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Objective: Mycoplasma pneumoniae is the leading pathogen of community-
acquired pneumonia in children. In recent years, M. pneumoniae pneumonia 
(MPP) has shown a global pandemic trend. The increasing incidence of severe 
MPP (SMPP) leads to complications and even deaths, severely impacting 
prognosis and quality of life. Our study aimed to use machine learning to 
construct an early diagnostic model for severe MPP in children. It supports early 
prediction, prevention, and individualized precise treatment of SMPP.
Methods: We collected medical records from 372 MPP cases. We compared 
case characteristics between groups with and without SMPP and used a 
random forest to screen key factors. We then constructed a multivariate logistic 
prediction model. We evaluated the model with ROC curves, calibration curves, 
and DCA. Five-fold cross-validation tested prediction stability.
Results: We identified ESR, PCT, IL-6, and lung auscultation as key factors to 
construct the prediction model. The model’s ROC was 0.964 (95% CI: 0.945–
0.983). Calibration curves and DCA confirmed model accuracy. Five-fold cross-
validation validated internal stability.
Conclusion: Our study developed a prediction model with good efficacy for 
early SMPP risk assessment. Our research provides a basis for clinical early 
prediction and prevention of SMPP, reducing its risk and offering a foundation 
for individualized treatment and improved long-term outcomes in affected 
children.
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Introduction

Mycoplasma pneumoniae (MP) is a pathogenic microorganism situated between bacteria 
and viruses, primarily targeting the human respiratory tract. It is one of the most common 
pathogens of community-acquired pneumonia (CAP) in children (1). M. pneumoniae 
pneumonia (MPP), induced by MP, accounted for 40% of acute inflammatory cases in 
pediatric CAP (2, 3), with 18% of affected children requiring hospitalization. The clinical 
manifestations of MPP varied, including pulmonary rales, shortness of breath, and cough, with 
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some patients experiencing wheezing. In recent years, MPP showed a 
widespread trend, with a decreasing age of onset. Notably, since 2000, 
macrolide antibiotic resistance rates rapidly increased worldwide 
(reaching 69 to 95% in China), leading to more cases of severe 
M. pneumoniae pneumonia (SMPP) (4, 5). Moreover, children with 
SMPP often suffered from pulmonary complications and 
extrapulmonary organ damage, such as pleural effusion, necrotizing 
pneumonia, myocarditis, and vascular embolism, risking multiple 
organ failure and even death, posing a serious threat to children’s 
health (5, 6). Recently, the mortality rate of SMPP gradually rose, with 
a rate of approximately 0.1–1% (6). Additionally, severe sequelae such 
as pulmonary fibrosis (PF), bronchiolitis obliterans, and unilateral 
hyperlucent lung increasingly affected long-term prognosis and 
quality of life in children. Therefore, early prediction of SMPP 
occurrence in clinical settings was crucial for implementing timely 
and effective targeted interventions (7).

Currently, there was no unified understanding of the clinical 
manifestations, pathogenesis, laboratory diagnostic methods and 
indicators, and pulmonary imaging changes of pediatric MPP and 
SMPP (8, 9). Reliable tools or indicators for the early prediction of 
SMPP infection were also lacking to guide clinical prevention and 
treatment. Hence, our research aimed to utilize machine learning to 
construct an early diagnostic prediction model for severe Mycoplasma 
pneumoniae pneumonia in children. This model would facilitate early 
identification of severe cases, enabling precise medical intervention, 
reducing complications, and shortening the average hospital stay.

Materials and methods

Participants

Our study retrospectively collected cases of children diagnosed 
with Community-Acquired Pneumonia (CAP) and related clinical data 
from July 2023 to July 2024 at a tertiary hospital. All diagnoses of 
Mycoplasma pneumonia were confirmed based on positive nucleic acid 
tests for M. pneumoniae. The collection of case data received ethical 
approval from the Ethics Committee of Kunming Children’s Hospital.

Diagnostic criteria

The diagnosis of MPP: Confirmation is achieved by fulfilling at least 
one of the following laboratory diagnostic criteria: a four-fold or greater 
increase in MP antibody titer during the recovery phase compared to 
the acute phase, or a positive MP culture or MP-DNA/RNA detection. 
Refractory MPP is defined as patients meeting the aforementioned MPP 
criteria who continue to exhibit persistent fever and worsening lung 
imaging findings despite receiving standard treatment with macrolides 

for seven or more days. Severe MPP (SMPP) is diagnosed in patients 
who meet the established MPP criteria and also fulfill the criteria for 
severe pneumonia as outlined in the “Guideline for the management of 
community-acquired pneumonia in children (2023)”.

