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Application of artificial 
intelligence in the analysis of 
asbestos fibers
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Automated asbestos fiber detection and identification has been the goal of 
asbestos microscopists for decades. The advent of inexpensive memory, fast 
digital processing, machine learning, and microscope automation provide the 
enabling platform for success. This paper will review recent developments in fiber 
detection and identification by PCM and SEM and will present recent progress in 
employing artificial intelligence in the TEM classification of asbestos and non-
asbestos amphiboles in the evaluation of elongated minerals in raw materials. To 
date, this project has been self-funded.
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1 Background

Background and rationale: two topics have been the subject of numerous meetings and 
publications: namely, what properties should define an amphibole asbestos fiber and should 
non-asbestos amphibole particles be counted as asbestos. Misclassification of non-asbestos 
particles as asbestos fibers has significant economic and operational impacts, including 
unnecessary worker controls, costly air monitoring, project delays, and avoidance of valuable 
resource areas. This misclassification not only affects industry but can also dilute focus on true 
asbestos hazards.

Not counting asbestos fibers could have significant health implications for exposed 
populations. Thus, there has been a driving force to develop reliable, robust methods for 
identification of amphiboles and for the discrimination of asbestos and non-asbestos “fibers” 
where a fiber is defined as an elongate mineral particle having an aspect ratio of more than a 
preset value (generally 3:1 or 5:1).

During the review process, it was suggested that the authors provide detail on their 
background and qualifications to write the first paper on the use of Artificial Intelligence (AI) 
to discriminate between asbestos and non- asbestos amphibole fibers. Therefore, we have taken 
the unusual step of providing a short section on our relevant experience and publications.

The authors have been involved in the development of methods for the identification of 
amphiboles and discrimination between asbestos and non-asbestos amphiboles by 
Transmission Electron Microscopy (TEM) for more than four decades. Because this paper is, 
to our knowledge, the first to address the issue of discrimination of asbestos and non-asbestos 
fibers using AI, we have included a list of relevant papers, as Appendix A, published by the 
authors and their colleagues. These evolved over time from an emphasis on mineral 
identification, to evaluation of counting techniques, and then to discrimination between 
asbestos and non-asbestos amphiboles using rule-based criteria and discriminant analysis. In 
addition to extensive involvement in research related to the methods for asbestos fiber 
identification and definition, the authors have been intimately involved in the development 
and promulgation of standards for TEM asbestos analysis (AHERA, ISO, and ASTM). It is 
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hoped that other “experts” who may become involved in this work 
would have comparable backgrounds.

Author publications of direct relevance to this paper are included 
as citations in the referenced articles.

There has been extensive debate about the reliability of TEM 
asbestos analysis. The original issues with TEM analysis began in the 
1970’s during the Reserve mining case (when laboratories simply 
adopted the 3:1 aspect ratio) used in Phase Contrast Microscopy 
(PCM) to define fibers. Unfortunately, the scientists at the time did not 
recognize the implications of the fact that the 3:1 aspect ratio used in 
the PCM method was regarded as the lower limit on countable 
structures in environments known to contain asbestos, such as a 
textile mill (1) and not the defining parameter of an asbestos fiber. As 
a result, there were no systematic studies on how to discriminate 
between asbestos and non -asbestos amphibole in the TEM, even 
though there was an extensive body of mineralogical research.

In the 70’s there was not even a methodology for the identification 
of potential amphibole asbestos minerals in multimineral 
non-occupational environments and so a great deal of attention was 
paid to the development of techniques to identify regulated amphibole 
minerals in air samples. Over time the identification procedures 
became well defined, but as pointed out in this paper, the 
discrimination between asbestos and non-asbestos remained 
a challenge.

Significance- The impact of this publication is due to the number 
of potential users of an AI methodology for asbestos fiber 
identification. There are about 100 TEM laboratories in the US that 
provide asbestos analysis on a commercial basis. There are another 
30–40 academic and governmental laboratories. However, there are 
thousands of businesses in virtually every aspect of mining and 
mineral related activity that consume the data provided and 10,000 of 
workers whose health safety and economic livelihood are impacted by 
the data. Further, the extension of asbestos analysis to non-commercial 
mixed dust environments increases the need for robust methods to 
discriminate between asbestos and non-asbestos mineral particles.

