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Objective: The aim of this study was to analyze the effects of short-term 
exposure to low concentrations of air pollutants on the volume of respiratory 
outpatient visits in hospitals and their lagged effects.

Methods: The study collected outpatient data from seven hospitals in Fuzhou 
City, air pollution data provided by the Fuzhou Environmental Monitoring 
Center Station, and meteorological data from the Fuzhou Meteorological 
Bureau for analysis from 2019 to 2022. Time series analysis was used to explore 
the relationship between air pollutants and meteorological factors and daily 
outpatient visits for respiratory diseases by constructing a generalized linear 
model (GLM).

Results: From 2019 to 2022, the total outpatient volume of respiratory diseases 
in 7 hospitals in Fuzhou was 1,530,000, with pediatrics accounting for 72.44% 
and internal medicine accounting for 27.56%. Air pollutants such as PM2.5, PM10, 
NO2, and SO2 all had significant impacts on the total respiratory and pediatric 
respiratory outpatient volumes. NO2 and PM10 had the greatest impact on 
respiratory diseases on the day of pollution exposure or 1 day later, while SO2 
and PM2.5 exhibited longer lag effects, with the most significant impact occurring 
at a lag period of 4–6 days. The impact of air pollution on pediatric respiratory 
disease outpatient visits was generally more significant than that on adult.

Conclusion: Low concentrations of air pollution significantly impacted 
respiratory outpatient visits in Fuzhou, especially in children. Despite relatively 
good air quality, air pollution in low-pollution areas poses a public health risk, 
highlighting the need for targeted pollution control policies.
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1 Introduction

Respiratory infections are one of the key public health issues with high incidence and 
mortality rates worldwide. According to the 2021 Global Burden of Disease Study, upper 
respiratory infections have become the most prevalent disease globally, with a total of 
12.8 billion cases. Due to the impact of the COVID-19 pandemic, COVID-19 became the 
second leading cause of age-standardized death, resulting in 7.89  million deaths. Lower 
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respiratory infections rank as the seventh leading cause of death 
worldwide (1). Therefore, the impact of respiratory infections on the 
human respiratory system is a global health concern.

Many respiratory infections are airborne, and air pollution is one 
of the most important risk factors for respiratory diseases (2). Air 
pollutants not only damage the human immune system through their 
chemical components, thereby compromising health, but they can 
also carry pathogens that enter the human body through the 
respiratory tract (3–5). Studies have found a positive correlation 
between the increase in confirmed cases of SARS-CoV-2 and the air 
quality index (6–8).

Existing research indicates that airborne particulate matter (PM), 
particularly smaller particles like PM₂.₅, poses significant health risks. 
These particles can penetrate both the upper and lower respiratory 
systems, reach the alveoli, and even enter other systems through the 
bloodstream. In addition to causing respiratory diseases, PM₂.₅ is 
closely associated with cardiovascular issues, strokes, and neurological 
disorders (9, 10).

Moreover, PM₂.₅ typically does not exist in isolation, but interacts 
with other pollutants such as PM10, NO₂, SO₂, and O₃, which can 
exacerbate airway inflammation. These inflammatory responses 
further damage respiratory tissues, significantly increasing the severity 
of respiratory diseases and the risk of conditions like chronic 
obstructive pulmonary disease (COPD) and asthma (11).

Furthermore, climate and air pollution are mutually influential 
and interdependent. Meteorological changes affect the activity of 
pathogens in the air and on surfaces, as well as the diffusion and 
deposition of pollutants, thereby influencing transmission (5, 12–14). 
For example, high wind speeds can accelerate the spread of pollutants, 
reducing their concentration and thereby lowering their harmful 
effects on the respiratory system (15). On the other hand, high 
humidity promotes the formation and settlement of aerosol particles, 
further reducing air pollution levels. In addition, stable weather 
conditions (such as high atmospheric pressure) may lead to the 
accumulation of pollutants, increasing the risk of cardiovascular and 
respiratory diseases (16). This effect is amplified when combined with 
air pollution, enhancing the body’s susceptibility (17). However, 
existing studies primarily focus on areas with high pollution exposure 
or the analysis of pollution sources. There has been less attention given 
to the direct link between low-concentration air pollution exposure 
and specific diseases, such as respiratory diseases (18, 19). The 
concentration-health effect is often higher at low concentrations than 
at high concentrations, as the health risks of low-level exposure are 
not always adequately addressed (20).

Therefore, this study aims to utilize hospital outpatient data, air 
pollution data, and meteorological data from Fuzhou between 2019 
and 2022 to conduct a time-series analysis of the association between 
low-concentration air pollution exposure and respiratory outpatient 
visits. By capturing both the immediate and delayed effects of pollutant 
concentration fluctuations on health, this study will offer a refined 
evaluation of health impacts. It will provide new perspectives on 
understanding the effects of low-concentration air pollution on public 
health and serve as an important reference and epidemiological basis 
for the adjustment of public health policies in Fuzhou and similar 
areas with low pollution concentrations.

The forest coverage rate in Fuzhou, Fujian Province, China, 
reaches 58.41%, and the air quality is excellent. Therefore, this study 
explored the effects of air pollutants exposure on total hospital 

outpatient visits and respiratory outpatient visits in Fuzhou City, a low 
pollution exposure area, by analyzing hospital outpatient data, air 
pollutant and meteorological data simultaneously to provide an 
epidemiological basis for governmental measures in low 
pollution areas.

2 Materials and methods

2.1 Source of information

2.1.1 Air pollution data
The air pollution data (PM2.5, PM10, NO2, SO2, O3, CO) from 

January 2019 to December 2022 were sourced from six national 
control points (Fujian Normal University, Gushan, Ziyang, Kuaian, 
Wusi North Road, Yangqiao West Road) and one municipal control 
point (Fuzhou No. 29 Middle School) monitored by the Fuzhou 
Environmental Monitoring Center Station. These monitoring 
stations provide real-time data on local pollutant concentrations. 
Among the monitoring sites, Wusi North Road, Yangqiao West 
Road, Ziyang, Fujian Normal University, and Fuzhou No. 29 
Middle School are located within the city’s third ring road, while 
the Kuaian monitoring site is located outside the third ring road in 
Mawei Town, and the Gushan site is situated within the Gushan 
Scenic Area. These environmental monitoring points cover most 
areas of Fuzhou City. To balance the representativeness of the data 
and the ability to detect localized effects, the study area was 
divided into several sub-regions for stratified analysis, and the 
daily average concentrations of each pollutant were calculated  
separately.

