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Background: Multimorbidity is increasingly prevalent among older adults and 
poses significant challenges to public health systems. While previous studies 
have highlighted the role of individual behaviors, the complex interaction 
between lifestyle factors and socioeconomic status (SES) in multimorbidity 
remains unclear.

Methods: Using nationally representative data from the China Health and 
Retirement Longitudinal Study (CHARLS), we  developed predictive models 
to identify key determinants of multimorbidity among individuals aged 
≥60 years. A total of 34,755 participants were included, and 17 features related 
to demographics, SES, and lifestyle were selected via LASSO regression. Eight 
machine learning algorithms including logistic regression, decision tree, naive 
Bayes, neural network, support vector machine, random forest, XGBoost and 
Bayesian Ridge Regression were applied to build predictive models. Model 
performance was evaluated using AUC, accuracy, precision, recall, F1-score, 
RMSE, and decision curve analysis (DCA). SHapley Additive exPlanations (SHAP) 
were used to interpret model outputs.

Results: XGBoost achieved the best predictive performance (AUC = 0.788 on 
the test set), outperforming both linear and non-linear models across most 
evaluation metrics. SHAP analysis revealed that education level, activities of daily 
living (ADL), work status, self-assessed health status, and per capita income were 
the top factors associated with of multimorbidity. Subgroup analyses showed 
variated associations by age and sex, with psychological and geographic factors 
playing a larger role among those aged ≥80.

Conclusion: This study demonstrated the feasibility and interpretability of 
using machine learning to model complex risk patterns of multimorbidity. 
Socioeconomic and functional variables were dominant factors associated 
with multimorbidity, suggesting structural roots of health inequality. These 
findings offered empirical and theoretical support for early risk stratification and 
targeted public health interventions aimed at mitigating multimorbidity in aging 
populations.
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1 Introduction

With the acceleration of global population aging and profound 
shifts in lifestyle, multimorbidity, the coexistence of two or more 
chronic conditions has become increasingly prevalent, especially 
among older adults. It now poses a major challenge for global public 
health systems (1, 2). Multimorbidity prevalence rates as high as 
55–98% among those aged 60 and above (3). It accelerates physical 
decline and increases the risk of mental health issues and mortality (4, 
5). Therefore, identifying high-risk populations and designing 
effective intervention strategies are critical for improving health equity 
in aging populations.

Multimorbidity is shaped not only by biomedical factors but also 
by broader social determinants, including lifestyle behaviors, 
environmental exposures, and social structures (5, 6). Currently, 
China is in the process of urbanization, where socioeconomic status 
differences lead to health disparities among the older adult, with a 
weaker socioeconomic status negatively impacting older adult health 
(7, 8). Lifestyle, public services, and social psychological factors can 
mitigate the direct impact of socioeconomic status on older adult 
health to some extent. Previous studies on lifestyle and chronic 
diseases have often focused on individual-level factors (9–11), 
overlooking the broader social context in which healthy behaviors 
occur. Key socioeconomic status (SES) indicators, such as education 

level, occupational status, and income are crucial (12, 13). However, 
how these factors interact within China’s unique social transformation 
remains underexplored.

While previous studies have identified demographic and clinical 
predictors of multimorbidity (14, 15), few have integrated sociological 
theory to examine how macro-level social change interacts with 
individual health behaviors. ML offers new analytical pathways by 
capturing non-linear, multidimensional relationships between social 
structure and health outcomes, enabling deeper insights into the social 
roots of chronic disease. Traditional statistical methods used in prior 
studies often fall short in capturing non-linear relationships and 
complex interactions among variables. In contrast, machine learning 
(ML) has emerged as a powerful tool for addressing complex problems 
and has been increasingly applied in healthcare research (16–19). To 
enhance interpretability and policy relevance, Shapley Additive 
Explanations (SHAP) are increasingly used to visualize and explain 
contributions of variables in machine learning models (20–23).

Drawing on data from the China Health and Retirement 
Longitudinal Study (CHARLS), this study integrated variables related 
to socioeconomic status, lifestyle, and self-reported health, and 
applied a suite of machine learning algorithms to construct 
interpretable predictive models. Our aim was to systematically 
identify key social and behavioral determinants of multimorbidity in 
older Chinese adults. This research contributed to the growing 
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literature by providing theoretical and empirical insights for early 
identification of high-risk groups and offered actionable evidence for 
the development of more targeted and equitable health policies in the 
context of population aging in China.