2 Introduction

Asbestos fiber analyses have been conducted for decades typically 
using microscopic techniques but also including macro-techniques 
such as gravimetry or x-ray powder diffraction. Microscopic 
techniques, the subject of this paper, require an analyst to examine the 
sample, locate a possible asbestos fiber, determine if the fiber meets 
the protocol requirements, and then document the count. Error may 
occur at any point in this process. For example, observing a possible 
fiber requires the sample to have appropriate phase transition (for 
phase contrast microscopy, PCM) or a significant contrast (in 
scanning electron microscopy SEM and transmission electron 
microscopy TEM) for the fiber to be  visible. Depending on the 
protocol, the analyst may simply determine if the fiber meets the 
appropriate size criteria (PCM) or the analyst may perform additional 
examination of the fiber to determine possible accepted elemental 
composition or crystallography (SEM and/or TEM) compositions 
before determining if the fiber meets the counting requirements.

Manual examination of samples, as implied in the processes, can 
be time-consuming. For this reason, there have been many proposals 
to automate the examination (2). Lee et al. (3) examined issues related 

to automating SEM analyses using image analyses. Later, Baron and 
Shulman (4) developed an automated optical analysis system 
(Magiscan) which was more successful. Baron produced data 
comparing manual and automated PCM image analysis. While 
successful, the Magiscan was not widely adopted. Inoue et  al. (5) 
developed a similar system to the Magiscan that automated PCM 
analyses for samples of airborne particulate.

Over the last decade there has been considerable work to develop 
automated techniques for asbestos analysis. One area that has been 
examined is using artificial intelligence (AI) in these analyses. A 
review of the literature indicates that there have been about 30 papers 
published over the last decade, with most of them in the last 5 years 
seeking to develop AI fiber identification techniques for PCM and 
SEM. There are several papers on polarized light microscopy using 
dispersion staining (6, 7), and other papers on optical analyses (8–10). 
Kuroda (11) recently discussed using florescence microscopy and AI 
to examine asbestos fibers. At the same meeting, Iida et  al. (12) 
reported using AI to analyze PCM images of simulated samples of 
amosite and chrysotile.

The development of AI asbestos analyses has been applied to 
electron microscopy. The work by Biswas and Biswas (13) represents 
the state of the art in AI driven analysis using deep learning 
methodology. Using samples of airborne amosite fibers as the training 
set, they used AI to automate SEM analysis of a sample, using image 
analysis combined with energy dispersive spectroscopy (EDS) to 
identify and count fibers in accordance with the specified protocol. 
Similar procedures were developed by Hiscock et al. (14), Yamamoto 
et  al. (15) for PCM analyses, and Zyuzin et  al. (16) for in-situ 
rock samples.

These prior studies demonstrate that AI can be useful in asbestos 
analyses. Automatic identification of fibers, however, is not a trivial 
task. There are many challenges, such as the fact that detecting fibers 
is fundamentally a two-dimensional problem since the length of fibers 
is much greater than the width. Pixel resolution becomes a critical 
problem in  locating and identifying mineral fibrils. Ensuring that 
there is enough contrast to detect the fibers is also a problem. 
Overlapping particles and cross fibers and bundles are issues that do 
not seem to have been effectively addressed at this point, though some 
progress has been made to handle crossed fibers (17).

The most important problem is that none of the procedures 
differentiate between asbestos fibers and non-asbestos particles, an 
issue of critical importance in the mining and natural mineral 
environment (Figure 1). The habit of the particles shown in Figure 1 
were first determined by examining the bulk minerals (hand-sized) 
for asbestiform characteristics such as fibrous appearance, easily 
separable particles, splayed ends, and fibers that, when separated, 
exhibited tensile strength (that is, could bend without breaking) (18). 
Such characteristics form the basis for the definition of asbestiform 
that is incorporated into various analytical protocols (19, 20).