The diagnosis of SMPP (10): (1) continuous high fever (above  
39 °C) for ≥5 days or fever for ≥7 days; (2) development of wheezing, 
shortness of breath, dyspnea, chest pain, or hemoptysis; (3) the 
presence of extrapulmonary complications; (4) pulse oxygen 
saturation ≤0.93 at rest, breathing room air; (5) imaging findings 
characterized by at least one of the following: uniform and consistent 
high-density consolidation of ≥2/3 of a single lobe, high-density 
consolidation of two or more lobes with a moderate to large pleural 
effusion or with localized bronchitis, diffuse capillary bronchitis in 
one lung, or capillary bronchitis of ≥4/5 lobes in both lungs, combined 
with bronchitis, and atelectasis resulting from the formation of 
mucous emboli; (6) progressively aggravated clinical symptoms, with 
extension of the lesion range by more than 50% in 24–48 h based on 
imaging; or (7) an obvious increase in C-reactive protein (CRP), 
lactate dehydrogenase (LDH), or D-dimer levels. Patients with 
immunodeficiency and those taking immunosuppressants 
were excluded.

Inclusion and exclusion criteria

Inclusion criteria: (1) Complete clinical data for all children; (2) 
No treatment prior to laboratory tests. Exclusion criteria: (1) Presence 
of underlying conditions such as lung malformations, pulmonary 
vascular anomalies, congenital heart disease, hematological diseases, 
immune system disorders, and endocrine genetic metabolic diseases; 
(2) History of Mycoplasma pneumoniae (MP) infection within 1 year; 
(3) History of severe pneumonia within 1 year. (4) History of other 
infections within 1 month, including but not limited to: respiratory 
infections, gastrointestinal infections, and neurological infections.

Included factors

We included 19 relevant factors. Basic demographic information 
included age, gender, and residence of the children. Laboratory 
indicators included Erythrocyte Sedimentation Rate (ESR), 
Procalcitonin (PCT), Interleukin 6 (IL6), White Blood Cell count 
(WBC), Platelet count (PLT), C-Reactive Protein (CRP), 
Immunoglobulin G (IgG), Immunoglobulin M (IgM), 
Immunoglobulin A (IgA), Complement component 4 (C4), and 
Complement component 3 (C3). Additionally, we  assessed Lung 
Auscultation, the number of Fever Days, Feeding Method, Gestational 
Age, and Delivery method to better understand their relationships in 
our research context.

Model development

First, we divided all cases into two groups: the SMPP group and the 
non-SMPP group, based on the presence of SMPP. We compared 19 
relevant factors between these groups and included statistically 
significant ones in further analysis. We then used the “glmnet” R package 
to conduct Least Absolute Shrinkage and Selection Operator (LASSO) 

Abbreviations: MPP, Mycoplasma pneumoniae pneumonia; SMPP, Severe 

Mycoplasma pneumoniae pneumonia; CAP, Community-acquired pneumonia; 

PF, Pulmonary fibrosis; ESR, Erythrocyte Sedimentation Rate; PCT, Procalcitonin; 

IL6, Interleukin 6; WBC, White Blood Cell count; PLT, Platelet count; CRP, C-Reactive 

Protein; IgG, Immunoglobulin G; IgM, Immunoglobulin M; IgA, Immunoglobulin 

A; C4, Complement component 4; C3, Complement component 3; LAO, lower 

airway obstruction.
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analysis to identify more important factors for outcome prediction. 
LASSO is a regularization method for linear regression that adds an L1 
penalty, facilitating variable selection and model simplification. Its main 
advantage was reducing the coefficients of unimportant variables to zero, 
retaining only key variables and reducing model complexity to prevent 
overfitting. We employed 5-fold cross-validation to select the optimal 
lambda value, either lambda.min or lambda.1se, where a larger lambda 
indicated higher regularization strength and resulted in fewer selected 
variables. We filtered variables based on optimal and maximum lambda 
values. Then, to identify predictors more related to outcomes, we applied 
the random forest algorithm from the “randomForest” R package to 
further filter indicators selected by LASSO analysis and measured the 
impact of each predictor on model performance using the Increase in 
Mean Squared Error (IncMSE). To prevent overfitting, we performed 
5-fold cross-validation on the random forest model to determine the 
optimal K value and conducted random forest computation, assessing 
the fit using R2. We then computed the correlation among key variables 
selected by the random forest using the “corrplot” R package to avoid 
collinearity bias due to high correlations. Finally, we used the “rmda” R 
package to include the final selected factors in a multivariable logistic 
regression for model development and created a nomogram of the 
optimal model using the “rms” R package.

