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Deep learning to promote health
through sports and physical
training

Xinyue Li*

Department of Sports, Nanjing Forestry University, Nanjing, China

Background: Physical activity plays a crucial role in maintaining health and

preventing chronic diseases. However, accurately assessing the impact of sports

and physical training on health improvement remains a challenge. Recent

advancements in deep learning and time-series analysis o�er an opportunity to

develop more personalized and accurate predictive models for assessing health

improvement trends.

Methods: This study proposes a Health Improvement Score (HIS) prediction

model based on a sequence-to-sequence deep learning architecture with Long

Short-Term Memory (LSTM) networks and an attention mechanism. The model

integrates heterogeneous time-series data, including physiological parameters

(heart rate, blood oxygen levels, respiration rate), activity metrics (steps, distance,

calories burned), sleep patterns, and body measurements. A dataset comprising

384 participants over a 32-day period was used to train and evaluate the model.

Results: The experimental results demonstrate that the proposed HIS prediction

model outperforms traditional and machine learning-based models. It achieves

22.8% lower Mean Absolute Error (MAE), 19.3% lower Root Mean Squared

Error (RMSE), 6.5% higher R2, and 7.9% higher Explained Variance Score (EVS)

compared to competitive models.

Conclusion: The proposed HIS prediction model e�ectively captures

complex temporal dependencies and improves the accuracy of health

improvement predictions.

KEYWORDS

deep learning, health improvement, sports science, physical training, time-series

analysis, artificial intelligence

1 Introduction

Deep learning and artificial intelligence (AI) have become powerful tools in public

health and sports science. The availability of wearable devices, mobile health applications,

and large-scale datasets has allowed AI-driven models to analyze physiological metrics,

activity patterns, and training behaviors. These insights help in designing personalized

fitness programs, optimizing training efficiency, and improving public health outcomes

(1). AI has been successfully used for evaluating physical training quality and predicting

individual performance in various sports-related tasks (2).

The integration of AI into physical education has also been explored in academic

and professional settings. For instance, studies on Denmark’s sports education strategy

emphasize the need for pedagogically competent physical training instructors who

incorporate motion-focused technologies in their teaching (3). Similarly, research on

university students in China found that while many students express interest in sports,

factors like academic stress and lack of resources prevent them from participating regularly
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(4). AI-driven personalized interventions can help address these

barriers by making training more accessible and tailored to

individual needs.

1.1 Background

Physical activity is essential for maintaining overall health.

However, there is a growing concern about declining fitness levels

among children, students, and the general population. A study

conducted in Japan analyzed 34 years of physical fitness data from

school students and found significant variations in performance

based on training methods and societal influences (5). Similarly,

research on children and young people in Ukraine indicated a

decline in the number of healthy students over time, emphasizing

the need for better sports and fitness programs in schools (6).

Traditional methods of physical education have often been

rigid and fail to consider individual differences in performance and

motivation. A study on college students’ engagement in physical

education classes found that fostering sports interest plays a

crucial role in sustaining long-term participation (7). AI-driven

approaches can help by personalizing training routines based

on individual fitness levels, psychological factors, and real-time

performance tracking (8).

The importance of technology in training is evident in various

domains. Research on firefighters showed that physical health

parameters such as VO2 max and muscular strength are strong

predictors of job-specific performance (2). Similarly, exergames, or

interactive fitness games, have been developed to maintain heart

rate levels and optimize training loads through AI-based adaptive

control (9). These examples highlight how AI can be used to create

tailored training regimens that improve physical performance and

health outcomes.

1.2 Related work

Many researchers have explored the application of deep

learning in evaluating and improving physical training. AI models

have been successfully used to assess public sports training quality

and optimize performance (1). The use of AI in sports training

is not limited to performance enhancement; it also extends to

healthmonitoring and injury prevention. For example, studies have

demonstrated that AI-driven models can predict injury risks by

analyzing movement patterns and biomechanical data (10).