The current methodologies used for air sample analysis/regulation 
for asbestos fibers rely heavily on traditional optical parameters that 
were originally developed for PCM. However, these parameters have 
not been rigorously evaluated or adapted for TEM analyses. This has 
led to several problems in the field, including: (1) difficulty in 
distinguishing between asbestos and non-asbestos amphiboles using 
TEM, as characteristics that are visible in PCM do not translate easily 
to TEM imaging; (2) widespread use of aspect ratio (length:width) 
alone to define particles as asbestos fibers, which often leads to 
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over-reporting of fibers that are not asbestos; and (3) ·regulations 
specifically apply to the asbestos varieties of amphibole minerals due 
to their adverse health effects, yet many laboratories fail to accurately 
discriminate between these and non-asbestos fibers (21).

Misclassification of non-asbestos particles as asbestos fibers has 
significant economic and operational impacts, including unnecessary 
worker controls, costly air monitoring, project delays, and avoidance 
of valuable resource areas. This misclassification not only affects 
industry but can also dilute focus on true asbestos hazards.

Van Orden et al. (22) published a flow chart methodology for 
discriminating between asbestos and non-asbestos minerals 
(summarized in Appendix B). Prior effort to accomplish the 
differentiation between asbestos and non-asbestos has been using 
various discriminant functions. Siegrest and Wylie (23) and Wylie 
et al. (24) developed early versions of discriminant functions. Later, 
Chatfield (25) developed a graphical discriminant function. Wylie 
et al. (26) examined a very large data set compiled from multiple 
laboratories and determined a different discriminant function. A more 
recent discrimination process has been linked to a proposed 
dimensional coefficient of carcinogenicity (27). Each of these 
functions can be important for the development of an AI process.

Thus, it is imperative that AI identification of asbestos fibers 
be developed using mineral fibers that have a known morphology 
(i.e., asbestos or non-asbestos). Both morphologies must 
be included to properly train the AI algorithm, and not simply rely 
on a single amphibole data set. As amphibole particles have 
varying size characteristics (17, 25, 28) where the sizes of asbestos 
and non-asbestos particles overlap, it is not acceptable to simply 
use particle dimensions to make such a differentiation. Therefore, 
any training set must include examples of well characterized 
particles from both morphologies.

Using AI will reduce bias in the determination of asbestos and 
non-asbestos and will enhance the productivity of the laboratory. Such 
determinations are especially important where the asbestos fibers are 
a small component of an otherwise non-asbestos sample.

3 Artificial intelligence and machine 
learning techniques

Artificial Intelligence utilizing machine learning typically 
embodies three processes: (1) decision trees; (2) neural or 
convolutional networks; and (3) deep learning which layers different 
levels of specificity over one another to arrive at conclusions.

3.1 Decision trees

The most basic AI process is the decision tree algorithm. This is a 
probabilistic algorithm that sets up a series of yes or no answers to 
arrive at various levels of decision. Such a tree for weather forecasting 
may start with humidity (is it high or low), moving on to cloud 
conditions (it is sunny or cloudy), followed by current weather 
conditions (there is or is not precipitation) to forecast the next day’s 
weather. In asbestos analyses, decision trees are used in the air methods 
(such as ISO 10312 and ISO 13794) on the classification of fibers.

In this matter, AI decision trees would be used to determine if a 
particle’s dimensions meet the counting rules for the protocol in use. 
For example, if using the AHERA protocol, is the particle longer than 
0.5 μm and have an aspect ratio >5:1?

Decision trees would also be used to evaluate the morphology of 
a fiber. Are the sides parallel, are the ends perpendicular, and is the 
surface of the fiber smooth could be aspects of the evaluation.

Concurrently with the decision trees, AI will involve neural networks.

3.2 Neural networks

A neural network is a probabilistic algorithm which may be used 
to evaluate various aspects of mineral or fiber identification. As part 
of a TEM analysis, the elemental composition (EDS) of the particle is 
collected. The Neural network would examine the spectrum to 

FIGURE 1

Comparison of images from two different samples as seen in the transmission electron microscope. The left image shows non-asbestos particles 
(black arrow) while the right shows asbestos particles (red arrow). These morphological classifications originated with an evaluation of the minerals in 
hand samples and comply with definitions found in accepted protocols (18, 19).
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determine the elemental composition and compare it to known 
standards to identify the mineral. The network would also examine 
the diffraction pattern (typically a selected area electron diffraction 
pattern, SAED) to establish the particle’s crystallographic dimensions. 
Combining EDS and SAED will lead to tentative mineral identification.