Model evaluation and validation

To rigorously evaluate the performance and generalizability of our 
predictive model, we  employed a multifaceted statistical approach. 
We initiated our analysis by generating Receiver Operating Characteristic 
(ROC) curves using the “pROC” R package pROC: an R package for 
ROC and AUC computation and visualization, calculating the Area 
Under the Curve (AUC) to quantify the model’s ability to discriminate 
between different outcomes. Next, we  assessed model calibration, 
ensuring that predicted probabilities aligned with observed frequencies, 
by creating a calibration curve within the “ResourceSelection” R package. 
We then conducted Decision Curve Analysis (DCA) using the decision_
curve function to assess the model’s clinical utility, evaluating its net 
benefit across different risk thresholds. Furthermore, to establish the 
robustness of our model and assess its performance on independent 
datasets, we  implemented five-fold cross-validation. This process 
involved partitioning the dataset into five equally sized folds using the 
‘createFolds’ function from the ‘caret’ R package. For each fold, the model 
was trained on the data from the other four folds and then validated on 
the held-out data. Within each iteration, we calculated the AUC and 
assessed the calibration. This process was repeated five times, with each 
fold serving as the validation set once. The average AUC across the five 
folds provides a reliable estimate of the model’s expected performance, 
and the variability across folds indicates the model’s stability. This 
approach ensures a more reliable assessment of the model’s predictive 
power and generalizability.

Statistical analysis

All statistical analyses were conducted using R version 4.4.1. 
Normally distributed continuous data were expressed as mean ± 
standard deviation (mean ± SD) and compared between two groups 
using the independent samples t-test. Non-normally distributed data 

were described using quartiles and compared with non-parametric 
rank sum tests. Categorical data were expressed as proportions and 
compared between groups using the chi-square test. A p-value < 0.05 
was considered statistically significant.

Results

Description and comparison of clinical 
characteristics between two groups

Among the enrolled patients, there were 83 cases (22.31%) in the 
SMPP group and 289 cases (77.69%) in the no-SMPP group. 
Comparing the clinical data of the two groups, we found significant 
statistical differences in maternal age, ESR, WBC, VitD, IgM, IgA, C3, 
PCT, IL6, CRP, IgG, gestational age, sex, and lung auscultation 
(Table 1).

TABLE 1  Comparison of clinical characteristics between two groups.

Factor SMPP (n = 83) No-SMPP 
(n = 249)

p-value

Age 1498.12 ± 870.2 1148.69 ± 866.21 0.002

ESR 41.3 ± 16.95 20.85 ± 15.58 <0.001

WBC 13.68 ± 6.56 11.22 ± 6.17 0.003

PLT 307.75 ± 116.34 305.02 ± 104.97 0.85

VitD 40.45 ± 14.4 45.23 ± 16.75 0.013

IgM 0.85 ± 0.44 0.99 ± 0.51 0.022

IgA 0.53 ± 0.37 0.63 ± 0.42 0.043

C3 0.96 ± 0.26 1.05 ± 0.3 0.013

PCT 3.19(0.25–12.14) 0.25(0.25–0.34) <0.001

IL6 40.35(25.55–63.89) 13.92(6.29–21.65) <0.001

CRP 20.4(12.45–33.23) 6.29(0.5–21.86) <0.001

IgG 6.18(4.62–7.39) 6.69(5.2–8.3) 0.024

C4 0.24(0.16–0.31) 0.25(0.18–0.33) 0.145

Gestational_age 0(0–1) 0(0–1) 0.029

Sex 0.009

 � Female 31(37.35) 136(54.62)

 � Male 52(62.65) 113(45.38)

Residence 0.39

 � No 26(31.33) 93(37.35)

 � Yes 57(68.67) 156(62.65)

Lung auscultation <0.001

 � No 4(4.82) 159(63.86)

 � Yes 79(95.18) 90(36.14)

Feeding method 0.803

 � No 45(54.22) 138(55.42)

 � Yes 38(45.78) 111(44.58)

Delivery 0.791

 � No 52(62.65) 162(65.06)

 � Yes 31(37.35) 87(34.94)
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Key factor selection

