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Introduction: The e�ective reproduction number (Rt) is a key indicator for

monitoring and controlling infectious diseases such as COVID-19, where

transmission patterns can di�er substantially across demographics, regions, and

phases of the pandemic. In this study, we propose a novel, network-based

approach to empirically estimateRt using detailed transmission data from South

Korea. By reconstructing infector–infectee pairs, our method incorporates local

factors like mobility and social distancing, o�ering a more precise perspective

than traditional methods.

Methods: We acquired infector–infectee pair data from the Korea Disease

Control and Prevention Agency (KDCA) for 2020–2021 and built infection

networks to derive empirical Rt. This framework allows us to examine regional

di�erences and the e�ects of social distancing measures. We also compared

our results with Cori’s Rt, which employs incidence data and serial interval

distributions, to highlight the advantages of an infection network-based strategy.

Results: Our empirical Rt uncovered three distinct patterns. Early in the

outbreak, when case numbers were low, Rt remained near 1, indicating limited

transmission. During superspreading events, our estimates showed sharper

peaks than Cori’s method, demonstrating higher sensitivity to sudden changes.

As the Delta variant emerged, ourRt values converged with Cori’s, underscoring

the utility of network-based methods for capturing nuanced shifts during

high-variability phases.

Discussion: Incorporating infection networks into Rt estimation thus provides

decision-makers with timely insights for targeted interventions. Empirically

reconstructing infection networks and directly estimating Rt reveal real-time

transmission dynamics often overlooked by aggregated approaches. This

method can significantly improve outbreak forecasts, informmore precise public

health policies, and strengthen pandemic preparedness.

KEYWORDS

empirical e�ective reproduction number, infection network, COVID-19, South Korea,

region-specific transmission
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1 Introduction

COVID-19 has emerged as one of the most significant

global health crises, prompting extensive research aimed at

understanding and controlling the spread of the virus.1 Effective

prediction and management of disease transmission are critical

for implementing timely public health interventions. To address

this need, numerous studies have investigated the clinical and

epidemiological characteristics of COVID-19 (1, 2). A key metric

for assessing a virus’s contagiousness is the effective reproduction

number (Rt), which represents the average number of secondary

infections caused by an infected individual at any given time. This

measure is essential for detecting shifts in transmission dynamics,

predicting disease spread, and guiding interventions such as social

distancing and lockdowns.

Estimating Rt presents significant challenges, including

incomplete data collection, asymptomatic transmission, and the

inherent complexity of disease spread. Traditionally, Rt has

been estimated through indirect methods that rely on specific

assumptions and epidemiological modeling. Commonly used

techniques include the Cori’s method (often implemented via the

EpiEstim R package), which combines case incidence data with a

serial interval distribution (3). Other approaches include the Serial

Interval Method (3–6), which uses the timing of symptom onset

between infector–infectee pairs; the Exponential Growth Method

(7), typically applied during the initial rapid spread; the Generation

Interval Method (8), derived from contact tracing data; and Time-

dependent Methods (9), which use sliding windows for real-time

estimates. More advanced frameworks have also emerged. Bayesian

Methods incorporate prior knowledge to provide probabilistic

estimates (10–13), while Agent-based and Stochastic Models

simulate individual-level transmission (14, 15). Kalman Filtering

can update Rt in real time as data accrue (16, 17), and Regression

Techniques help quantify the relationship betweenRt and specific

public health interventions (18). Although each of these methods

provides unique insights based on the outbreak phase and available

data, they are often indirect and rely on simplifying assumptions.

These assumptions can introduce discrepancies between model

predictions and actual transmission patterns, highlighting the need

for more direct approaches.

Infection networks offer a complementary, data-driven

method for understanding how diseases like COVID-19

propagate. Individuals are represented as nodes, and edges

denote transmission events. By tracing these links, infection

networks reveal the routes through which a virus spreads in a

population, enabling precise identification of transmission chains

and clusters. Temporal contact networks—those accounting for

the timing of interactions—further enhance our understanding

of disease spread compared to static models (19). A significant

advantage of infection networks lies in the direct calculation of

the empirical Rt . Rather than relying on indirect estimations,

one can measure how many individuals each infected person

actually infects, in real time, thereby improving the accuracy

and timeliness of Rt estimates for intervention evaluations

1 WHO (2025). Available online at: https://covid19.who.int/ (accessed

March 3, 2025).

and outbreak forecasting. South Korea provides a particularly

informative case study for applying this network-based approach.

Its government implemented rigorous contact tracing early in

the pandemic, gathering detailed transmission data. Although

explosive outbreaks eventually strained these tracing efforts, South

Korea’s extensive records—curated by the Korea Disease Control

and Prevention Agency (KDCA)—include detailed information on

symptom onset, diagnosis, transmission routes, and demographic

factors such as age and region (20, 21). Despite partial data gaps,

this high-resolution dataset offers a unique opportunity to study

COVID-19 dynamics via empirical infection networks.

In addition to these data resources, a variety of mathematical

models incorporating age structure or spatial heterogeneity (22,

23), as well as network-based frameworks (24, 25), have been

developed to capture the nuanced dynamics of infectious diseases.