3.3 Deep learning

Deep learning combines the above processes to determine the 
identification of the mineral and whether the mineral is asbestos or 
non-asbestos. Depending on the outcome, AI will assign the 
classification, determine if it should be counted, and should also provide 
a statement of confidence on the decision. Ultimately, the microscopist 
makes the final decision. Such decisions are made on a particle-by-
particle basis. It is only on such a basis that determination of a small 
asbestos component in an otherwise non-asbestos sample is possible.

4 Training sets

Critical to the development of a successful AI system are the 
training sets used to develop algorithms. The sets need to be comprised 
of samples that are defined as either “asbestos” or “non-asbestos” when 
viewed in hand samples. The sets should avoid samples that comprise 
both forms (asbestos and non-asbestos) of the mineral. To begin, the 
samples should also be limited to the regulated minerals (riebeckite 
asbestos, grunerite asbestos, tremolite asbestos, actinolite asbestos, 
anthophyllite asbestos, and chrysotile); other minerals of interest such 
as winchite and richterite can be added later.

A preliminary set of mineral samples is available as shown in 
Table 1. These samples are either widely acknowledged as occurring 
in one habit (such as the HSE standards and Jamestown tremolite 
asbestos) or they clearly exhibit characteristics in a hand sample of one 
or the other morphology. Additional samples will be  obtained to 
supplement those in Table 1.

The asbestos samples must appear as polyfilamentous mineral in a 
hand sample and, when examined in the microscope, should exhibit 
widths < 0.5 μm and mean aspect ratios 20:1 or greater for fibers 5 μm and 

longer. The asbestos fibrils will also have parallel sides, orthogonal ends, 
and show evidence of flexibility (high tensile strength). Asbestos fibrils 
may also occur as bundles of fiber and can have splayed ends (18). 
Comparatively, non-asbestos particles will have lower aspect ratios, 
be generally wider than asbestos fibers, and may have varying morphology 
(parallel sides, non-parallel sides, stepped sides, etc.). These dimensional 
characteristics have previously been documented (17, 25, 28).

While it is of importance for the correct analysis of all asbestos 
minerals (both chrysotile and amphiboles) to contemporary industry, 
the focus of the initial training sets should be  on the amphibole 
minerals due to the difficulty in determining the asbestos/non-asbestos 
classification in these minerals.

4.1 Creation and analysis of training sets

Each sample in the training should be processed in as similar a 
manner as possible. Each sample is pulverized, suspended in deionized 
water using an ultrasonic transducer, and an aliquot of suspension 
deposited onto a polycarbonate filter (0.2 μm pore size). The filter is 
then prepared for TEM analysis (17). Care should be taken if a settling 
procedure is used (25) as this may minimize larger particles (especially 
in width) from some non-asbestos samples.

During the analysis, at least 100 fibers (or particles) longer than 5 μm 
are examined as these are most closely associated with disease causation 
(26). For each fiber observed, a photograph of the overall fiber is taken 
(with magnification adjusted so the fiber fills the photograph image); a 
photograph of each end (with the magnification increased to show the 
end clearly) is also taken. Depending on the overall length of the fiber, it 
may be advantageous to take a photograph of the middle portion of the 
fiber (again, with the microscope magnification increased). It is possible 
in asbestos samples that a selected fiber is a bundle of fibers. The 
ultrasonic processing of the sample should minimize this occurrence but 
will not eliminate it. However, since bundles occur in nature, it may 
be appropriate to include these in the analysis.

The data (dimensions, EDS, SAED, and photos) are uploaded to a 
database for evaluation. Within the database, all images for each fiber 
are examined, and visible characteristics (shape, surface, sides, and 
ends) are identified as shown in Figure  2. These morphological 
characteristics have previously been defined (29) and should be familiar 
to the expert reviewing the images. To minimize bias in these 
characterizations, multiple experts (preferably not from the same 
organization) should evaluate each fiber to reach a consensus description.

In a similar manner, both the EDS and SAED patterns are 
examined, and the mineral is identified (riebeckite, tremolite, etc.).

As the fiber analyses are completed, the data can be uploaded to 
the database (Figure 3), which can be used to train the AI.