2 Materials and methods

2.1 Data source

This study is based on national data from the China Health and 
Retirement Longitudinal Survey (CHARLS) conducted by the 
National Development Research Institute of Peking University1. This 
study is an ongoing community-based cohort study of a nationally 
representative sample of Chinese residents aged 45 and older. To 
ensure best practice and internationally comparable results, CHARLS 
is coordinated with leading international research in the Health and 
Retirement Research (HRS) model. A stratified multi-stage random 
sampling strategy was adopted. Follow-up visits have been conducted 
every 2 years since 2011, with the most recent follow-up in 2020, and 
comprehensive and detailed information on demographics, 
socioeconomic status, biomedical measurements, health status, and 
functioning were collected. To ensure sample representativeness, the 
CHARLS baseline survey covers 150 countries/regions and 450 
villages/urban communities across the country, involving 10,257 
households with 17,708 people, and reflects the middle-aged and 
older adult in China (24).

1 https://charls.charlsdata.com/pages/data/111/zh-cn.html

In this study, we included 77,221 participants from the 2011–2018 
study waves, of whom 34,755 were eligible for model development and 
internal validation. Inclusion criteria: (1) participants aged ≥60 years; 
exclusion criteria: (1) participants aged <60 years; (2) participants 
without missing data for chronic disease and depression. The detailed 
inclusion and exclusion process was shown in Figure 1.

2.2 Variable selection and definition

2.2.1 Dependent variable
In the questionnaire, each follow-up visit was asked about new 

diagnoses by doctors of a set of chronic diseases and the timing of 
diagnoses of specific conditions, where relevant, current medications 
and treatments for each specific condition. The survey content of 
chronic diseases in CHARLS. “have you  been diagnosed with 
[conditions listed below] by a doctor?,” with diseases including 
hypertension; dyslipidemia (elevation of low-density lipoprotein, 
triglycerides, and total cholesterol, or a low high-density lipoprotein 
level); diabetes or high blood sugar; cancer or malignant tumor 
(excluding minor skin cancers); chronic lung diseases (such as chronic 
bronchitis or emphysema, excluding tumors or cancers); liver disease 
(except fatty liver, tumors, and cancer); heart attack (including 
coronary heart disease, angina, congestive heart failure, or other heart 
problems); stroke; kidney disease (except for tumor or cancer); 
stomach or other digestive diseases (except for tumor or cancer); 
emotional, nervous, or psychiatric problems; memory-related disease 
(such as dementia, brain atrophy, and Parkinson’s disease); arthritis or 
rheumatism and asthma (24). We divided multimorbidity into two 
categories: (1) no multimorbidity (0 ≤ chronic diseases ≤1) and (2) 
multimorbidity (chronic diseases ≥ 2).

FIGURE 1

Flowchart of study participant selection.
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2.2.2 Predictor variables
A preliminary evaluation of predictors related to multimorbidity 

based on clinical significance and scientific knowledge identified 24 
variables as candidate predictors. Specifically, it includes: (1) 
Demographic characteristics (age, gender, marital status, residence, 
geographical distribution); (2) Lifestyle (smoking, drinking, disability, 
vision problem, hearing problem, sleep time, nap time, depression, 
activities of daily living (ADL), instrumental activities of daily living 
(IADL), self-assessment of health, physical exercise, physical pain 
condition, social activities); (3) Socioeconomic variables [educational 
status, Per capita annual income (Yuan), work, medical insurance, 
endowment insurance], specific variables are described in 
Supplementary Table S1.

2.3 Statistical methods

2.3.1 Data collection and preprocessing
Variables with missing data exceeding 30% were excluded prior 

to imputation to avoid introducing excessive bias through 
imputation (25). For the remaining variables with missing data 
(<30%), mean imputation using regression models was employed. 
This method was selected for its computational efficiency and 
relative stability compared to simpler methods, especially given the 
large sample size (26, 27). Regression-based mean imputation 
utilizes the relationships observed in the non-missing data to 
estimate missing values more accurately than a simple overall mean 
(28), while remaining less computationally intensive than multiple 
imputation methods for this high-dimensional dataset (25, 29, 30). 
The preprocessing steps involved duplicate checking, outlier 
detection, and standardized variable encoding, all conducted in 
Python 3.7. The cleaned dataset was randomly split into a training 
set (70%) and a testing set (30%), ensuring no significant 
differences in baseline characteristics between the two groups 
(p > 0.05). The training set was used to develop the models, while 
the test set was reserved for hyperparameter tuning and 
performance evaluation. To reduce dimensionality and enhance 
model generalizability, we applied the Least Absolute Shrinkage 
and Selection Operator (LASSO) method with 10-fold cross-
validation to identify the optimal penalty parameter (λ), selecting 
the most predictive features from 22 candidates by minimizing 
binomial deviance.