2.1.2 Meteorological data
The meteorological data during the same period were sourced 

from the Fuzhou Meteorological Bureau, including daily average 
temperature (°C), daily average atmospheric pressure (hPa), daily 
average relative humidity (%), and daily average wind speed (m/s).

2.1.3 Outpatient data
All data were systematically organized and cleaned using 

Microsoft Excel 2016. SPSS 26.0 software was employed to 
perform a descriptive analysis of air pollutant data, meteorological 
data, and respiratory disease outpatient data within the urban area 
of Fuzhou from January 2019 to December 2022. The data 
concerning air pollutants, meteorological indicators, and daily 
outpatient visits for respiratory diseases were statistically 
summarized using measures such as mean standard error, 
minimum, maximum, and quartiles. The outpatient data related 
to respiratory diseases were categorized into internal medicine 
respiratory disease outpatient visits and pediatric respiratory 
disease outpatient visits to assess whether there were significant 
differences between the two groups. Respiratory diseases were 
further classified into acute upper respiratory tract infections, 
other acute lower respiratory tract infections, influenza and 
pneumonia, various diseases of the upper respiratory tract, and 
chronic lower respiratory diseases. By analyzing the daily 
outpatient data for respiratory diseases collected from various 
hospitals, the outpatient composition ratio for different types of 
respiratory diseases was determined.
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2.2 Statistical method

2.2.1 Descriptive analysis
Microsoft Excel 2016 was used to organize and clean all data. 

Descriptive analysis of the air pollution data, meteorological data, and 
respiratory disease outpatient data from Fuzhou’s urban area (January 
2019 to December 2022) was conducted using SPSS 26.0 software. The 
air pollution, meteorological indicators, and daily outpatient data for 
respiratory diseases were statistically described using means, standard 
errors, minimum values, maximum values, and quartiles. Respiratory 
disease outpatient data were divided into two categories: outpatient 
visits for respiratory diseases in internal medicine and outpatient visits 
for pediatric respiratory diseases, and significant differences between 
these two groups were analyzed. Respiratory diseases were categorized 
into five subtypes: acute upper respiratory tract infections, other acute 
lower respiratory tract infections, influenza and pneumonia, other 
upper respiratory tract diseases, and chronic lower respiratory tract 
diseases. Based on the daily outpatient data for respiratory diseases 
from each hospital, the composition ratio of outpatient visits for each 
subtype was calculated.

2.2.2 Correlation analysis and factor analysis
Spearman correlation analysis was performed on the air pollutant 

data, meteorological data and outpatient data through R (version 
4.4.3) to assess the correlation between air pollutants, meteorological 
factor variables and respiratory outpatient visits and to make graphs, 
if the correlation is too high it means that there is a strong covariance 
and it is not suitable to be included in the model. Stepwise regression 
analysis was performed on the above data using SPSS 26.0 software to 
find out the factors that have an impact on the volume of respiratory 
outpatient visits.

2.2.3 Modeling time series
In order to explore the model with better results in terms of the 

effects of meteorological factors and air pollution on outpatient 
respiratory diseases, we compare the autoregressive integrative sliding 
average model (ARIMA) and the generalized linear model (GLM), 
which are widely used in the field of time series analysis, with the 
general form of the ARIMA model as ARIMA (p, d, q), p represents 
the number of autoregressive terms, d is the difference order, and q is 
the sliding average. Its optimal parameter combination is found to 
be ARIMA (1, 2) in this study. Ljung-Box Q-test for white noise of 
residuals is used. It is calculated based on the autocorrelation 
coefficients of multiple lags and measures the overall autocorrelation 
of the residuals. Values were used to test whether the statistic was 
significant. If p<0.05, the null hypothesis can be rejected (the residuals 
are white noise). In Supplementary Table S1, the p-value for lag 1 is 
0.0082, which is less than 0.05, indicating that there are structures or 
patterns in the residuals that are not captured by the model, and that 
there may be some degree of autocorrelation, which does not satisfy 
the white noise test, and that the model does not fit the data adequately. 
In order to quantify the uncertainty of the predictive model, the data 
were also evaluated using Mean Error (ME), Root Mean Squared 
Error (RSME), Mean Absolute Error (MAE), and Mean Absolute 
Percentage Error (MAPE) as shown in Supplementary Table S1, and 
it was found that that the degree of its error is large. Due to the poor 
fitting effect and prediction of ARIMA model, we  finally used 
Generalized Linear Models (GLM) (21) based on Poisson distribution 

with the ability to control data over-discretization and autocorrelation 
in the study of the health effects of air pollution, based on the date, 
atmospheric pollutant concentration, meteorological conditions, day 
of the week, and the number of days of the week. Health effect 
indicators (daily respiratory outpatient visits) were used to create time 
series data to analyze the effect of air pollutants on respiratory disease 
outpatient visits. Correlation analysis revealed a strong correlation 
between daily mean barometric pressure and daily mean temperature 
(r  = −0.81), and daily mean barometric pressure was eventually 
excluded from the model to avoid covariance. Adjustment variables 
for inclusion in the final model were determined based on the 
principle of minimizing the value of the quasi-Akaike information 
criterion (Q-AIC) (22). For temperature (T) and relative humidity 
(RH), a degree of freedom of 4 was used (23, 24). The degrees of 
freedom (df) for dates were 7 df per year (25). The GLM formula was 
as follows:

 ( ) ( ) ( )β ∗= + + + +logE Yt Zt ns time,7 4 ns Xt,4 DOW .ɑ

In this model, E(Yt) represents the expected value of respiratory 
outpatient visits on the t-th day (in persons). β denotes the exposure-
response relationship coefficient. Zt is the observed concentration of 
atmospheric particulate pollution on the t-th day. ns() refers to the 
natural spline function used to fit the long-term and seasonal trends 
of the time series, with df representing its degrees of freedom. Time is 
the date variable. Xt represents the observed meteorological factors on 
the t-th day, including average temperature and average relative 
humidity. DOW is a dummy variable reflecting the day-of-week effect. 
α is the constant intercept term.

This study aims to investigate the short-term health effects of 
pollutants by observing the days within a 7-day lag period, analyzing 
the sensitivity of various pollutants to both the same-day outpatient 
visits and the visits with a lag of 1 to 7 days. Specifically, the excess risk 
(ER) of outpatient visits for each 10 μg/m3 increase in pollutant 
concentration was calculated. The concentrations of pollutants at lag0 
to lag7 (0–7 days) were sequentially incorporated into the model to 
calculate the ER and 95% confidence intervals (CI) for each 10 μg/m3 
increase in pollutant concentration, analyzing the lag effects 
individually. The GLM model plot was generated using ggplot2 in R 
software. In this study, a p-value of ≤0.05 was considered 
statistically significant.