5 Methods of applied artificial 
intelligence

The accurate classification of fibers as asbestos or non-asbestos is 
critical in industrial hygiene, environmental monitoring, and public 
health to mitigate the risks associated with asbestos exposure.

The applied algorithmic method of approach chosen here is 
decision tree. Decision tree algorithms, a type of supervised machine 
learning technique, have proven effective in such classification tasks 

TABLE 1  Select reference mineral standards.

Sample Mineral Hand sample 
habit

Jamestown Tremolite Asbestos

North Carolina Tremolite Asbestos

Shinness Tremolite Non-asbestos

South Africa Riebeckite Asbestos

Wittenoon Riebeckite Asbestos

HSE Standard Tremolite Asbestos

HSE Standard 2 Actinolite Asbestos

Penge Grunerite Asbestos

Brockman Riebeckite Non-asbestos

Madagascar Tremolite Non-asbestos

West Greenland Anthophyllite Non-asbestos
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due to their simplicity, interpretability, and ability to handle complex, 
non-linear data distributions.

5.1 Decision tree fundamentals

A decision tree is a flowchart-like structure in which internal 
nodes represent decision points based on feature values, branches 

represent outcomes of decisions, and leaf nodes correspond to class 
labels or predictions. The algorithm recursively partitions the input 
feature space by selecting the most informative features at each node, 
as determined by measures such as Gini impurity, information gain, 
or entropy (30).

Decision tree algorithms are widely used in machine learning due 
to their simplicity, interpretability, and versatility. Below are the key 
advantages of using decision tree algorithms:

FIGURE 2

The morphology of each particle (shape, surface, sides, and ends) is examined and characterized using accepted terminology (27).

FIGURE 3

An example of data uploaded to a database showing the image, diffraction pattern, and elemental composition of each particle.
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	 1.	 Easy to understand and interpret
	a.	 Decision trees provide a visual and straightforward 

representation of decision-making processes.
	b.	 Non-technical stakeholders can easily interpret the tree’s 

structure, which uses simple “if-then” rules.
	c.	 The interpretability of decision trees makes them 

particularly valuable in fields like healthcare, finance, and 
legal compliance.

	 2.	 Handles both numerical and categorical data
	a.	 Decision trees can handle mixed data types, including 

continuous numerical variables (e.g., age or income) and 
categorical variables (e.g., gender or product type).

	b.	 No need to preprocess data extensively (e.g., scaling or 
encoding) compared to other algorithms like Support 
Vector Machines (SVMs).

	 3.	 Non-parametric nature
	a.	 Decision trees are non-parametric, meaning they do not 

make assumptions about the underlying data distribution.
	b.	 They work well on datasets that violate assumptions such as 

linearity or normality.
	 4.	 Captures non-linear relationships

	a.	 Decision trees can model complex, non-linear relationships 
between input features and the target variable.

	b.	 They split the data based on feature interactions, naturally 
capturing intricate patterns.

	 5.	 Robust to missing data
	a.	 Decision trees can handle missing values effectively by 

splitting on features that are available, without 
requiring imputation.

	b.	 Some implementations, such as those in scikit-learn, can 
make predictions even with incomplete feature information.

	 6.	 Requires minimal data preparation
	a.	 Decision trees do not require feature scaling (e.g., 

standardization or normalization) or transformations 
like PCA.

	b.	 They handle raw data directly, simplifying the 
preprocessing pipeline.

	 7.	 Feature importance
	a.	 Decision trees can rank features by their importance based 

on their contribution to reducing impurity at splits.
	b.	 This helps in feature selection and understanding which 

variables are most influential in the model.
	 8.	 Flexibility

	a.	 Decision trees can be  used for both classification and 
regression tasks.

	b.	 They adapt well to a variety of domains, including finance, 
healthcare, and engineering.

	 9.	 Scalability

	a.	 Decision trees are computationally efficient for small to 
medium-sized datasets, making them practical for many 
real-world applications.

	10.	 Interpretability of rules

	a.	 Decision trees produce explicit rules, which can be codified 
and used outside the machine learning model (e.g., in 
expert systems).