2.3.2 Model construction and evaluation
We constructed predictive models using eight machine learning 

algorithms, each with distinct advantages and limitations. Logistic 
Regression (LR) is a linear probabilistic model that employs the 
sigmoid function to estimate binary outcomes; it is computationally 
efficient and interpretable but limited in modeling non-linear 
relationships. Random Forest (RF), an ensemble method based on 
bootstrapped aggregation of decision trees, is robust to overfitting and 
effective for high-dimensional data, though computationally 
demanding. Extreme Gradient Boosting (XGBoost) is a scalable and 
regularized gradient boosting framework that delivers high accuracy 
and supports parallel computation, but it requires careful 
hyperparameter tuning. Support Vector Machine (SVM) constructs 
optimal hyperplanes to maximize class separation, performing well 
with small samples and non-linear kernels, yet it is sensitive to noise 

and missing values. Naive Bayes (NB) is a probabilistic classifier 
grounded in Bayes’ theorem with an assumption of conditional 
independence among features; it is efficient for high-dimensional 
sparse data, although performance may decline when this assumption 
is violated. Decision Tree (DT) models recursively partition data based 
on criteria such as information gain or Gini index; they are easy to 
interpret but prone to overfitting. Deep Neural Networks (DNN) can 
learn complex non-linear relationships through backpropagation and 
are highly powerful given large datasets, but they require considerable 
computational resources and are less interpretable. Bayesian Ridge 
Regression (BRR) applies L2 regularization within a Bayesian 
framework by introducing a Gamma prior on the coefficients, 
optimizing hyperparameters via marginal likelihood to automatically 
control model complexity and avoid overfitting. It produces 
probabilistic predictions and is suitable for small datasets, yet its 
applicability is restricted to linear relationships, it is sensitive to prior 
assumptions, and it has relatively low computational efficiency (31).

All models were trained using 10-fold cross-validation and grid 
search to optimize hyperparameters, with the primary objective of 
maximizing the Area Under the ROC Curve (AUC) while controlling 
model complexity. To evaluate model performance, we  applied 
multiple metrics: Accuracy, Precision, Recall, F1-score, Brier Score, 
Log Loss. AUC-ROC curves assessed the trade-off between true 
positive rate (TPR) and false positive rate (FPR). Decision Curve 
Analysis (DCA) used to estimate the net benefit of each model at 
various threshold probabilities.

2.3.3 Model interpretability
To enhance interpretability, we  employed SHapley Additive 

exPlanations (SHAP) on the best-performing model (XGBoost). 
SHAP values quantified the contribution of each feature to individual 
predictions, while summary plots ranked overall feature importance 
(32). SHAP dependence plots illustrated non-linear effects and 
interaction patterns, and force plots were used to explain individual-
level predictions, facilitating clinical understanding.

The eight algorithms differ significantly in terms of model 
assumptions, capacity to handle non-linear relationships and feature 
interactions, interpretability and transparency, sensitivity to data 
quality and missingness, computational cost and scalability. By 
comparing these models, our study aimed to identify the most 
suitable approach for predicting multimorbidity risk among older 
adult individuals in China. Figure 2 showed the workflow of study.

3 Results

3.1 Demographic characteristics

A total of 34,755 older adult were included in this study, 8,728 of 
whom had multimorbidity, and the multimorbidity rate of chronic 
diseases was 25.1%. Among them, 4,584 are male and 4,144 are 
female. There were 5,066 people aged 60–69 years old suffering from 
multimorbidity, 2,892 aged 70–79 years old, and 770 aged over 
80 years old. The data were split according to a ratio of 7:3. The 
training set contained 24,328 cases, of which 6,056 had 
multimorbidity. The test set contained 10,427 cases, of which 2,672 
had multimorbidity. The final demographic characteristics baseline 
data are as shown in Table 1. Except for hearing problem and medical 
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insurance, there were no statistically significant differences in 
baseline characteristics between the two groups (p > 0.05).