2.2.4 Sensitivity analysis
To evaluate the stability of the findings of this study, a sensitivity 

analysis was further conducted on the model by modifying the df 
values of the covariates, either increasing or decreasing the original df 
values by 1. Finally, the impact on the results was assessed based on 
the extent of change in their corresponding effect values.

3 Results

3.1 Descriptive statistics of air pollutants 
and meteorological factors

The general descriptive statistics for air pollutants and 
meteorological variables in Fuzhou from 2019 to 2022 are presented 
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in Table 1. The mean concentrations of PM₁₀, PM₂.₅, NO₂, SO₂, CO, 
and O₃ were 37.01 ± 16.61 μg/m3, 19.32 ± 9.804 μg/m3, 
18.23 ± 8.285 μg/m3, 3.96 ± 0.97 μg/m3, 588.38 ± 145.06 μg/m3,  
and 88.96 ± 30.09 μg/m3, respectively. As shown in 
Supplementary Table S2, the annual average concentrations of the six 
pollutants exhibited a declining trend over the study period, except 
for an abrupt increase in the annual average concentration of O₃-8 h 
in 2022.

The daily average concentrations of PM₂.₅ and PM₁₀ showed a 
general “W-shaped” trend across seasons, as illustrated in 
Supplementary Figure S1, with lower levels observed in summer and 
autumn, and higher levels in winter and spring.The annual average 
values of key meteorological factors in Fuzhou were as follows: 
atmospheric pressure 1006.57 ± 7.96 hPa, temperature 21.55 ± 6.89°C, 
relative humidity 73.30 ± 12.94%, and wind speed 2.11 ± 0.72 m/s. As 
shown in Supplementary Figure S2, temperature and atmospheric 
pressure exhibited clear seasonal patterns, although atmospheric 
pressure showed multiple sharp declines between March and October 
of 2022. Relative humidity and wind speed fluctuated markedly 
throughout the study period.

The compliance rates of air pollutants with respect to 
concentration standards were calculated based on the six 
pollutants (Supplementary Table S3). As shown in Table 2, the 
concentrations of NO₂, SO₂, and CO meet the national Class 
I standards, while the daily average concentrations of PM₁₀, PM₂.₅, 
and O₃ generally comply with the national Class II standards, 
indicating that the air quality in Fuzhou is relatively good. 
However, according to the WHO standards, the compliance rates 
for PM₁₀, PM₂.₅, and O₃ decrease to 81.86, 77.75, and 64.48%, 
respectively.

3.2 Basic situation of outpatient visits for 
respiratory diseases and the composition 
ratio of daily outpatient visits

Between January 2019 and December 2022, the total number of 
respiratory system disease outpatient visits across seven hospitals was 
1,530,000. As shown in Table 1, the average daily outpatient visits for 
pediatric respiratory diseases were 758.58 ± 407.04, while the average 
daily outpatient visits for adult respiratory diseases in internal 
medicine were 288.65 ± 147.89. From Figure 1, it can be observed that 
there was a sharp decline in respiratory system outpatient visits at the 
beginning of 2020, followed by an overall annual increase in outpatient 
numbers. The outpatient visit numbers exhibited considerable 
fluctuations, with seasonal variations being more pronounced. In 
general, the winter and spring seasons saw higher outpatient visits 
compared to the summer and autumn seasons.

Among all hospitals, the most common respiratory disease by 
outpatient visits was acute upper respiratory tract infections, 
accounting for 25.60% of the total respiratory disease outpatient visits, 
with 391,607 visits. During this period, pediatric respiratory diseases 
accounted for a significant portion of the total respiratory outpatient 
visits in Fuzhou, representing 72.44% of the total, with acute upper 
respiratory tract infections, influenza and pneumonia, and other 
upper respiratory tract diseases being the predominant conditions, 
comprising 41.36, 27.55, and 13.06% of pediatric respiratory 
outpatient visits, respectively. For internal medicine respiratory 
diseases, the top three diseases by proportion in daily outpatient visits 
were acute upper respiratory infections (29.42%), other upper 
respiratory tract diseases (27.01%), and chronic lower respiratory 
diseases (26.47%), as shown in Table 3.

TABLE 1 Basic characteristics of respiratory outpatient visits, air pollutants and meteorological factors in Fuzhou from 2019 to 2022.

Variables Mean ± SD Minimum Median Maximum IQR

Respiratory outpatient visits

Total 1047.23 ± 500.05 112.00 965.00 3351.00 658.50

Pediatrics 758.58 ± 407.04 83.00 686.00 2537.00 579.00

Internal Medicine 288.65 ± 147.89 17.00 272.00 1103.00 184.00

Air pollutants

PM10 (μg/m3) 37.01 ± 16.61 5.25 35.38 145.57 21.24

PM2.5 (μg/m3) 19.32 ± 9.80 2.50 17.75 75.86 11.70

NO2 (μg/m3) 18.23 ± 8.29 3.57 16.86 49.75 10.44

SO2 (μg/m3) 3.96 ± 0.97 2.00 3.88 7.71 1.29

CO (mg/m3) 588.38 ± 145.06 212.50 585.71 1100.00 187.50

O3-8h (μg/m3) 88.96 ± 30.09 20.71 87.43 186.57 42.46

Meteorological factors

Atmospheric pressure 

(hPa)
1006.57 ± 7.96 985.00 1007.00 1028.00 13.00

Temperature (°C) 21.55 ± 6.89 5.10 21.50 34.00 12.30

Relative Humidity (%) 73.30 ± 12.94 37.00 72.00 100.00 18.00

Wind Speed (m/s) 2.11 ± 0.72 0.60 2.00 7.10 0.90
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3.3 Correlation analysis of air pollutants 
and meteorological factors with outpatient 
volume

Air pollutants and meteorological factors were analyzed for 
correlation on respiratory outpatient visits. As shown in Figure 2, for 
overall respiratory disease visits, correlations existed for all except SO2, 
CO, and relative humidity. Positive correlations were found for all 
pollutants except O3; pediatric respiratory disease visits were 
negatively correlated with temperature, wind speed, O3, and SO2, and 
positively correlated with barometric pressure, PM2.5, and NO2; and 
internal medicine respiratory disease visits were negatively correlated 
with temperature and O3, and positively correlated with barometric 
pressure, PM₁₀, PM₂.₅, NO₂, SO₂, and CO. In the correlation analysis 
of meteorological factors and pollutants, humidity was negatively 
correlated with changes in the daily average concentrations of PM2.5, 
PM10, SO2, and O3, and temperature was negatively correlated with 
changes in the daily average concentrations of PM2.5, NO2, SO2, and 
CO. When the temperature decreased, the concentrations of PM2.5, 
NO2, SO2, and CO increased. Atmospheric pollutants and 
meteorological factors were included in the stepwise regression to 
analyze the influencing factors of respiratory disease outpatient 
volume, and the results, as shown in Table 4, showed that respiratory 
outpatient volume was significantly correlated only with Temperature, 
PM₂.₅, NO₂, SO₂, and PM₁₀ (p < 0.05), and the other factors were not 
statistically significant (p > 0.05).