Several studies have focused on the psychological and

motivational aspects of physical training. A study on Moroccan

high school students found that commitment is a crucial

mental skill that influences performance in physical education

and sports (8). This finding suggests that AI-based training

programs should incorporate motivational strategies to enhance

adherence and engagement. Another study emphasized the

role of mental resilience in sports training, showing that

psychological preparedness significantly affects physical

performance outcomes (11).

In addition to structured sports programs, AI has been applied

in specialized physical activities. For example, dance training

has been shown to improve motor functions and well-being in

patients with Parkinson’s disease (12). Similarly, studies on Pilates

and Bodyflex techniques have demonstrated their effectiveness

in enhancing psychophysiological capabilities among students

(13). AI can further optimize these training methodologies by

analyzing movement efficiency and recommending personalized

exercise modifications.

Educational environments also play a critical role in shaping

physical health habits. Research on school health approaches

suggests that integrating structured fitness programs into the

curriculum can improve students’ overall well-being (14). Similarly,

the use of health-saving technologies in teacher training programs

has been identified as an effective way to promote physical activity

among younger generations (15).

Although classical time-series methods such as ARIMA (16)

and SARIMA (17) excel at modeling single-variable trends, they

cannot fuse multiple feature streams. Support-Vector Regression

(SVR) (18) and hybrid ARIMA-SVR (19) introduce nonlinearity

but still treat physiological, activity, and sleep series independently.

Likewise, deep-learning approaches–including plain LSTM

(20), GRU (21), and CNN-LSTM (22) architectures–capture

sequential dependencies but rarely integrate heterogeneous

inputs or dynamically highlight the most informative time

steps. Consequently, none of these prior models fully exploits

the rich, multi-domain data now available from wearable

platforms, motivating our multi-domain, attention-based

sequence-to-sequence framework.

1.3 Gaps in literature

Existing approaches to health-forecasting often excel

within a single data modality but falter when faced with

today’s rich, multi-domain streams. Classical statistical

models, ARIMA (16) and SARIMA (17), capture univariate

trends effectively but cannot fuse heterogeneous inputs

such as physiological, activity, and sleep metrics. Hybrid

methods like ARIMA-SVR (19) introduce nonlinear fitting

for individual series, yet still treat each feature domain

in isolation.

Deep-learning architectures (plain LSTM (20), GRU (21), and

CNN-LSTM (22)) advance beyond manual feature engineering

by learning temporal dependencies, but they typically perform

only early- or late-fusion via feature concatenation. This simplistic

merging ignores domain-specific noise characteristics and fails

to differentiate critical events–e.g. acute heart-rate spikes during

intense exercise or phases of fragmented sleep–which may carry

outsized importance for health predictions.

Attention mechanisms have revolutionized sequence modeling

in NLP and vision (23), enabling dynamic weighting of input

elements based on learned relevance. However, their application

to multi-modal health time series remains scarce. Few works

adapt attention to align and prioritize disparate physiological and

behavioral streams, and none provide an end-to-end framework

that both synchronizes multi-domain inputs and generates

interpretable attention profiles in the context of personalized

health forecasting.
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Taken together, these gaps underscore the need for a

unified, attention-driven sequence-to-sequence model that can

(1) seamlessly fuse diverse time-series domains, (2) automatically

highlight the most predictive temporal events, and (3) offer

transparency into which days and metrics drive each individual’s

HIS predictions.

1.4 Reserach motivation

Despite growing interest in AI-driven health forecasting,

existing approaches such as ARIMA (16), SVR (18), and even

standard LSTM models (20) generally treat each data modality in

isolation, focusing only on physiological signals, activity counts, or

sleep metrics. In addition, these methods apply a uniform temporal

weighting in all time steps, making them ill suited to detect

and leverage anomalous or particularly informative intervals (for

example, an acute heart rate spike or a night of severely disrupted

sleep). As a result, they do not fully exploit the heterogeneous

streams of data now available from modern mobile and wearable

health platforms and offer limited interpretability for personalized

intervention design.