5.2 Limitations to consider

While decision trees have many advantages, they are prone to 
overfitting, especially on small datasets, and can be sensitive to small 
changes in the data (leading to instability). These limitations can 
be  mitigated by using ensemble methods like Random Forests or 
Gradient Boosted Trees (31, 32).

In summary, decision tree algorithms are favored for their ease of 
use, ability to handle diverse data types, and transparency, making 
them a versatile tool in a machine learning practitioner’s toolbox.

5.3 Dataset and features

In the context of fiber classification, the dataset includes 
microscopic or spectroscopic measurements of fiber characteristics, 
such as dimensions (length, width, and aspect ratio), and elemental 
composition (via energy dispersive spectroscopy, EDS) and 
crystallographic characteristics (X-ray diffraction or selected area 
electron diffraction, SAED). The particles in the dataset are labeled as 
“asbestos” or “non-asbestos” based on prior expert analysis as 
described in the above section.

This process is as follows:

	 1.	 Data preprocessing: the raw data undergoes preprocessing to 
handle missing values, normalize numerical features, and encode 
categorical variables if present. Outlier detection is also employed 
to minimize the influence of anomalous measurements.

	 2.	 Feature selection: relevant features are identified to improve the 
model’s performance and reduce computational overhead. For 
our purposes the features chosen for analysis are:
	 a	 Fiber length
	 b	 Fiber width
	 c	 EDS spectrum results

	 3.	 Training and testing: the dataset is split into training and 
testing subsets, often using a stratified split to maintain the 
class distribution. The decision tree algorithm is trained on the 
labeled training data, where the model iteratively splits the data 
based on the feature that provides the highest information gain 
at each step.

	 4.	 Validation and tuning: cross-validation ensures the model’s 
robustness against overfitting. Hyperparameters such as 
maximum tree depth, minimum samples per leaf, and splitting 
criteria are optimized using grid search or random 
search techniques.

	 5.	 Evaluation metrics: model performance is evaluated using 
metrics such as accuracy, precision, and recall. Given the health 
implications of misclassification, false negatives (asbestos fibers 
classified as non-asbestos) are weighted heavily in the analysis 
and more weight is put on recall metrics rather than 
pure accuracy.

5.4 Advantages and limitations

Decision tree algorithms provide interpretability by producing 
human-readable rules, making them ideal for regulatory and legal 
contexts where transparency is paramount. However, they are prone 
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to overfitting on small datasets and may require ensemble methods, 
such as random forests or gradient boosting, to improve 
generalizability and handle larger, more complex datasets.

6 Application of AI to an example data 
set

The previously developed discriminant functions and some 
available training set data have been uploaded into a developing AI 
system. Using these multiple discriminant functions and the AI 
training data will provide an estimate of the accuracy of the 
classification. The test data set comprised approximately 
2,500 fibers.

As an example, one fiber from a training set was processed 
through the system as an unknown resulting in a classification of the 
fiber as “non-asbestos.” As seen in Figure  4, the basic data (EDS, 
image, and diffraction pattern) are shown along with the results from 
application of other discrimination procedures (on the right of the 
Figure). Not all of the discrimination procedures classified the fiber as 
non-asbestos, with two classifying the fiber as “asbestos.”

Preliminary results from applying a decision tree classifier to a 
dataset of fiber samples show high classification accuracy, with 
significant differentiation between asbestos and non-asbestos fibers 
based on their physical and chemical properties (Figure 5). Here, 
the comparison is made between an expert and the AI 
determinations. Asbestos/Asbestos and Non-Asbestos/
Non-Asbestos classifications (expert/AI) show agreement between 
the two. For this example, 84% of the classifications were consistent 
between the AI and an expert. The model’s decision rules offer clear 
insights into the characteristics most predictive of asbestos content, 
such as high aspect ratios and specific elemental compositions. 
Where the expert and AI disagree on the classification, additional 

investigation is needed to determine which characteristics are 
central to the disagreement,

7 Machine learning metrics: accuracy, 
precision, and recall

When evaluating the performance of a machine learning model, 
particularly classification models, various metrics provide insights 
into how well the model predicts the desired outcomes. Below is an 
explanation of accuracy, precision, and recall, and a discussion on why 
recall is more appropriate for analyzing asbestos fibers. Here, “True 
Positive” is defined as both a human expert and the AI classify as 
particle as “asbestos.” “False Positive” occurs when the AI classifies a 
particle as “asbestos” and the expert as “non-asbestos.” A “False 
Negative” occurs when the AI labels the particle as “non-asbestos” and 
the expert as “asbestos.” Finally, as “True Negative” is when both the 
expert and AI classify as particle as “non-asbestos.”