3.4 Impact of air pollutants on total 
outpatient volume and respiratory 
outpatient volume

GLM model was constructed to analyze the effects of six air 
pollutants on the volume of respiratory outpatient visits in hospitals. 
As shown in Figure  3 and Supplementary Table S4, for the total 
respiratory outpatient visits, NO2 (ER: 10.61, 95%CI: 8.25–13.03) and 
PM10 (ER: 2.46, 95%CI: 1.58–3.35) reached the maximum in the 
lagged day 0–1 effect. SO2 (ER: 34.12, 95%CI: 12.53–59.87) peaked at 
lag day 4. PM2.5 (ER: 3.02, 95%CI: 1.06–4.46) was at lag day 6. 
However, the lags for CO and O3 were not statistically significant.

PM2.5, PM10, NO2, and SO2 had differential effects on medical 
and pediatric respiratory visits, and all of them had significant 
effects and lagged risks of visits. As can be seen from the data in 
Supplementary Tables S5, S6, the effect of PM2.5 on pediatric lag4 
respiratory disease visits (ER: 3.62, 95% CI: 2.06–5.20) was slightly 

higher than that on internal medicine lag0 (ER: 2.44, 95% CI: 0.90–
4.00). The effect of PM10 on pediatric respiratory disease visits in 
lag1-4 The excess risk of lagged effect showed an increasing trend, 
with the highest ER value of 2.88% (95%CI: 1.95–3.82) at lag4; the 
most significant effect of PM10 on the volume of pediatric respiratory 
disease outpatient was found on lag0, with an ER value of 3.27% 
(95%CI: 1.76–4.80). The risk of NO2 on pediatric respiratory disease 
outpatient was slightly lower than that of medical respiratory disease 
outpatient clinics, with the highest ER values at lag0 for both clinics, 
with ER values of 10.61% (95%CI: 8.25–13.03) and 14.48% (95%CI: 
10.86–18.21), respectively. The excess risk of lagged effects of SO2 on 
outpatient clinics for pediatric respiratory illnesses tended to 
be  higher in lag1-4, with the highest ER value at lag4, reaching 
42.10% (95%CI: 17.31–72.12). NO2 had a slightly lower risk for 
outpatient pediatric respiratory illnesses than medical respiratory 
illnesses. ER was highest at 42.10% (95%CI: 17.31–72.12), and the 
effect of SO2 on outpatient visits for medical respiratory diseases was 
highest at 24.39% (95%CI: 2.35–51.19) at lag1, and the risk of SO2 
on outpatient visits for pediatric respiratory diseases was 
significantly higher than that for medical respiratory diseases 
(Figure 4).

The lagged effect of O3 on pediatric respiratory disease visits was 
significant on day 3 with an ER of 0.65% (95% CI: 0.07–1.22). The 
one-day lagged effect of O3 on medical respiratory disease visits was 
not statistically significant at the 95% confidence interval. In contrast, 
there was no statistically significant one-day lagged effect of CO on 
the risk of daily respiratory disease visits in pediatrics and internal 
medicine (Figure 5).

3.5 Impact of air pollutants on total 
outpatient volume and respiratory 
outpatient volume

Supplementary Tables S7–S16 and Supplementary Figures S3–S12 
show the correlation between each 10 μg/m3 of the concentrations of 
PM2.5, PM10, NO2, SO2, and O3 and daily outpatient visits for each type 
of respiratory diseases in pediatrics and internal medicine in urban 
areas of Fuzhou city, January 2019–December 2022, with the Lagged 
effect of outpatient visits. These pollutants had significant and lagged 
effects on the risk of outpatient visits for different subgroups of 
respiratory diseases in pediatrics. Since there was no statistically 
significant lagged effect of CO with all types of respiratory diseases in 
pediatrics and internal medicine in Fuzhou City, and no statistically 

TABLE 2 The compliance rate of air pollutants in Fuzhou from 2019 to 2022.

Air pollutants Total days (d) China (attainment rate) WHO attainment rate (%)

First-level (%) Second-level (%)

PM10 (μg/m3) 1,461 81.86 100.00 81.86

PM2.5 (μg/m3) 1,461 92.54 99.93 77.75

NO2 (μg/m3) 1,461 100.00 100.00 –

SO2 (μg/m3) 1,461 100.00 100.00 100.00

CO (mg/m3) 1,461 100.00 100.00 –

O3-8h (μg/m3) 1,461 64.48 99.04 64.48
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significant lagged effect of O3 with all types of respiratory diseases in 
internal medicine, stratified analyses were not performed.

3.5.1 Stratified analysis of the risk of daily 
outpatient visits for each type of respiratory 
diseases per 10 μg/m3 of pollutant elevation

Supplementary Tables S7–S11 and Supplementary Figures S3–S7 
contain the daily outpatient visits of atmospheric pollutants (PM2.5, 
PM10, NO2, SO2, and O3) with various types of respiratory diseases of 
internal medicine in the urban area of Fuzhou City, Fuzhou City, 
China, from January 2019 to December 2022 Lagged effects. All these 
pollutants were significantly associated with the risk of outpatient 
visits for different subgroups of respiratory diseases in pediatrics.