3.2 Feature selection

We used LASSO regression for parameter screening, and the 
changing characteristics of the coefficients of the variables are shown 
in Figure  3A. The 10-fold cross-validation method was used for 
iterative analysis. When λ = 0.0068 (Log λ = −4.99), a model with 
excellent performance and the smallest number of variables was 
obtained (Figure  3B). Finally, we  combined gender, age, vision, 
disability, self-assessed health status, depression, physical exercise, 
sleep time at night, nap status, daily activity ability, marital status, 
geographical distribution, urban and rural distribution, education 
level, working status, per capita annual income. A total of 17 features 
were used as predictor variables to develop the machine 
learning model.

3.3 Model evaluation and comparison

Based on the features selected by the LASSO algorithm, 
we constructed predictive models using eight widely adopted machine 
learning algorithms: RF, SVM, XGBoost, DT, DNN, LR, NB, and 
BRR. Model performance was evaluated on both the training and test 
datasets using a comprehensive set of metrics, including accuracy, 
precision, recall, F1-score, MSE, RMSE, log loss, AUC-ROC, and 
R-squared.

Among all models, the XGBoost algorithm demonstrated the 
most favorable overall performance. It achieved the highest AUC 
values on both the training set (0.807) and the test set (0.788), 
indicating superior discriminative ability. In terms of classification 

metrics, XGBoost maintained competitive accuracy (training: 0.817; 
test: 0.780), precision (training: 0.805; test: 0.755), recall (training: 
0.817; test: 0.775), and F1-score (training: 0.803; test: 0.758), 
outperforming most other models across these indicators. While the 
RF and SVM models also exhibited relatively high AUCs (training: 
0.843 and 0.863, respectively), their test performance in accuracy and 
other metrics was slightly lower than that of XGBoost, suggesting 
potential overfitting or reduced generalizability. Notably, although 
BRR achieved acceptable accuracy (training: 0.776; test: 0.771) and 
AUC (training: 0.775; test: 0.768), its recall (training: 0.254; test: 
0.255) and F1-score (training: 0.361; test: 0.364) were significantly 
lower than those of other models, indicating poor sensitivity and 
suboptimal classification balance, as shown in Figures 4A,B.

To further compare the practical utility of each model, 
we performed DCA on both the training and test datasets. As shown 
in Figures 4C,D, XGBoost consistently yielded the highest net benefit 
across a wide range of threshold probabilities, further supporting its 
superior clinical applicability. Specific model parameters for each 
algorithm are detailed in Table 2.

Collectively, these findings indicated that the XGBoost model 
offers the best balance of predictive accuracy, robustness, and clinical 
utility, and thus represented the optimal choice for risk prediction in 
this study.

3.4 Mode explanation

To better understand the relationship between the model and the 
data, we used SHAP to provide an intuitive interpretation of the 
XGBoost model to illustrate how these variables affect the risk of 
multimorbidity in the model. Figure  5A showed the important 
features in the model, and the ranking of features on the y-axis 
indicates their importance to the predictive model. The results 

FIGURE 2

The workflow of study.
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TABLE 1 Characteristics of study population.

Characteristics Frequency
N(%)

Multimorbidity
N(%)

No multimorbidity
N(%)

P-values

Gender

<0.001  Male 17,239(49.6%) 4,584(52.5%) 13,095(50.3%)

  Female 17,516(50.4%) 4,144(47.5%) 12,932(49.7%)

Age (years)

  60–69 21,483(61.8%) 5,066(58.0%) 16,417(63.1%)

<0.001  70–79 10,255(29.5%) 2,892(33.2%) 7,363(28.3%)

  Over 80 3,017(8.7%) 770(8.8%) 2,247(8.6%)

Vision problem

  No 4,149(11.9%) 1,352(15.5%) 2,797(10.7%)
<0.001

  Yes 30,606(88.1%) 7,376(84.5%) 23,230(89.3%)

Hearing problem

  No 4,783(13.8%) 1,238(14.2%) 3,545(13.6%)
0.186

  Yes 29,972(86.2%) 7,490(85.8%) 22,482(86.4%)

Disability

  No 28,593(82.3%) 6,592(75.5%) 22,001(84.5%)
<0.001

  Yes 6,162(17.7%) 2,136(24.5%) 4,026(15.5%)