Each metric is important, but their relative importance depends 
on the application: risk analysis, regulatory compliance, or 
environmental survey.

7.1 Accuracy

Definition: accuracy measures the percentage of total predictions 
that the model got correct. It is defined as:

	
+

=
  

 
True Positives True NegativesAccuracy

Total Predictions

where Total Predictions is the sum of True Positives, True 
Negative, False Positives, and False Negatives.

FIGURE 4

Image showing the AI system application of several discrimination procedures resulting in a consensus classification of the particle as “Non-Asbestos.” 
The EDS scan, TEM image, and diffraction pattern of the classified particle are shown on the left, while the results of different classification procedures 
are shown on the right.
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Use case: accuracy is a good metric when the classes are balanced 
(e.g., equal distribution of asbestos and non-asbestos fibers). However, 
it can be misleading when the dataset is imbalanced.

Example: in a dataset where 95% of the fibers are non-asbestos, a 
model that predicts “non-asbestos” for every instance would achieve 
95% accuracy without actually identifying asbestos fibers.

7.2 Precision

Definition: precision measures the proportion of true positive 
predictions (correctly identified asbestos fibers) out of all instances the 
model predicted as positive (asbestos fibers). It is defined as:

	
=

+
 

  
True PositivesPrecision

True Positives False Positives

Use case: precision is important when the cost of false positives is 
high. For instance, in some scenarios, overestimating the presence of 
asbestos could lead to unnecessary remediation costs.

Example: if the model predicts 50 fibers as asbestos but only 30 are 
truly asbestos, the precision is 30/(20 + 30) = 0.6 or 60%.

7.3 Recall (sensitivity or true positive rate)

Definition: recall measures the proportion of true positives 
identified by the model out of all actual positive instances in the 
dataset. It is defined as:

	
=

+
 

  
True PositivesRecall

True Positives False Negatives

Use case: recall is critical when it is more important to identify all 
actual positive instances, even at the cost of false positives.

Example: if there are 100 actual asbestos fibers and the model 
identifies 80 of them, recall is 80/(80 + 20) = 0.8 or 80%.

Recall is critical to successful application of AI to asbestos 
classification for four reasons:

	 1.	 Health and safety risks: asbestos fibers are hazardous to human 
health, potentially causing diseases like mesothelioma and lung 
cancer. A method which significantly underestimates asbestos 
fiber concentrations could subject a population to unnecessary risk.

	 2.	 Regulatory compliance: environmental and safety regulations 
often mandate exhaustive detection of asbestos to prevent 
contamination and health risks. High recall ensures compliance 
with such standards.

	 3.	 Imbalanced dataset: in practice, datasets for fiber analysis are 
likely imbalanced, with far fewer asbestos fibers compared to 
non-asbestos fibers. In such cases, accuracy may appear high 
even if asbestos fibers are frequently missed. Recall directly 
focuses on identifying all true asbestos fibers.

While accuracy provides a general measure of performance, it 
may be  insufficient in scenarios involving imbalanced datasets. 
Precision and recall provide deeper insights and are especially useful 
for unbalanced data sets.

8 Approximated, human readable 
decision tree structure

Decision tree algorithms stand out among machine learning 
models due to their inherent interpretability and transparency. They 

FIGURE 5

An example of a decision tree (capped at two levels) showing the application of artificial intelligence to an example dataset.
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are particularly valuable in contexts where human understanding of 
the decision-making process is as important as the predictions 
themselves. Decision trees are beneficial for human interpretation for 
the following reasons:”:

	 1.	 Intuitive structure
	a.	 Decision trees are visualized as flowcharts, resembling how 

humans naturally make decisions: through a series of 
“if-then” rules.

	b.	 The hierarchical structure, with nodes representing 
decisions and leaves representing outcomes, makes it easy 
for non-technical users to follow the logic.

	 i.	 Example: if the goal is to classify fibers as asbestos or non-asbestos:

	 1.	 The tree might show a split like: “If a countable fiber width < 
0.25 μm, classify as possible asbestos.” Additional branches will 
be needed to confirm the classification.