 (1) Stratified analysis of the risk of outpatient visits for various 
types of respiratory diseases in pediatrics per 10 μg/m3 increase 
in PM2.5 concentration:

PM2.5 had a significant and lagged effect on the risk of outpatient 
visits for different subgroups of respiratory diseases in pediatrics; the 
risk of outpatient visits for respiratory diseases for other acute lower 
respiratory tract infections in pediatrics was highest in lag2 (ER: 3.81, 
95% CI: 2.09–5.55); outpatient risk for other diseases of the upper 
respiratory tract in pediatrics was highest at lag7 (ER: 2.37, 95% CI: 

0.51–4.26), outpatient risk for respiratory diseases of chronic lower 
respiratory tract diseases in pediatrics was highest at lag6 (ER: 3.46, 95% 
CI: 1.71–5.25), and outpatient risk for respiratory diseases of influenza 
and pneumonia in pediatrics was highest at lag4 (ER: 5.39, 95% CI: 
3.86–6.95) was the highest. The one-day lagged effect of daily pediatric 
acute upper respiratory tract infection visits was significant for the first 
6 days and was highest with lag0 (ER: 2.46, 95% CI: 1.49–3.44).

 (2) Stratified analysis of the risk of pediatric outpatient visits for 
various respiratory diseases per 10 μg/m3 increase in 
PM10 concentration:

PM10 had a significant effect on the risk of outpatient visits for 
different subgroups of respiratory diseases in pediatrics. The risk of 
respiratory diseases in pediatrics for acute upper respiratory tract 
infections was highest at lag0 (ER: 3.27, 95% CI: 1.76–4.80); the risk 
of respiratory diseases in pediatrics for other acute lower respiratory 
tract infections was highest at lag3 (ER: 3.05, 95% CI: 2.02–4.09); the 
risk of respiratory diseases in pediatrics for influenza and pneumonia 
were both highest at lag4 (ER: 3.05, 95% CI: 2.02–4.09); and the risk 
of respiratory diseases in pediatrics was highest at lag3 (ER: 3.05, 95% 
CI: 3.05–4.09). Risk was highest for lag4 (ER: 3.63, 95% CI: 2.71–4.57); 
lag6 was highest for other pediatric upper respiratory diseases and 
pediatric chronic lower respiratory diseases, and the effect of PM10 on 

FIGURE 1

The trends in respiratory outpatient volumes, pediatric respiratory outpatient volumes and internal medicine respiratory outpatient volumes from 2019 
to 2022.

TABLE 3 The composition ratio (%) of the daily outpatient visits for respiratory outpatient visits in Fuzhou from 2019 to 2022.

Outpatients Acute upper 
respiratory 
infection

Influenza and 
pneumonia

Other acute 
lower respiratory 

infections

Other upper 
respiratory tract 

diseases

Chronic lower 
respiratory 

diseases

Total 32.87% 9.87% 10.84% 24.06% 22.36%

Internal medicine 29.42% 7.99% 9.12% 27.01% 26.47%

Pediatrics 41.36% 27.55% 12.16% 13.06% 5.88%
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pediatric chronic lower respiratory disease visits (ER: 2.39, 95% CI: 
1.38–3.41) was slightly higher than that of other pediatric upper 
respiratory diseases (ER: 2.39, 95% CI: 1.38–3.41), diseases [ER: 1.72, 
95%CI: (0.66–2.78)].

 (3) Stratified analysis of the risk of pediatric outpatient visits for 
various respiratory diseases per 10 μg/m3 increase in 
NO2 concentration.

NO2 had a significant effect on the risk of outpatient visits for 
different subgroups of respiratory diseases with a lag. The effect of NO2 
on the risk of outpatient visits for pediatric acute upper respiratory tract 
infections, and other diseases of the pediatric upper respiratory tract was 
greatest at lag0, with a greater effect on pediatric acute upper respiratory 
tract infection visits (ER: 11.62, 95%CI: 9.23–14.06), and a smaller effect 
on the risk of outpatient visits for other diseases of the pediatric upper 
respiratory tract (ER: 8.39, 95%CI: 5.41–11.45); NO2 had the highest 
effect on the risk of outpatient visits for respiratory diseases of other 
acute lower respiratory tract infections in pediatrics with lag6 (ER: 11.40, 
95%CI: 8.68–14.19) was highest; the outpatient risk of respiratory disease 
for pediatric influenza and pneumonia was highest with lag5 (ER: 7.87, 
95%CI: 5.47–10.33); and the outpatient risk of chronic lower respiratory 
disease in pediatrics was highest with lag1 (ER: 6.77, 95%CI: 3.91–9.71).

 (4) Stratified analysis of the outpatient risk of various respiratory 
diseases in pediatrics per 10 μg/m3 increase in SO2 concentration.

SO2 had a significant effect on outpatient risk of different 
respiratory disease subgroups with a lag. lag1 (ER: 45.76, 95%CI: 
20.38–76.48) had the greatest effect on outpatient risk of pediatrics 

FIGURE 2

Analysis of the correlation between air pollutants, meteorological factors, and total outpatient volume and respiratory outpatient volume.

TABLE 4 Analysis of the influence of atmospheric pollutants and 
meteorological factors on respiratory outpatient visits.

Variable β t p

Temperature −0.26 −6.95 0.000**

PM2.5 0.11 3.14 0.002**

NO2 0.39 10.8 0.000**

SO2 −0.36 −9.37 0.000**

PM10 −0.06 −1.98 0.048*

O3 0.04 0.37 0.72

CO −0.07 −1.73 0.08

Atmospheric pressure 

(hPa)
−0.02 −0.05 0.87

Relative Humidity 

(%)
−0.008 −0.06 0.95

Humidity −0.016 −0.123 0.93

*p < 0.05; **p < 0.01.
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acute upper respiratory infections. Risk impact on outpatient visits for 
pediatric influenza and pneumonia was greatest in lag4 (ER: 88.8, 
95%CI: 52.63–133.55), outpatient visits for other pediatric acute lower 

respiratory infections was greatest in lag2 (ER: 71.06, 95%CI: 36.31–
114.67), and outpatient visits for pediatric chronic lower respiratory 
diseases was greatest in lag5 (ER: 45.57, 95%CI: 17.59–80.2), and the 

FIGURE 3

Lagged effects of different air pollutants on respiratory outpatient volume (A PM2.5, B PM10, C CO, D NO2, E SO2, F O3).

FIGURE 4

Lagged effects of different air pollutants on internal medicine respiratory outpatient volume (A PM2.5, B PM10, C CO, D NO2, E SO2, F O3).
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one-day lagged effect of SO2 on the risk of pediatric outpatient visits 
for other upper respiratory tract diseases was not statistically 
significant at the 95% confidence interval.

 (5) Stratified analysis of the risk of pediatric outpatient visits for 
various respiratory diseases per 0.1 mg/m3 increase in 
O3 concentration.