Depression

  No 23,049(66.3%) 4,726(54.1%) 18,323(70.4%)
<0.001

  Yes 11,706(33.6%) 4,002(45.9%) 7,704(29.6%)

Physical pain condition

  No 21,820(62.8%) 5,367(61.5%) 16,453(63.2%)
0.004

  Yes 12,935(37.2%) 3,361(38.5%) 9,574(36.8%)

Self-assessment of health status

  Very good 1787(5.1%) 235(2.7%) 1,552(6.0%)

<0.001

  Good 2,826(8.1%) 469(5.4%) 2,357(9.1%)

  In general 18,236(52.5%) 4,358(49.9%) 13,878(53.3%)

  Poor 9,666(27.8%) 2,794(32.0%) 6,872(26.4%)

  Very poor 2,240(6.5%) 872(10.0%) 1,368(5.2%)

Smoking

  No 18,476(53.2%) 4,865(55.7%) 13,611(52.3%)
<0.001

  Yes 16,279(46.8%) 3,863(44.3%) 12,416(47.7%)

Drinking

  No 23,665(68.1%) 6,320(72.4%) 17,345(66.6%)
<0.001

  Yes 11,090(31.9%) 2,408(27.6%) 8,682(33.4%)

Physical exercise

  No 19,218(55.3%) 5,543(63.5%) 13,675(52.5%)
<0.001

  Yes 15,537(44.7%) 3,185(36.5%) 12,352(47.5%)

Sleep time

  Less than 6 h 12,903(37.1%) 3,539(40.5%) 9,364(36.0%)

<0.001  Between 6–8 h 15,836(45.6%) 4,110(47.1%) 11,726(45.0%)

  Over 8 h 6,016(17.3%) 1,079(12.4%) 4,937(19.0%)

Nap time

  No 13,880(39.9%) 3,244(37.2%) 10,636(40.9%)
<0.001

  Yes 20,875(60.1%) 5,484(62.8%) 15,391(59.1%)

(Continued)
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showed that education level, ADL, working status, self-assessed 
health status, and per capita annual income were highly correlated 
with the risk of multimorbidity. Figure 5B illustrated the positive or 
negative effects of the 15 features affected by XGBoost through SHAP 
values. The x-axis represents the Shapley value, and each feature has 
positive and negative associations. For example, higher educational 
level associated negatively to multimorbidity, whereas higher ability 
to perform daily activities associated positively to multimorbidity. 

The SHAP dependency diagram can help understand the association 
of a single feature on the output of the XGBoost prediction model 
(Figure  5C). For example, lower self-evaluation of health has a 
negative association to multimorbidity, while having a job has a 
positive association to multimorbidity. In addition, we provide two 
typical examples, one predicting participants without multimorbidity 
(Figure 5D) and the other predicting participants with multimorbidity 
(Figure 5E). In the prediction of the risk of multimorbidity without 

TABLE 1 (Continued)

Characteristics Frequency
N(%)

Multimorbidity
N(%)

No multimorbidity
N(%)

P-values

Social activities

  No 18,105(52.1%) 4,446(50.9%) 13,659(52.5%)
0.013

  Yes 16,650(47.9%) 4,282(49.1%) 12,368(47.5%)

ADL

  No 26,214(75.4%) 4,793(54.9%) 21,421(82.3%)
<0.001

  Yes 8,541(24.6%) 3,935(45.1%) 4,606(17.7%)

IADL

  No 25,684(73.9%) 6,082(69.7%) 19,602(75.3%)
<0.001

  Yes 9,071(26.1%) 2,646(30.3%) 6,425(24.7%)

Marital status

  Married 27,962(80.5%) 6,920(79.3%) 21,042(80.8%)

0.001  Divorce 371(1.0%) 117(1.3%) 254(1%)

  Other 6,422(18.5%) 1,691(19.4%) 4,731(18.2%)

Residence

  Rural 21,281(61.2%) 4,982(57.1%) 16,299(62.6%)
<0.001

  Urban 13,474(38.8%) 3,746(42.9%) 9,728(37.4%)

Geographical distribution

  West 6,221(17.9%) 2095(24.0%) 4,126(15.9%)

<0.001  Central 15,439(44.4%) 3,673(42.1%) 11,766(45.2%)

  East 13,095(37.7%) 2,960(33.9%) 10,135(38.9%)