In contrast, our proposed Health Improvement Score (HIS)

predictor combines multidomain time series: heart rate, blood

oxygen levels, step counts, sleep phase distributions, and periodic

body measurements into a single sequence-to-sequence LSTM

architecture. By embedding an attention mechanism between

the recurrent layers and the final output, the model learns to

dynamically assign higher weights to the most predictive time steps

and feature channels.

1.5 Contributions

The proposed HIS prediction model introduces several novel

elements to improve health assessment through deep learning. The

key contributions of this paper are as follows.

1. A novel sequence-to-sequencemodel is designed to capture both

short-term and long-term temporal dependencies in health-

related data.

2. An integrated attention mechanism is also used to dynamically

weighs different time steps. This allows the proposed model to

focus on the most relevant physiological and activity patterns.

3. The proposed model effectively combines heterogeneous data

sources, such as physiological, activity, sleep, and body metrics.

4. To ensure personalized fitness plans and sustainable health

benefits, AI-based recommendations are provided to optimize

sports and physical training.

2 Proposed Health Improvement
Score (HIS) prediction model

2.1 Dataset

The dataset for this research comprises comprehensive

physiological, activity, sleep, and body metrics collected from 384

participants over a period of 32 days. Participants were selected

following a rigorous recruitment process detailed in Figure 1, which

outlines the Participant Recruitment and Selection Criteria. The

demographic distribution includes 207 males and 177 females,

with an average age of 37 years. This diverse sample ensures a

robust representation for the study’s objectives. Participants with

pre-existing cardiovascular, respiratory, or metabolic disorders

were excluded to avoid confounding effects on physiological

measurements. Any individual whose record contained more than

20%missing values across the 32-day period was also removed. The

remaining gaps were imputed via forward-fill.

Figure 2 illustrates all features of the dataset, including the

target variable, providing a comprehensive overview of the data

used for analysis. Together, these features form a multidimensional

dataset designed to evaluate the interplay between various health

determinants and the resulting perceived health improvement.

2.1.1 Physiological features
Physiological data were meticulously gathered to assess health

and fitness indicators. Heart rate (HR) measurements include

resting HR, average HR during activity, and HR variability,

providing insights into cardiovascular fitness and autonomic

nervous system regulation. Blood oxygen levels (SpO2) were

monitored during physical activity to assess oxygen uptake

efficiency. Respiration rate data captured breathing patterns during

both rest and exercise, while body temperature measurements

recorded fluctuations in skin and core temperatures during

various activities.

2.1.2 Activity features
Activity-related metrics aimed to capture participants’

movement patterns and energy expenditure. These features include

total steps and step intensity per day, total distance traveled during

daily movement or workouts, and calories burned, estimated based

on the type and intensity of activity. Additionally, activity duration

captured the time spent in moderate or intense physical activities,

while posture detection recorded time spent sitting, standing, or

lying down.

2.1.3 Sleep features
Sleep data were integral to understanding participants’ recovery

and overall well-being. Features include total sleep duration (hours

per night) and the percentage distribution of sleep phases, such

as deep sleep, light sleep, and REM sleep. Sleep interruptions,

measured as the number of wake-ups or disturbances during sleep,

provided further insight into sleep quality.

2.1.4 Body features
Body-related metrics included body weight, measured

periodically during the study, and body mass index (BMI),

calculated based on participants’ weight and height. These features

offered additional context for evaluating physical health trends

over the study period.
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FIGURE 1

Flowchart illustrating the recruitment and selection process for study participants, including inclusion and exclusion criteria.

2.1.5 Target variable: Health Improvement Score
(HIS)

The Health Improvement Score (HIS), the target variable,

serves as a subjective measure of overall well-being. Participants

self-reported their perceived health improvement on a Likert

scale from 1 to 10, where 1 indicates no perceived improvement

and 10 represents significant perceived improvement. This score

encapsulates changes in physical, mental, and overall health over

the study duration.