O3 had a significant effect on the risk of outpatient visits for 
different subgroups of respiratory diseases with lagged effects. lag1 had 
the greatest effect on the risk of outpatient visits for pediatric acute 
upper respiratory infections (ER: 0.68, 95% CI: 0.14–1.21); the impact 
of O3 on outpatient risk for pediatric influenza and pneumonia, 
pediatric other acute lower respiratory tract infections, and pediatric 
chronic lower respiratory tract diseases was all greatest with lag3, with 
the impact on outpatient volume for pediatric influenza and 
pneumonia (ER: 1.75, 95%CI: 1.14–2.37) being slightly greater than 
the impact on outpatient volume for other acute lower respiratory tract 
infections in pediatrics (ER: 1.00, 95%CI: 0.34–1.68); the risk effect of 
O3 on outpatient visits for other pediatric upper respiratory tract 
conditions had a single-day lagged effect versus a cumulative lagged 
effect that was not statistically significant at the 95% confidence interval.

3.5.2 Stratified analysis of the risk of each 10 μg/
m3 elevation of pollutants on the risk of 
outpatient visits for various types of respiratory 
diseases in internal medicine

Supplementary Tables S12–S16 and Supplementary Figures S8–S12 
contain the lagged effects of each 10 μg/m3 elevation of the 
concentrations of PM2.5, PM10, NO2, and SO2 in the urban area of 
Fuzhou City from January 2019 to December 2022 on the daily 

outpatient visits for each type of respiratory diseases in internal 
medicine in Fuzhou City. The risks of these pollutants on outpatient 
visits for different subgroups of respiratory diseases in pediatrics were 
all correlated by significant correlations.

 (1) Stratified analysis of the risk of daily outpatient visits for 
various types of respiratory diseases in internal medicine per 
10 μg/m3 increase in PM2.5 concentration.

The risk of outpatient visits for other diseases of the upper 
respiratory tract in internal medicine and other acute lower 
respiratory tract infections in internal medicine were all highest at 
lag0, and the effect of PM2.5 on visits for other acute lower respiratory 
tract infections in internal medicine (ER: 5.21, 95%CI: 2.89–7.59) was 
slightly higher than that for other diseases of the upper respiratory 
tract in internal medicine (ER: 2.94, 95%CI: 0.38–5.57). The risk of 
outpatient visits for acute upper respiratory tract infections in internal 
medicine was highest with lag1 (ER: 3.13, 95%CI: 1.01–5.30), and the 
risk of outpatient visits for chronic lower respiratory tract diseases in 
internal medicine was highest with lag6 (ER: 1.82, 95%CI: 0.05–3.62). 
95% confidence intervals were considered statistically non-significant 
for PM2.5 for influenza and pneumonia in internal medicine.

 (2) Stratified analysis of the risk of daily outpatient visits for 
various respiratory diseases in internal medicine per 10 μg/m3 
increase in PM10 concentration.

The risk of outpatient visits for other diseases of the upper 
respiratory tract in internal medicine and other acute lower respiratory 
tract infections in internal medicine was highest in lag0, and the effect 
of PM10 on visits for other acute lower respiratory tract infections in 

FIGURE 5

Lagged effects of different air pollutants on pediatric respiratory outpatient volume (A PM2.5, B PM10, C CO, D NO2, E SO2, F O3).
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internal medicine (ER: 2.86, 95% CI: 1.41–4.33) was slightly higher than 
that of internal medicine other diseases of the upper respiratory tract 
(ER: 2.11, 95%CI: 0.56–3.69). The risk of outpatient visits for acute 
upper respiratory tract infections in internal medicine was highest with 
lag1 (ER: 3.13, 95%CI: 1.01–5.30), and the risk of outpatient visits for 
chronic lower respiratory tract diseases in internal medicine was highest 
with lag4 (ER: 1.39, 95%CI: 0.34–2.45). The lagged effect of PM10 on the 
daily outpatient risk of influenza and pneumonia was considered within 
95% confidence intervals to be not statistically significant.

 (3) Stratified analysis of the risk of daily outpatient visits for 
various respiratory diseases in internal medicine per 10 μg/m3 
increase in NO2 concentration.

The effects of NO2 on the risk of outpatient visits for acute upper 
respiratory infections in internal medicine, other diseases of the upper 
respiratory tract in internal medicine, chronic lower respiratory 
diseases in internal medicine, influenza and pneumonia in internal 
medicine, and infections of other lower respiratory diseases in internal 
medicine were greatest at lag0, and the effect on the visit to the clinic 
for acute upper respiratory infections in internal medicine was the 
(ER: 14.48, 95%CI: 10.86–18.21) and to a lesser extent on the risk of 
outpatient visits for other acute lower respiratory tract infections in 
internal medicine (ER: 8.60, 95%CI: 3.13–14.35).

 (4) Stratified analysis of the risk of daily outpatient visits for 
various types of respiratory diseases in internal medicine per 
10 μg/m3 increase in SO2 concentration.

The risk of outpatient visits for acute upper respiratory tract 
infections in internal medicine was highest with lag1 (ER: 52.00, 
95%CI: 14.95–101.00), the risk of outpatient visits for influenza and 
pneumonia in internal medicine was highest with lag6 (ER: 57.36, 
95%CI: 2.07–142.62), and the risk of outpatient visits for other acute 
lower respiratory tract infections in internal medicine was highest 
with lag2 (ER: 31.87, 95%CI: 0.58–72.91; 142.62), outpatient risk of 
other acute lower respiratory tract infections in internal medicine was 
highest with lag2 (ER: 31.87, 95%CI: 0.58–72.91), outpatient risk of 
other diseases of the upper respiratory tract in internal medicine was 
highest with lag4 (ER: 42.10, 95%CI: 17.31–72.12), outpatient risk of 
chronic lower respiratory diseases in internal medicine was highest 
with lag4 (ER: 42.10, 95%CI: 17.31–72.12), and outpatient risk of 
chronic lower respiratory diseases in internal medicine outpatient risk 
was highest with lag3 (ER: 27.33, 95%CI: 2.17–58.67).

3.6 Sensitivity analysis

Supplementary Figures S13–S15 show the sensitivity value analysis 
of modifying the df values of the covariates, from which it can be seen 
that the results of the analysis after modifying the df are generally similar 
to the original results. Therefore, overall the lag model is more stable.

4 Discussion

In this study, the relationship between air pollutants and 
respiratory diseases in Fuzhou City during the period from January 

2019 to December 2022 was comprehensively analyzed. The results of 
the study showed that air pollution, especially PM2.5, PM10, NO2, and 
SO2, significantly and usually with a lagged effect affected respiratory 
outpatient clinic visits, especially in the pediatric and adult populations. 
The study used air quality, meteorological factors, and detailed 
outpatient records from seven hospitals in Fuzhou City, which provide 
a solid basis for examining the public health impacts of air pollution.