Educational status

  Primary school or below 16,321(47.0%) 5,989(68.6%) 10,332(39.7%)

<0.001  Junior high school 4,180(12.0%) 1,239(14.2%) 2,941(11.3%)

  Senior high school or above 14,254(41.0%) 1,500(17.2%) 12,754(49.0%)

Per capita annual income (Yuan)

  Less than 5,000 18,769(54.0%) 3,475(39.8%) 15,294(58.8%)

<0.001  5,000–50,000 3,761(10.8%) 996(11.4%) 2,765(10.6%)

  Over 50,000 12,225(35.2%) 4,257(48.8%) 7,968(30.6%)

Work

  No 20,121(57.9%) 6,181(70.8%) 13,940(53.6%) <0.001

  Yes 14,634(42.1%) 2,547(29.2%) 12,087(46.4%)

Medical insurance

  No 1,006(2.9%) 236(2.7%) 770(3%) 0.220

  Yes 33,749(97.1%) 8,492(97.3%) 25,257(97%)

Endowment insurance

  No 24,571(70.7%) 6,666(76.4%) 17,905(68.8%) <0.001

  Yes 10,184(29.3%) 2062(23.6%) 8,122(31.2%)
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chronic disease, education, ADL, work status, and other factors were 
the main associations, while in the prediction of the risk of 
multimorbidity with chronic disease, ADL, education status, self-
assessment health status, and work status were the main associations. 
All yellow bars on the left side of the figure represent features that had 
a positive association deviating from the base value, while red bars 
on the right side represented features that had a negative association 
deviating from the base value. The length of the bar chart showed the 
association of the features, further demonstrating the interpretability 
of the model.

The results showed that for the age-based subgroups, the top five 
influencing factors were highly consistent between the 60–69 and 
70–79 age groups. These included education status, ADL, work status, 
self-assessment health status, and per capita annual income, with test 
set AUCs of 0.796 and 0.790, respectively. In contrast, for individuals 
aged ≥80 years, the top factors were education status, per capita annual 
income, residence, depression, and ADL, yielding a slightly lower AUC 
of 0.728 (Supplementary Figures S1–S4). This suggested a rising 
influence of psychological and geographic factors in the oldest 
age group.

For the sex-based subgroups, the key factors for males were 
education status, work status, ADL, self-assessment health status, 
and per capita annual income (AUC = 0.790). For females, the 
main factors were education status, ADL, self-assessment health 
status, work status, and residence (AUC = 0.792) 
(Supplementary Figures S5, S6).

4 Discussion

This study integrated multiple machine learning algorithms with 
interpretable analysis techniques (SHAP) to construct a predictive 
model for multimorbidity risk among the older adult in China. The 
results indicated that the XGBoost model outperformed others in 
predictive performance.

SHAP analysis further highlighted the strong association of 
socioeconomic status (e.g., education level, income, work status) 
and lifestyle (e.g., ADL, self-assessment health status) in the 
formation of multimorbidity. These findings aligned closely with 
theories of social stratification and health lifestyles, supporting the 
significant association of socioeconomic factors on health 
outcomes and revealing significant behavioral differences across 
social strata.

Previous research has shown that individuals with lower 
socioeconomic status tend to bear a heavier disease burden, face 
higher rates of chronic illness, and have worse health outcomes 
(33–35). In China, this issue is particularly complex due to the dual 
urban–rural structure, regional disparities in development, and 
differences in social welfare systems, all of which exacerbate health 
inequality (36). Studies have demonstrated that rural residents are 
experiencing significantly higher growth rates of obesity, 
hypertension, and diabetes compared to urban residents (37, 38), 
largely due to lower education levels, poor health awareness, and 
limited access to medical resources (33–35). Our findings are 
consistent, showing that higher education levels are strongly 
associated with reduced multimorbidity risk.