2.2 Proposed HIS prediction model

To predict the HIS, a novel time-series-based deep learning

model was designed. This model uses the temporal relationships

in the dataset’s physiological, activity, sleep, and body features

collected over the study period. The following section provides a

detailed description of the proposed model.

The HIS prediction model is a sequence-to-sequence time-

series network specifically tailored for health-related temporal

datasets. The proposed model incorporates several elements that

distinguish it from traditional time-series predictive models. With

five layers, the proposed deep LSTM model captures complex

hierarchical temporal dependencies in the data. This enables

better feature representation across different time scales. The

integration of an attention mechanism enables the proposed model

to dynamically focus on themost relevant time steps. This improves

its ability to capture key temporal patterns in health data.

The proposed model is tailored to fuse heterogeneous data

types (e.g., physiological, activity, sleep, and body features). It helps

the proposed model to capture cross-domain interactions critical

for health prediction tasks. Finally, a modified regularization

technique, DropConnect (24), is applied to the recurrent layers.

This enhances the generalization ability of the model without

overfitting. The attention weights provide interpretable insights

into the contribution of various features and time steps to

the prediction. This aids in the understanding of health

improvement trends.

Overall, the proposed architecture can be decomposed to

following layers.

• Input layer: time-series data from all features, structured as

X = {x1, x2, . . . , xT}, whereT is the total number of time steps.

• Recurrent layers: five stacked Long Short-Term Memory

(LSTM) (25, 26) layers are used to capture both short-term

and long-term dependencies in the time-series data. The state

of the LSTM is updated as:

ht = LSTM(xt , ht−1, ct−1), (1)

where ht is the hidden state, ct is the cell state, and xt is the

input at time step t.

• Attention mechanism: an attention mechanism (23) is

integrated into the final LSTM output to dynamically weigh

the importance of different time steps in predicting the HIS.

The attention mechanism enables the model to automatically

identify and focus on the most informative time steps, such as
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FIGURE 2

The dataset features, categorized into physiological, activity, sleep, and body metrics, along with the target variable, i.e., Health Improvement Score

(HIS).

days with sudden spikes in heart rate or unusually poor sleep,

by assigning them higher weights in the context computation.

This dynamic weighting both boosts predictive accuracy and

yields interpretable insights into which temporal events most

influence each individual’s HIS. The attention scores are

computed as:

αt =
exp (h⊤t WahT)∑T
k=1 exp (h

⊤
k
WahT)

, (2)

where αt is the attention score for time step t, and Wa is the

attention weight matrix. The final context vector is:

c =

T∑

t=1

αtht . (3)

• Fully connected layers: dense layers are applied to the context

vector to learn feature interactions and produce a scalar

output:

ŷ = σ (Wc+ b), (4)

where ŷ is the predicted HIS, W is the weight matrix, b is the

bias vector, and σ is the activation function.

2.2.1 Loss function
The model uses a composite loss function that combines Mean

Squared Error (MSE) with a temporal smoothness regularization

term. The loss function is defined as:

L =
1

N

N∑

i=1

(yi − ŷi)
2 + λ

1

T − 1

T−1∑

t=1

(ŷt − ŷt+1)
2, (5)

where N is the number of samples. yi is the true HIS value. ŷi is

the predicted HIS value. λ is a regularization weight to balance the

MSE and smoothness terms. T is the number of time steps in the

prediction window.

The second term penalizes abrupt changes between consecutive

predictions. This ensures smooth temporal outputs that better

reflect realistic health improvement trends.

2.2.2 Implementation details
The model was implemented using TensorFlow/Keras, a widely

used deep learning framework, due to its flexibility and ease

of use for designing complex neural network architectures. The

implementation involved:
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TABLE 1 Hyperparameter tuning results.

Parameter Range Selected value

Number of LSTM layers 3 to 6 5

Hidden units per layer 64 to 256 128

Learning rate 0.0001, 0.001, 0.01 0.001

Dropout rate 0.1 to 0.4 (increments of 0.1) 0.2

Batch size 32, 64, 128 64

• Data preprocessing: time-series data were normalized to a

range of [0, 1] to ensure faster convergence during training.