4.1 Impact of air pollutants and 
meteorological factors on outpatient visits 
for respiratory diseases

During the period from January 2019 to December 2022, air 
pollutants in Fuzhou City showed an overall decreasing trend. 
This is due to the fact that the Chinese government attaches great 
importance to the prevention and control of air pollution and 
continues to promote the improvement of atmospheric 
environmental quality, and the number of heavily polluted days 
across the country continues to decrease (26). According to 
China’s secondary air quality standards, only PM2.5 and O3-8h 
have exceedances, but the exceedance rates are only 0.16 and 
1.7%. Thus, this indicates that air pollution prevention and 
control in Fuzhou City has been effective. Nonetheless, the 
number of respiratory outpatient visits in general still showed an 
increasing trend year by year. This may be  related to 
meteorological factors (e.g., temperature) and increased demand 
for medical services in the context of the new Crown pneumonia 
epidemic (27, 28).

Changes in daily outpatient visits for respiratory diseases 
during the study period were characterized by high rates in 
winter and spring and low rates in summer and fall. As a result 
of the onset of the COVID-19 pandemic (29), a series of public 
health interventions such as social distancing, wearing masks, 
and other isolation methods by governmental organizations 
resulted in the lowest respiratory outpatient visits in hospitals in 
the early 2020s, with a particularly significant impact on children. 
Total respiratory outpatient visits were lower after the outbreak 
than before, and there was a brief burst of respiratory outpatient 
visits. The trends in daily mean fluctuations of PM2.5 and PM10 
were similar, with the highest peaks occurring mostly in winter 
and spring.

The results of the time series analysis of air pollutants and hospital 
outpatient visits showed that increasing pollutant concentrations 
increased the risk of respiratory diseases. In respiratory outpatient 
visits, lagged effects were observed for all pollutants except CO. Our 
results are consistent with several epidemiologic studies demonstrating 
that air pollutants affect the human respiratory system (30, 31). A 
study in Baotou, China, similar to the results of this study (32), 
observed that there was a significant association between pollutant 
concentrations and respiratory outpatient visits.

Temperature and atmospheric pressure are key meteorological 
factors that influence the association between air pollution and 
hospital visits. Our results demonstrate that exposure conditions to 
pollutant concentrations at lower temperatures and higher barometric 
pressures increase the risk of respiratory diseases, which may be related 
to the reduced diffusion capacity of pollutants at low temperatures and 
high pressures, as well as the weakening of the body’s respiratory 
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defense mechanisms. Some studies have confirmed that low 
temperature conditions increase the risk of respiratory diseases. While 
low-temperature conditions impede the dispersion of pollutants, high-
pressure environments may limit the vertical dispersion of pollutants, 
resulting in higher concentrations of particulate matter and harmful 
gases (33). Some studies have confirmed that low temperature 
conditions increase the risk of respiratory diseases (34, 35). While 
low-temperature conditions impede the diffusion of pollutants, high 
humidity may increase the viscosity of the respiratory mucosa, making 
it less capable of clearing foreign bodies (36). There is consistency with 
several previous studies (37–39). Therefore, we recommend taking 
protective measures such as wearing masks when going out in winter 
and spring to reduce the risk of respiratory diseases.

4.2 Lagged effects of atmospheric 
pollutants on the risk of respiratory disease 
outpatient visits in Fuzhou City

In the study of time series data on respiratory system diseases in 
Fuzhou City and various air pollutants, the maximum single-day lag 
effect of PM2.5 occurred on the 6th day. A study in Utah (40) found 
that short-term elevations in PM2.5 concentrations caused an increase 
in the incidence of acute respiratory infections in a large number of 
patients, suggesting that PM2.5 levels may influence the severity of 
acute respiratory infections. In contrast, a study by a European 
multicenter group showed that the relationship between PM2.5 and the 
number of outpatient visits for respiratory diseases was not significant 
(41). This is in contrast to our results, which showed that a 10 mg/m3 
increase in PM2.5 was associated with an excess risk of respiratory 
disease outpatient clinic visits at lag6 of ER 3.02% (95% CI: 1.06–4.46), 
and that these differences were due to a number of factors. First, in our 
study, the study population was residents of Fuzhou City, which is a 
mild pollution concentration area, while Karakatsani et  al. were 
concerned mainly with high pollution areas, and according to J 
Schwartz’s study (42) it is known that daily outpatient visits for 
respiratory illnesses change more drastically when they increase at low 
levels of air pollutant concentration, while the concentration of air 
pollutants increases significantly, the number of daily outpatient visits 
for respiratory diseases tends to stabilize or even decrease, the increase 
in daily visits for respiratory illnesses leveled off or even declined at 
high levels of air pollutant concentrations. Other possible reasons 
include differences in meteorological factors, sources of air pollutants, 
levels of air pollutants, or chemical composition in different 
study areas.

The effect of each 10 μg/m3 increase in PM10 concentration on the 
total number of respiratory disease outpatient visits reached a 
maximum on day 1, with an ER of 2.46% (95% CI: 1.58–3.35), and the 
risk of increased respiratory disease outpatient visits appeared earlier 
than that of PM2.5, which may be related to the mechanism of the 
action of airborne particulate matter on the respiratory system, and 
the sources, compositions, and sites of deposition in the body are 
different between PM2.5 and PM10. The sources, composition, and 
deposition sites within the body of PM2.5 and PM10 are different, PM10 
aerodynamic diameter is larger, usually deposited in the upper 
respiratory tract, bronchial or fine bronchial tubes, caused by 
respiratory disease symptoms appear earlier, while PM2.5 aerodynamic 
diameter is smaller, can be deep into the alveoli.

The lagged effects of NO2 were all greatest on the daily 
outpatient visits for respiratory diseases on the same day, and NO2 
can rapidly stimulate respiratory diseases in humans. Among all the 
pollutants considered in this study, all pollutants (PM10, PM2.5, SO2, 
NO2, and O3-8h) had lagged effects on the total number of 
outpatient visits for respiratory diseases, with the exception of CO, 
and the short-term exposures to CO had lagged effects on the total 
number of outpatient visits for respiratory diseases in the same day 
with the daily respiratory disease visits did not show significant 
effects for all lag periods, suggesting that it has a small or delayed 
effect on respiratory visits. The failure to produce significant results 
for these pollutants may reflect the relatively transient nature of 
their health effects or the fact that specific meteorological conditions 
during the study period diminished their effects on respiratory 
health (43). Although the link between CO and cardiovascular 
disease risk is well established (44), its role on the respiratory 
system has not been confirmed, side by side demonstrating the 
validity of the data used in this study. Therefore, the role of CO in 
respiratory diseases needs to be further investigated.