Education, representing cultural capital, is associated with 
enhanced health literacy and self-management capabilities (39, 40). 
The high multimorbidity rate among rural older adult further 
confirmed the existence of a “health gradient,” where social class 
shaped health trajectories through access to economic resources, 
occupational conditions, and health behavior choices (41, 42). 
Additionally, this study found that reduced ADL and poor self-
assessment health status were significant predictors of multimorbidity, 
indicating that maintaining physical function is associated with a 
lower risk of delaying the onset of multiple chronic diseases. The 
U. S. NHATS study found significant associations between 
multimorbidity and IADL ability, where individuals with five or more 
chronic conditions exhibited substantial limitations in daily 
functioning (43). Self-assessment health status, as a multidimensional 

FIGURE 3

Variable screening based on Lasso regression model. (A) The changing characteristics of variable coefficients. (B) The selection process of the optimal 
value of parameter λ in the Lasso regression model by cross-validation method.
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indicator, reflected not only physical functioning but also 
psychological well-being and social support (44). In our study, poorer 
self-assessment health status was significantly associated with a 
higher risk of multimorbidity, supporting findings from the Italian 
centenarian study (45), which demonstrated that subjective health 
perception is driven by emotional well-being and functional ability, 
while indirectly influenced by socioeconomic status. Thus, self-
assessment health status could serve as a practical screening tool for 
identifying high-risk older adult individuals, especially in resource-
limited rural areas (46, 47). Individuals aged ≤79 were mainly 
influenced by economic and behavioral factors, while those aged ≥80 
showed stronger associations with psychological health and 
geographic location (48). Males were more influenced by 
occupational and economic security, whereas females appeared more 
sensitive to living environment and perceived health. These subgroup 
differences suggested potential avenues for more tailored 

interventions. The prominence of economic and functional factors 
(education, work, ADL, income, self-rated health) in the younger 
older adult (60–79 years) underscored the importance of 
socioeconomic support and maintaining functional capacity during 
the earlier stages of aging to potentially mitigate multimorbidity 
development (49–51). In contrast, the increased relative importance 
of psychological well-being (depression) and geographic location 
(residence) among the oldest old (≥80 years) (52–55) highlighted the 
need to integrate mental health support and address potential 
barriers related to location (e.g., access to care, social isolation) in 
interventions. The finding that males appeared more sensitive to 
occupational and economic security factors, while females were more 
sensitive to living environment and perceived health (56–58), 
suggested that gender-specific approaches considering these distinct 
sensitivities might enhance intervention effectiveness (59). For 
instance, programs for older adult men might benefit from 

FIGURE 4

Comprehensive evaluation of machine learning models. (A) ROC and AUC of the training set. (B) ROC and AUC of the test set. (C) DCA of the training 
set. (D) DCA of the test set; where the all curve in the DCA curve represents all situations with intervention. The benefit rate, while the none curve 
represents the benefit rate in all cases without intervention. The remaining curves represent various models.
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components addressing financial security or retirement transition, 
while programs for women might place greater emphasis on 
improving living conditions and self-efficacy in health management.

Using the LASSO method, this study identified 17 key variables 
encompassing demographic characteristics, socioeconomic factors, 
and lifestyle behaviors, underscoring their substantial predictive 
value and clinical relevance in identifying individuals at risk for 
multimorbidity (60, 61). The predictive performance of the eight 
machine learning algorithms evaluated in this study was generally 
robust, with AUC values ranging from 0.728 to 0.788. Among them, 
the XGBoost model consistently achieved the highest AUC in both 
the training and test sets, demonstrating superior discrimination 
ability. To assess the clinical applicability of each model, we conducted 
DCA, which revealed that XGBoost provided the greatest net benefit 
across a wide range of threshold probabilities, reinforcing its potential 
as a practical tool for early identification of high-risk individuals (62).

From a methodological perspective, non-linear models generally 
outperformed linear models across multiple evaluation metrics, 
including accuracy, F1-score, RMSE, and log loss. In particular, 
XGBoost, which integrates a gradient boosting framework with 
regularization techniques, demonstrated enhanced ability to model 
complex, non-linear interactions among predictors. This advantage is 
especially important in the context of multimorbidity, where the 
interplay between socioeconomic status, demographic profiles, and 
lifestyle risk factors is often intricate and multidimensional (63). In 
contrast, linear models such as logistic regression and Bayesian ridge 
regression, while offering interpretability and computational efficiency, 
are inherently limited in their capacity to capture non-linear 
associations. Consequently, they may underestimate the effects of key 
predictors or fail to detect higher-order interactions that are clinically 
meaningful (64). Taken together, these findings suggest that non-linear 
ensemble models, particularly XGBoost, provide a more accurate and 
clinically useful approach for multimorbidity risk prediction in 

population-based datasets. Future studies should explore the integration 
of model explainability techniques, such as SHAP values, to enhance 
interpretability without compromising predictive performance, thereby 
facilitating real-world implementation in preventive healthcare settings.