We included these 14 factors in LASSO regression to select those 
with greater predictive value. We  used five-fold cross-validation to 
choose the optimal lambda value of 0.01128. The factors with the best 
linear relationship, namely age, ESR, VitD, C3, PCT, IL6, CRP, gestational 
age, and lung auscultation, were selected for further analysis using 
random forests (Figures  1A,B). Before applying the random forest 
algorithm, we used five-fold cross-validation to find the optimal K value 
of 450. We ranked the nine factors by IncMSE from the random forest 
analysis and found that ESR, PCT, IL6, and lung auscultation had 
significantly higher IncMSE values than the other factors (Figure 1C). 
Therefore, we  included these four factors in the subsequent model 
construction. Additionally, the evaluation of the random forest algorithm 
showed an R-squared of 0.939 and a root mean squared error of 0.107, 
indicating a good model fit and strong predictive ability.

Development and evaluation of the 
predictive model

Addressing Reviewer Comment 3 concerning the insufficient 
description of our predictive model, specifically regarding the 

absence of detailed parameters (OR, 95% CI, P, and Coefficients) in 
the forest plot, we have significantly revised our manuscript to offer 
a more comprehensive presentation. Following established 
methodology, a multifactor logistic regression model was 
constructed. To address this, our model identified elevated ESR, PCT, 
IL6, and a positive lung auscultation as statistically significant 
independent risk factors. These four variables were then 
incorporated, which include: ESR (coefficient = 0.06, p = 0.001, 
OR = 1.062 [95% CI: 1.026–1.099]), PCT (coefficient = 0.233, 
p < 0.001, OR = 1.263 [95% CI: 1.116–1.429]), IL6 
(coefficient = 0.034, p < 0.001, OR = 1.035 [95% CI: 1.015–1.055]), 
and positive lung auscultation (coefficient = 6.346, p < 0.001, 
OR = 570.265 [95% CI: 53.912–6032.056]). The forest plot clearly 
displays the independent risk associated with the four variables. 
Furthermore, we have enhanced the integration of tables, figures, and 
accompanying text. The model’s performance, including its high 
AUC of 0.964 (95% CI: 0.945–0.983) in Figure 2A, its superiority 
over individual predictors (Figure  2B), robust cross-validation 
results, and well-calibrated performance as demonstrated via the 
calibration and DCA curve (Figures 2C,D), validates the model’s 
reliability, thereby enriching the overall clarity of the data. Moreover, 
we  have also enhanced the “Methods” and “Results” sections to 
explicitly link variable selection to the derived model. These 

FIGURE 1

(A,B) Variables selected by Lasso analysis. (C) Nomogram of the multivariable logistic regression model. (D) Nomogram of the predictive model.
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thorough revisions fully address the reviewer’s comments, 
strengthening the clarity, transparency, and comprehensiveness of 
our manuscript.

Discussion

The MP was the primary pathogen for pediatric CAP. In recent 
years, MPP showed a global epidemic trend. Particularly, an increasing 

number of SMPP cases occurred, severely affecting children’s prognosis 
and quality of life. Therefore, our study analyzed the clinical data of 372 
children with MPP and compared clinical characteristics between 
those who developed SMPP and those who did not (9). We used Lasso 
analysis and random forest methods to identify ESR, PCT, IL-6, and 
lung auscultation as key factors. These factors were used to construct a 
multivariate logistic prediction model. The ROC curve demonstrated 
good predictive capability of the model. Finally, we then performed 
five-fold cross-validation to verify the model’s predictive stability.

FIGURE 2

(A) ROC curve of the predictive model. (B) ROC curves for individual factors ESR, PCT, IL6, and lung auscultation. (C) Calibration curve of the predictive 
model. (D) curve of the predictive model.
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Clinically, early recognition of SMPP and severe MPP is crucial 
for timely targeted interventions. Early warning indicators include the 
host’s baseline physical condition, clinical symptoms, laboratory 
markers, and treatment response. Excessive immune-inflammatory 
responses play critical roles in MPP infection and its pathogenesis, 
prompting increased research into MPP cytokine profiles as a research 
focus (11, 12). These studies aim to determine whether cytokines can 
serve as reliable biomarkers to predict MPP severity, providing 
clinicians with early, precise guidance for individualized treatment 
plans. Numerous studies have reported inflammatory cytokines such 
as IL and chemokines play important roles in assessing and 
determining the severity of pediatric MPP (13–15). However, 
discrepancies exist among research conclusions.