Missing values were imputed using forward-fill methods (27),

and temporal sequences were segmented into overlapping

windows to capture meaningful trends.

• Model training: training was conducted on a high-

performance NVIDIA A100 GPU with 40 GB of memory,

ensuring faster computations and enabling the use of larger

batch sizes. The Adam optimizer was employed for gradient-

based optimization, offering an adaptive learning rate for

stable training dynamics.

• Regularization techniques: to mitigate overfitting, Dropout

and DropConnect techniques were applied during training.

These methods randomly deactivated neurons and weights in

the LSTM and dense layers, promoting robust learning.

• Early stopping: early stopping was implemented with a

patience value of 10 epochs, monitoring validation loss to

prevent overtraining and improve generalization.

• Model checkpointing: the model weights with the best

validation loss were saved during training, ensuring optimal

parameters were retained for final evaluation.

2.2.3 Hyperparameter tuning
Hyperparameters were fine-tuned using a grid search approach

(28) to identify the optimal configuration for the model. The grid

search explored various combinations to select the most suitable

parameters for maximizing validation performance. The tuned

parameters and their respective ranges are shown in Table 1.

To determine the ideal model depth, we conducted a grid search

over 3-6 stacked LSTM layers (see Table 1). We found that 3- and

4-layer networks underfit the complex, multi-domain time-series–

yielding higher validation errors, while a 6-layer network, although

achieving very low training loss, showed signs of overfitting (a

growing train-validation gap and longer convergence times). The

5-layer configuration provided the best trade-off: it minimized

validation loss, converged efficiently, and kept computational cost

manageable on our A100 GPU. Consequently, we adopted five

LSTM layers for all reported experiments.

3 Performance analysis

The proposed and competitive models were implemented and

trained in a Python environment utilizing TensorFlow (version

2.11). Training was conducted on a high-performance computing

cluster equipped with an NVIDIA A100 Tensor Core GPU

featuring 40 GB of memory, a 64-core AMD EPYC processor,

and 256 GB of RAM, running on the Ubuntu 20.04. The

hyperparameters of the competitive models were determined

through a combination of trial-and-error experimentation and by

referencing the configurations reported in their respective papers.

3.1 Comparative analysis

The performance of eight models, including ARIMA (16), SVR

(18), ARIMA-SVR (19), SARIMA (17), LSTM (20), GRU (21),

CNN-LSTM (22), and the Proposed Model, was evaluated on three

key metrics. These metrics are Mean Absolute Error (MAE), Root

Mean Squared Error (RMSE), and the Coefficient of Determination

(R2). The results are visualized in the boxplots above, which

highlight the strengths and weaknesses of each model.

Figure 3 shows that the Proposed Model achieves a median

MAE of approximately 0.82. This is lower than all the competitive

models. While some variability is present, the overall distribution

of the proposed model is narrower. Traditional models such as

ARIMA and SVR show higher medians with broader variability.

Hybridmodels like ARIMA-SVR and deep learningmodels (LSTM,

GRU, CNN-LSTM) perform moderately well. However, they are

consistently outperformed by the proposed model.

Figure 4 highlights that the Proposed Model has a median

value of approximately 0.98. This demonstrates its superior ability

to minimize error. The performance of the proposed model

shows slightly higher variability compared to MAE. However, its

median RMSE remains significantly lower than traditional and

deep learning models. This indicates its robustness and reliability

across conditions.

Figure 5 reveals that the Proposed Model achieves a high

median value of 0.92 for R2. This metric reflects its strong ability to

explain variance in the target variable. Although all models have R2

values in the range of 0.87 to 0.94, the proposed model consistently

performs best. The narrow confidence intervals (notches) in the

proposed model suggest its predictions are more reliable than those

of the other models.

Figure 6 highlights theMBE performance. The ProposedModel

exhibits a lower median bias (closer to 0) that reflects reduced

systematic error compared to other models. Traditional models

(ARIMA, SVR) and hybrid models (ARIMA-SVR) exhibit higher

bias, while deep learning models show improved but still higher

variability. The proposed model’s narrow distribution indicates

greater consistency and reliability.