SHAP analysis visually demonstrated the impact of each feature 
on prediction outcomes. For instance, higher education levels were 
associated with negative SHAP values, indicating a protective effect 
against multimorbidity. Other key variables, ADL, work status, self-
assessment health status, and per capita annual income also had 
significant impacts on predictions. SHAP summary and dependence 
plots further illustrated how these features contributed to individual 
risk predictions and how the presence of chronic diseases modulated 
feature importance, thereby enhancing model interpretability.

These findings not only supported the optimization of predictive 
models but also underscored the importance of addressing the 
structural roots of medical issues. Policymakers should increase 
investment in health education, particularly for low-SES groups, and 
work to improve the equitable distribution of medical resources. 
Based on the key features identified, early risk assessment tools for 
multimorbidity could be developed to optimize intervention strategies 
and clinical trial design, improving resource efficiency and targeting.

Despite the significance of these findings, this study has several 
limitations. Firstly, this study is the reliance solely on Chinese data 
from the CHARLS cohort for model development and validation. 
While CHARLS provides a nationally representative sample of the 
Chinese older adult population, the unique socioeconomic 
transitions, healthcare system structure of China may not directly 
translate to populations in other countries. External validation using 
datasets from diverse international cohorts is essential to assess the 
generalizability and potential applicability of our findings and the 
XGBoost model. Secondly, this study was a cross-sectional design. 
Although our analysis identified robust associations between socio-
economic factors, lifestyle variables and the risk of chronic disease 

TABLE 2 Evaluates the performance of eight algorithms.

Algorithm Date 
set

Accuracy Precision Recall F1-
score

MSE RMSE Log 
Loss

AUC-
ROC

R-squared

RF Training 0.815 0.805 0.815 0.793 0.191 0.437 0.092 0.843 −0.020

RF Test 0.779 0.758 0.778 0.752 0.222 0.471 0.107 0.785 −0.165

SVM Training 0.783 0.761 0.783 0.757 0.180 0.424 0.086 0.863 0.040

SVM Test 0.775 0.752 0.775 0.748 0.225 0.474 0.108 0.728 −0.181

XGBoost Training 0.817 0.805 0.817 0.803 0.210 0.458 0.101 0.807 −0.121

XGBoost Test 0.780 0.755 0.775 0.758 0.220 0.469 0.105 0.788 −0.152

DT Training 0.775 0.751 0.775 0.751 0.225 0.474 0.108 0.778 −0.203

DT Test 0.769 0.745 0.769 0.744 0.231 0.481 0.111 0.763 −0.214

DNN Training 0.746 0.729 0.746 0.735 0.213 0.462 7.368 0.795 −0.141

DNN Test 0.728 0.713 0.728 0.719 0.224 0.474 7.751 0.777 −0.177

LR Training 0.777 0.752 0.777 0.748 0.223 0.473 0.107 0.777 −0.195

LR Test 0.772 0.748 0.772 0.743 0.228 0.478 0.110 0.771 −0.199

NB Training 0.756 0.752 0.756 0.754 0.229 0.479 0.110 0.766 −0.227

NB Test 0.748 0.744 0.748 0.746 0.234 0.483 0.112 0.756 −0.226

BRR Training 0.776 0.623 0.254 0.361 0.224 0.473 0.560 0.775 −0.198

BRR Test 0.771 0.632 0.255 0.364 0.229 0.478 0.591 0.768 −0.201
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comorbidity, it was not possible to make causal inferences. Future 
longitudinal studies or intervention studies are needed to determine 
the causal relationship.

5 Conclusion

By applying machine learning techniques alongside interpretability 
tools (SHAP) to a large, nationally representative dataset, this study 
robustly identified key socioeconomic, functional, and lifestyle factors 
associated with multimorbidity among older adults in China. 
Integrating machine learning with sociological theory, the study 
constructed an interpretable model that highlighted variables such as 
education level, ADL, work status, self-rated health, and income serve 
as effective predictive factors and reflect deep associations linked to the 
broader social determinants of health. These findings offer both 
theoretical insights and practical implications for understanding the 

underlying mechanisms of multimorbidity, enhancing model 
interpretability, and informing targeted public health strategies. Future 
studies incorporating external validation datasets from diverse 
populations are needed to confirm the applicability of our models.
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