The IL are small proteins secreted by immune cells. They respond 
to inflammatory signals, regulate immune cell function, and modulate 
the intensity and direction of the immune response (16, 17). IL levels 
are key initiators and regulators of the acute-phase response, playing 
a crucial role in immune and inflammatory reactions (18, 19). MP 
infection induces a strong inflammatory response in the host, leading 
to the secretion of numerous cytokines. IL-6, an important 
pro-inflammatory cytokine, is significantly elevated in patients (20). 
Elevated IL-6 reflects the intensity of the body’s inflammatory response 
to MP infection and correlates with the degree of inflammatory 
infiltration and damage to the lung tissue. In severe MPP, the sustained 
high levels of IL-6 may indicate uncontrolled inflammation, leading 
to increased lung damage and even a “cytokine storm”-like reaction, 
causing systemic inflammatory response syndrome. Therefore, IL-6 is 
considered a potential biomarker for assessing the severity and 
prognosis of MPP (16). However, IL-6 is also influenced by various 
factors, such as glucocorticoid therapy, which may suppress IL-6 
production, leading to a decrease in its levels. This, however, does not 
necessarily mean the infection has completely resolved; it may simply 
indicate that the inflammatory response has been suppressed. ESR is 
an important inflammatory marker for assessing the severity of 
infection. During pathogen infections, acute-phase reactants such as 
fibrinogen, CRP and haptoglobin increase, promoting the formation 
of rouleaux (stacking of red blood cells), which leads to an accelerated 
ESR 2–3 days after the onset of inflammation (21). In MP, especially 
severe ones, the body activates the immune system to produce 
inflammatory mediators and the aforementioned acute-phase proteins 
(such as the elevated fibrinogen, CRP, and immunoglobulins 
mentioned in the text). These changes cause the ESR to accelerate 
2–3 days after inflammation begins and remain elevated during the 
active phase of the disease (22). High ESR levels indicate a persistent 
and strong inflammatory response within the body, which is consistent 
with the pathophysiology of MPP (23). In patients with severe MPP, 
the ESR further accelerates, reflecting more extensive tissue damage 
and a more intense inflammatory response. Although ESR is affected 
by non-specific factors (such as anemia, hypercholesterolemia, 
pregnancy, age, and sex), as a simple and readily available test, it still 
effectively reflects the inflammatory status and severity of MPP (8). 
PCT is an important biomarker for bacterial infections, especially 
severe bacterial infections, and is widely used clinically to differentiate 
between bacterial and viral infections, as well as to assess the severity 
and prognosis of infection (24). M. pneumoniae pneumonia itself is an 
atypical pathogen infection, and PCT levels usually do not significantly 
increase initially. However, as mentioned in the text, MPP often 
coexists with secondary bacterial infections during its progression, or 

the MP infection itself can also induce a strong inflammatory response 
(25). PCT levels will significantly increase when MPP is complicated 
by a bacterial infection or when MP infection leads to severe systemic 
inflammatory response syndrome. The nature and extent of lung rales 
are important clinical indicators for assessing lung inflammation and 
the extent of airway involvement (26). MP infection often causes 
bronchiolitis changes, leading to bronchial wall edema, spasm, and 
intraluminal mucus plugs formation, which may lead to airway 
narrowing, thereby producing dry rales, especially wheezing. 
Persistent or extensive dry rales indicate a more severe degree of 
airway obstruction, which may be  related to lower airway 
hyperreactivity or airway remodeling caused by MPP, and is associated 
with complications.

This study has limitations due to a small sample size and limited 
indicators, leading to potential confounding factors, restricting 
exploration such as subgroup analysis by gender to explore differences 
among subgroups; relationships between quantitative indicators and 
diverse clinical manifestations; changes in these indicators between 
acute and recovery phases. Future clinical practice should incorporate 
more samples and indicators to establish a simpler, stable diagnostic 
model and more cost-effective treatment plans. Additionally, we aim 
to conduct multi-omic studies, including radiomics, proteomics, 
metabolomics, and genomics, to enrich SMPP predictive biomarkers 
and refine diagnostic models.

In conclusion, our research developed a predictive model with 
good performance using machine learning to assess severe MPP risk 
in children in China. This model was validated across subgroups 
based on disease stage, gender, and residence. Our study provides 
evidence for early SMPP identification, enabling early preventive 
measures and reducing SMPP risk, laying a theoretical foundation for 
precision medicine.

Conclusion

Our study developed a prediction model with good efficacy for 
early SMPP risk assessment. The model was effectively validated 
across gender, age stages, vitamin D levels, and other factors. Our 
research provides a basis for clinical early prediction and prevention 
of SMPP, reducing its risk and offering a foundation for 
individualized treatment and improved long-term outcomes in 
affected children.
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