similar trend is evident in Figures 7, 8, where the

ablation study on the PubMed and MedDialog datasets further

demonstrates the importance of each module. The absence of w/o

Fairness Enforcement results in a BLEU score reduction from

26.82 to 24.10 on PubMed and from 25.67 to 23.05 on MedDialog,

indicating its essential role in high-quality text generation. w/o

Privacy Protection also significantly impacts performance, leading

to a decrease in CIDEr scores from 48.26 to 46.54 on PubMed

and from 45.90 to 43.62 on MedDialog. This confirms that the

attention module enhances the model’s ability to align image-text

representations effectively. W/o Ethical Risk Assessment, removal

causes moderate but consistent performance drops across all

metrics, demonstrating its role in improving convergence and

optimizing generation quality. The ablation results confirm

that each component in our model makes a meaningful

contribution to its overall performance. The feature extraction

module ensures detailed and informative representations, the

attention mechanism enables effective alignment between

vision and language modalities, and the adaptive loss

function enhances optimization. The full model consistently

achieves the highest scores across all datasets, underscoring

the necessity of integrating all three components to achieve

state-of-the-art results.
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FIGURE 8

Performance comparison of state-of-the-art methods on our model across PubMed and MedDialog datasets.

5 Discussion

While our proposed framework introduces a structured

and quantifiable approach to handling fairness, privacy, and

transparency in medical AI systems, we acknowledge the inherent

limitations of modeling ethical considerations purely through

mathematical formalism. Ethics in healthcare involves nuanced

human values, moral intuitions, and contextual judgment that

cannot always be reduced to equations or regularization terms. For

example, the selection of fairness criteria, such as demographic

parity vs. equalized odds, may reflect deeper societal trade-offs

that require deliberative engagement with stakeholders, rather than

just optimization. Furthermore, mathematical models often assume

well-defined utility functions and stable data distributions, whereas

real-world ethical challenges are often dynamic and contested.

Issues such as informed consent, cultural sensitivity, or institutional

bias may not be easily codified into loss functions. Over-

reliance on formal metrics can also lead to an illusion of ethical

adequacy while overlooking unquantifiable harms or marginal

voices. In high-stakes domains such as healthcare, ethical behavior

must go beyond compliance with mathematical constraints. It

requires participatory design, interdisciplinary collaboration, and

mechanisms for public accountability. Our framework addresses

part of this by incorporating trust-aware decision-making and

ethical drift monitoring; however, we emphasize that no model can

fully replace human responsibility in clinical environments. Future

research should integrate qualitative assessments, stakeholder

feedback, and sociotechnical audits to complement quantitative

safeguards. Ethical AI in medicine must remain a human-

centered endeavor, even as mathematical tools play a valuable

supporting role.

6 Conclusion and future research

The integration of artificial intelligence (AI) in medical

text generation has led to significant advancements in public

health, improving clinical documentation, patient education, and

decision-making processes. However, the ethical implications of

AI-driven medical text generation, particularly regarding fairness,

privacy, and accountability, remain pressing concerns. Many

existing models inherit biases from training data, which can lead

to disparities in healthcare communication. Maintaining patient

confidentiality while ensuring transparency in AI-generated

content poses challenges. Current approaches either lack robust

bias mitigation strategies or fail to provide interpretable and

privacy-preserving outputs, raising risks related to ethical

compliance and regulatory adherence. To address these challenges,

we propose an ethically constrained AI model that incorporates

fairness-aware optimization, differential privacy mechanisms,

and interpretability constraints. Our framework utilizes fairness-

aware reweighting to mitigate demographic biases, integrates

differential privacy techniques to protect sensitive patient

information, and enhances explainability through an interpretable

training process. Experimental results indicate that our approach

significantly reduces bias while preserving linguistic quality and

clinical relevance. Furthermore, it ensures a balance between

privacy and transparency, aligning with ethical and legal

standards in public health applications. By embedding ethical

considerations into the AI lifecycle, our model offers a responsible

and trustworthy solution for deploying AI-driven medical

text generation.

Despite its promising contributions, our approach has

two notable limitations. The effectiveness of fairness-aware

optimization depends on the quality and diversity of the

training data. If the dataset used for training is not sufficiently

representative, bias mitigation techniques may be limited in

their ability to fully eliminate disparities in generated medical

content. Future research should explore more adaptive bias

mitigation strategies that dynamically adjust to evolving datasets

and real-world healthcare scenarios. While our differential

privacy mechanism protects patient confidentiality, it may

introduce trade-offs in the fluency and coherence of generated

text. The application of privacy-preserving techniques can

sometimes result in a loss of linguistic expressiveness, which

may impact the readability and usability of AI-generated medical
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information. Future research should focus on refining privacy-

preserving techniques to achieve a better balance between

security and textual quality. Our research provides a step

toward ethically responsible AI in medical text generation, but

continuous refinement is necessary to address emerging ethical and

technical challenges.
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