Figure 7 compares the EVS across models. The ProposedModel

achieves a median EVS of approximately 0.95. This demonstrates

the proposed model’s ability to explain the variance in the

prediction results. Traditional models (e.g., ARIMA, SVR) perform

less effectively, with lower EVS values and greater variability. Deep

learning models (e.g., LSTM, GRU, CNN-LSTM) show improved

EVS scores but remain outperformed by the proposed model,

whose narrow distribution signifies high reliability.

3.2 HIS score prediction

Figure 8 illustrates the trend of actual and predicted HIS values

over a 32-day period. It reflects the impact of sports and physical
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FIGURE 3

Mean Absolute Error (MAE) comparison of the Proposed Model with traditional and deep learning models.

FIGURE 4

Root Mean Squared Error (RMSE) comparison of the Proposed Model with traditional and deep learning models.

training on health improvement. The Proposed Model closely

tracks the actual HIS values, with minor deviations observed,

indicating high predictive accuracy. The figure also highlights the

average benefits of sports and physical training on health. Initially,

both types of training lead to noticeable improvements in HIS

scores, followed by a slight decline. Subsequently, the HIS scores

resume an upward trend, showcasing the sustained positive effects

of consistent training.

Figure 9 illustrates the predicted trend of HIS values

starting from Day 33. It reflects the model’s ability to

project long-term health improvement trends. The predicted

HIS values show a steady upward trajectory over time,

indicating sustained health benefits from consistent sports

and physical training interventions. It highlights the practical

applicability of the model in monitoring and guiding

health interventions.
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FIGURE 5

Coe�cient of Determination (R2) comparison of the Proposed Model with traditional and deep learning models.

FIGURE 6

Mean Bias Error (MBE) comparison of the Proposed Model with traditional and deep learning models.

The predicted HIS values display a generally upward trajectory

over time, with occasional periods of slower growth or slight

declines. This pattern reflects that as individuals continue regular

sports and physical activity, the rate of improvement in HIS may

not be as consistent as in the initial phases. This is because the body

becomes healthier and adapts to the routine, leading to diminishing

incremental gains.

The consistent upward and occasional downward trend in

HIS reflects the natural adaptation of the body to regular

sports and physical activities. As the body becomes healthier, the

rate of improvement slows, leading to fluctuations in progress.

This is a normal physiological response, where significant initial

gains taper off as the body reaches a more optimized state

of health.
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FIGURE 7

Explained Variance Score (EVS) comparison of the Proposed Model with traditional and deep learning models.

FIGURE 8

The trend of actual and predicted Health Improvement Score (HIS) values over a 32-day period.

4 Discussion and recommendations

4.1 Discussion

The findings of this study demonstrate the effectiveness of the

proposed HIS prediction model in accurately forecasting health

improvement trends based on sports and physical training data.

The integration of deep learning with time-series analysis has

enabled the model to capture complex temporal dependencies and

interactions among physiological, activity, sleep, and body metrics.

The results from performance evaluation show that the proposed

model outperforms traditional statistical models such as ARIMA,

as well as machine learning-based models like SVR and LSTM.

The boxplot analysis of key performance metrics, including

MAE, RMSE, and R2, highlights the superiority of the proposed

approach. The lower MAE and RMSE values indicate improved

prediction accuracy, while the higher R2 value confirms the model’s

ability to explain variance in health improvement scores effectively.
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FIGURE 9

The predicted trend of Health Improvement Score (HIS) values starting from Day 33.

The results further reveal that deep learning-based approaches,

particularly models utilizing attentionmechanisms, provide a more

reliable and adaptable solution for predicting HIS trends.

An important observation from the HIS trend analysis is

the dynamic nature of health improvement. The initial phase of

training yields noticeable gains, followed by periods of adaptation

where the rate of improvement slows. This aligns with physiological

principles where the body adapts to consistent training, leading

to reduced marginal gains over time. These findings emphasize

the need for periodically adjusting training programs to maintain

steady progress in health improvement.