4.3 Heterogeneity of lagged effects of 
atmospheric pollutants and respiratory 
diseases

In this study, respiratory outpatient clinics were further divided 
into pediatric and internal medicine types of respiratory diseases with 
daily mean concentrations of atmospheric pollutants for time series 
analysis in order to explore the different effects of each pollutant on 
the volume of pediatric and internal medicine outpatient clinics for 
each respiratory disease. It was found that acute infections of the 
upper respiratory tract in both pediatrics and internal medicine had 
the greatest impact on the risk of outpatient visits on the day of 
pollution or on the first day after pollution, which shows that acute 
infections of the upper respiratory tract are very sensitive to 
air pollution.

PM2.5 and PM10 had the highest outpatient risk of upper 
respiratory tract acute infections in internal medicine at lag1, while 
the outpatient risk of upper respiratory tract acute infections in 
pediatrics was highest at lag0, which may be due to the fact that the 
upper respiratory tracts of pediatric patients are more susceptible to 
direct stimulation by air pollutants than those of adults, which leads 
to a rapid onset of acute inflammatory responses.

In this study, it was found that all types of respiratory diseases 
in pediatrics, except for other diseases of the upper respiratory 
tract in pediatrics, were more affected by the increased 
concentration of SO2 pollution, and the ER value of SO2 on the 
risk of daily outpatient visits for influenza and pneumonia in 
pediatrics was as high as 88.80% (95%CI: 52.63–133.55); all types 
of respiratory diseases in internal medicine were more affected 
by the increased concentration of SO2 pollution, and SO2 was also 
a major contributor to the risk of daily outpatient visits for 
infections in internal medicine. SO2 also had the greatest 
single-day lagged effect on the risk of daily outpatient visits for 
influenza and pneumonia in internal medicine, with ER values as 
high as 57.36% (95%CI: 2.07–142.62). This may be related to the 
mechanism of action of SO2, as SO2 is soluble in water, and after 
entering the respiratory tract, it can combine with the moisture 
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on the respiratory mucosa to form corrosive nitrite, sulfuric acid, 
etc., with strong pathogenicity (45).

It was found that elevated NO2 concentration could cause 
elevated risk of increased daily outpatient visits for various types 
of pediatric respiratory diseases, and daily outpatient visits for 
acute upper respiratory tract infections were more affected by 
atmospheric NO2 concentration, and the excess risk could reach 
the maximum value in lag0, with an ER value of 11.62% (95% CI: 
9.23–14.06), which is in agreement with the findings of Liu et al. 
(46) The single-day lag effects of daily outpatient visits for 
pediatric upper respiratory diseases were all higher in terms of 
the excess risk from the day of the rise in NO2 concentration to 
the second day, while the single-day lag effects of lower 
respiratory diseases were mostly higher in terms of the excess risk 
from the fifth to the sixth day of the rise in NO2 concentration, 
probably because upper respiratory infections are mainly in the 
nasal cavity area, pharynx, and larynx, which are prone to acute 
inflammation, commonly seen in common colds and tonsillitis, 
pharyngitis and other diseases with faster onset, while lower 
respiratory infections are mainly in the trachea, bronchus, lungs, 
interstitium and other parts of the lungs, commonly seen in 
bronchitis, bronchiolitis, pneumonia and other diseases with 
slower onset. For all types of pediatric respiratory diseases, the 
effect of elevated NO2 concentrations is maximized on the day of 
lag. This may be due to the fact that NO₂ is a strong oxidizing 
agent capable of directly damaging respiratory epithelial cells and 
triggering an inflammatory response (47). In addition, NO₂ has 
a high chemical reactivity in the atmosphere and tends to 
synergize with other pollutants (e.g., particulate matter), further 
exacerbating respiratory irritation (48).

With a large sample size and strict quality control, this study 
reveals the relationship between exposure to low-level air 
pollutants and hospital respiratory outpatient visits, which is 
highly scientific and representative. However, this study also has 
some limitations. First, the results of the study may be biased due 
to the limited nature of the outpatient volume data and the failure 
to control for confounding factors that may affect the results of 
the study. The seven hospitals selected for this study were all 
representative of the urban areas of Fuzhou City with strong 
comprehensive strength, but due to limitations in data 
acquisition, each hospital was only able to provide respiratory 
outpatient data for internal medicine and pediatrics, lacking key 
demographic information such as age, gender, and address. In 
addition, factors such as socioeconomic status and vaccination 
rates may influence an individual’s sensitivity to air pollution as 
well as his or her healthcare-seeking behavior, but these factors 
could not be adequately considered in this study. Regarding the 
exposure to air pollutants, this study used the average 
concentrations at national monitoring sites, which could not 
accurately reflect the actual exposure levels of individuals. 
Meanwhile, there may be  a correlation between indoor air 
pollution and outdoor air pollution, but their independent effects 
may not be fully captured by the model in this study (49–50). 
Therefore, future studies should further develop more 
comprehensive time-series analyses of respiratory disease data, 
collect more information at the individual and group levels, and 
provide more scientific epidemiological support for the 
development of policies and measures to protect respiratory 

health in areas with low pollutant exposures by means of data 
collection and analysis from multiple perspectives.

5 Conclusion

In summary, this study confirms that changes in the 
concentrations of PM2.5, PM10, NO2 and SO2 have a significant effect 
on the number of outpatient visits for respiratory diseases in Fuzhou 
City. The effects of pollutants on respiratory diseases were not only 
immediate but also showed lagged effects, with NO2 and PM10 
pollutants having faster effects and SO2 and PM2.5 having longer lagged 
effects, especially in pediatric outpatient cases. Overall, the excess risk 
of elevated pollutants on pediatric respiratory disease clinics was 
higher than that of medical respiratory disease clinics, and despite the 
relatively good air quality in Fuzhou City, the results of the study 
suggest that air pollution in low-pollution areas still has a significant 
impact on public health, especially on susceptible groups such as 
children. Therefore, the development of appropriate air pollution 
control policies, especially in low-pollution areas, remains key to 
safeguarding public health. This study provides an important 
epidemiologic basis for air pollution control and respiratory disease 
management in low-pollution areas.
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