	 2.	 This straightforward decision rule mirrors human reasoning 
and is easy to understand.

	 2.	 Transparency and explainability
	a.	 Decision trees clearly articulate why a prediction is made by 

showing the exact path through the tree that led to the 
final decision.

	b.	 Unlike black-box models (e.g., neural networks), decision 
trees reveal the criteria and thresholds used at each step, 
making them inherently interpretable.

	 i.	 Use case: in regulatory or safety-critical industries like asbestos 
detection, it is vital to explain how a classification was made to 
ensure compliance and build trust in the model.

	 3.	 Identification of key features
	a.	 Decision trees inherently rank features based on their 

importance, as the algorithm prioritizes the most 
informative features during splits.

	b.	 This ranking allows users to identify the most influential 
factors in the decision-making process, aiding domain 
experts in understanding key variables.

	 i.	 Example: a decision tree might show that “parallel sides” is the 
most critical feature for distinguishing asbestos fibers from 
non-asbestos particles, helping researchers focus on refining 
analysis methods for that property.

	 4.	 Supports validation and expert feedback

	a.	 Since decision trees align closely with human logic, domain 
experts can validate the rules and thresholds used in the model.

	b.	 Experts can easily spot unrealistic splits (e.g., thresholds 
that do not make sense scientifically) and provide feedback 
to refine the model.

8.1 Results of truncated decision tree/
aspect ratio key feature

While decision trees are beneficial for interpretation, they 
can become overly complex or overfit if the data contains noise 
or too many features. This can reduce their reliability.  
Techniques like pruning or ensemble methods (e.g., random 
forests) can balance complexity and accuracy while 
retaining interpretability.

An approach often used is to limit the growth of the tree to a 
small number of levels/leaves. The resulting decision tree is not 

FIGURE 6

An example of a decision tree (capped at two levels) showing the application of artificial intelligence to an example dataset.
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as accurate as a fully developed tree (as that can often lead to 
hundreds of leaves) but is better for human interpretation. A 
decision tree capped at a maximum depth of 2 levels is illustrated 
in Figure 6.

Intuitively, this shows that the fiber aspect ratio is a key 
critical feature. An aspect ratio of <16.5 is the first decision in the 
tree and therefore the most meaningful in terms of 
information density.

9 Conclusion

The ability of decision trees to produce clear, visual, and 
logically intuitive decision-making processes makes them 
uniquely suited for applications requiring human interpretation. 
In fields like asbestos detection, where safety, compliance, and 
trust are paramount, the interpretability of decision trees ensures 
that stakeholders can understand, validate, and act on the 
model’s predictions.

The preliminary data shows the viability of an AI system, but 
also points to the need for a larger, more robust set of  
training samples. The work discussed herein was  
conducted on mineral samples (hand-sized) that were processed 
prior to microscopic evaluation. The developed AI  
procedures are also applicable to samples of airborne or 
waterborne particles.

These developments are on-going and, upon completion, will 
be made available to other groups for their use. A set of samples 
provided by Chatfield are being characterized to expand the 
reference data set. There is a need for an accepted procedure to 
validate results so that others may be  confident in the use of 
AI. ISO has established a task group to examine the issues related 
to asbestos analyses when aided by AI with a suggestion that the 
group develop a standard to validate AI analyses. Work by other 
groups on AI asbestos applications continues.

9.1 Challenges

Establishing a large, robust training dataset as the definitive 
source of truth is a complex task. Data is frequently stored across 
multiple locations in different formats—such as structured and 
unstructured data, images, PDFs, documents, and spreadsheets—
and is difficult to locate due to inconsistent standards and lack of 
governance (e.g., file naming conventions and storage locations). 
Additionally, identifying the appropriate data for analysis often 
requires input from subject matter experts. Vetting and validating 
the dataset further complicates the process. An important factor 
when building AI systems is to do so on accurate, reliable data. 
As such, they can provide valuable insights and support decision-
making processes without leading to harmful or misleading 
expensive outcomes.
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