Additionally, the proposed model offers a practical application

for health professionals, trainers, and policymakers. By using

AI-driven insights, customized training programs can be

developed, focusing on an individual’s specific needs. This

personalized approach ensures that interventions are both effective

and sustainable.

4.2 Recommendations

Based on the findings of this study, several recommendations

can be made to further improve health monitoring and

personalized fitness interventions:

1. Personalized training adjustments: the model indicates

diminishing returns in health improvement over time. Fitness

trainers and health professionals should adapt training

programs by incorporating variations in intensity, duration,

and exercise type to maximize long-term benefits.

2. Integration with wearable devices: the proposed model can be

further enhanced by integrating real-time data from wearable

health monitoring devices. This would allow continuous

tracking and real-time feedback, leading to more dynamic and

responsive health interventions.

3. Multi-population studies: while the current dataset includes

a diverse set of participants, future research should explore

the effectiveness of the model across different age groups,

fitness levels, and medical conditions. This would improve the

generalizability of the model’s predictions.

4. AI-based health applications: the proposed model can be

deployed as a mobile or web-based application, enabling

individuals to track their health improvement scores in real

time. AI-based recommendations can further guide users in

optimizing their fitness routines.

4.3 Limitations

Despite the promising results, there are several limitations to

this study that should be acknowledged:

1. Limited duration of study: the dataset used in this study

spans 32 days, which may not fully capture long-term health

improvement trends. A longer study period would allow for

more comprehensive analysis of sustained training effects.

2. Dependence on self-reported HIS: the target variable (i.e.,

HIS) is based on self-reported perceptions. This may introduce

subjective bias. Future research should explore objective

biomarkers to validate the HIS.

3. Generalizability to different populations: the study sample,

while diverse, may not represent all demographic groups.

Factors such as age, pre-existing health conditions, and

genetic predispositions could influence health improvements

differently.

4. Computational complexity: the deep learning architecture,

particularly with attention mechanisms and multiple LSTM

layers, requires high computational resources. This may

limit real-time deployment on low-power devices such as

smartphones or fitness wearables.
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5 Conclusions and future outlook

This study proposes an HIS prediction model using LSTM

networks with an attention mechanism to analyze temporal

health trends influenced by sports and physical training. The

proposed model integrates physiological, activity, sleep, and

body metrics to provide accurate and interpretable predictions

of health improvement. By incorporating LSTM networks

and an attention mechanism, the model captures complex

temporal dependencies and ensures a personalized and adaptive

approach to health monitoring. The proposed model is compared

against ARIMA, SARIMA, SVR, LSTM, GRU, and CNN-LSTM

using MAE, RMSE, R2, and EVS. The experimental results

demonstrate that HIS model achieves 22.8% lower MAE,

19.3% lower RMSE, 6.5% higher R2, and 7.9% higher EVS

compared to competitive models. Furthermore, the HIS trend

analysis reveals that consistent training leads to sustained

health benefits, with initial rapid improvements followed by

adaptation phases. This finding supports the need for dynamic

and personalized fitness programs to maintain long-term

health progress.

For future research, several key directions are suggested:

1. Extended longitudinal studies: future studies should involve

extended monitoring periods (e.g., 6 months to 1 year) to

analyze the long-term impact of sports and physical training on

health improvement.

2. Hybrid AI models: the integration of reinforcement learning

or hybrid deep learning models (e.g., Transformer-based

architectures) can further enhance prediction accuracy and

adaptability.

3. Real-time implementation: developing real-time prediction

systems using cloud-based can make the model accessible to a

broader audience.

4. Multimodal data fusion: incorporating additional

health indicators such as diet, stress levels, and genetic

predispositions can improve the robustness of the HIS

prediction model.

5. Ethical and privacy considerations: as AI-based health

applications grow, ensuring data privacy, ethical AI use, and

regulatory compliance will be critical areas of focus.
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