While these models are grounded in theoretical formulations, they

differ from our empirical approach. Both perspectives, however,

underscore the significant impact of population heterogeneity on

disease transmission. Numerous methods exist for estimating Rt ,

including the exponential growth method, the Wallinga–Teunis

approach, and Cori’s method. Although each provides valuable

epidemiological insights, they often rely on aggregated data and

assume fixed serial intervals under homogeneous mixing, limiting

their capacity to capture variation across distinct demographic

groups, regions, and time frames. By contrast, South Korea’s

contact tracing data allow us to reconstruct infection networks and

calculateRt directly from observed infector–infectee relationships.

To address potential gaps in this dataset, we apply exponential

degree modeling and bootstrap sampling techniques to handle

incomplete contact information more effectively.

In this study, we introduce a novel network-based approach for

estimating the empiricalRt using detailed COVID-19 transmission

data from South Korea. By constructing infection networks

grounded in infector–infectee pairs, our method captures key

real-world features—such as outbreak timing and superspreading

events—that are often overlooked in more traditional, model-

based frameworks. This empirical approach yields a more context-

sensitive measure of transmission, especially in heterogeneous

settings. By accounting for factors like age, regional distinctions,

mobility trends, and social distancing measures, our method

provides deeper insights into the virus’s spread and evolution.

Ultimately, this research is significant because it advances our

capacity to capture and understand the dynamics of infectious

diseases in a manner that more closely reflects real-world

conditions. Our network-based approach can inform evidence-

based interventions and enhance epidemic forecasting, thus

supporting more effective and timely public health strategies in

current and future pandemics.

2 Materials and methods

2.1 COVID-19 infection network

We utilize COVID-19 data obtained from the Korea Disease

Control and Prevention Agency (KDCA), covering the period from

February 1, 2020, to December 31, 2021, during which a total of
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FIGURE 1

(A) Total confirmed cases, all cases in major 7 regions and the cases in 7 region-specific networks are shown. (B) Proportion of confirmed cases by

age group. (C) Proportion of confirmed cases by region. (D) Age-specific Infection Network. (E) Region-specific Infection Network, and nodes

colored based on regions.

670,484 confirmed cases were reported.2 A key aspect of this dataset

is its detailed recording of both infectors and infectees, allowing

for the construction of an extensive infection network. This

structured network provides a crucial foundation for developing

novel approaches to computing the effective reproduction number,

which is essential for understanding transmission dynamics

and evaluating intervention strategies. Epidemiological teams

collected comprehensive information on infectors and infectees,

including demographics, symptom onset, diagnosis, and age.

Contact tracing was systematically performed using the COVID-19

Epidemiological Investigation Support System (K-EISS), enabling

the reconstruction of transmission pathways with high accuracy

(26). Regional COVID-19 analysis teams ensured precise validation

of the collected data, further strengthening the reliability of the

infection network.

2 KDCA (2023). Available online at: https://dportal.kdca.go.kr/pot/cv/trend/

dmstc/selectMntrgSttus.do (accessed March 3, 2025).

We constructed infection networks by stratifying infected

individuals into four age groups (0–19, 20–29, 30–59, and 60+)

and by distinguishing between metropolitan (Seoul, Incheon) and

non-metropolitan cities (Daegu, Ulsan, Gwangju, Busan, Daejeon).

These networks enabled us to trace transmission pathways and

create directed infection trees, where each node corresponds to

an infected individual and each edge indicates a transmission

link from an infector to an infectee. Moreover, this approach

allows us to reconstruct and visualize the observed transmission

trajectories, rather than relying on predefined or synthetic network

configurations. Figure 1 provides an overview of confirmed cases

by age and region, as well as the infection networks used to

compute the empirical Rt . In Figure 1A, blue bars represent the

total number of confirmed cases, yellow bars indicate cases in the

sevenmajor cities, and red bars denote cases with complete contact-

tracing data (used to build the infection network). Figures 1B, C

depict the proportion of confirmed cases by age group and region,

respectively. The outlined bars show each group’s share of the

total population, whereas the colored bars represent the actual

proportion of confirmed cases. Figures 1D, E illustrate the resulting
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TABLE 1 The age-specific network includes nodes representing

confirmed cases, with linked nodes identified through contact tracing and

unlinked nodes lacking such connections.

Age Nodes Linked
nodes

Unlinked
nodes

Edges

0–19 113,558 57,774 55,784 39,644

20–29 93,937 35,146 58,791 22,167

30–59 275,730 110,982 164,748 74,383

60+ 149,577 62,369 87,208 43,067

Edges represent transmission chains, categorized across four distinct age groups.

TABLE 2 The region-specific network consists of nodes representing

confirmed cases, with linked nodes identified through contact tracing and

unlinked nodes lacking such connections.

Region Nodes Linked
nodes

Unlinked
nodes

Edges

Seoul 219,895 37,350 182,545 27,230

Incheon 37,949 8,082 29,867 6,162

Daegu 22,945 14,508 8,437 12,106

Ulsan 6,885 5,201 1,684 4,127

Gwangju 8,097 6,812 1,285 5,638

Busan 25,313 19,163 6,150 15,287

Daejeon 12,435 8,984 3,451 7,053

Edges denote transmission chains, categorized into seven major regional groups.

infection networks, stratified by age group and region. Before

the Delta variant became dominant, 55% of all nodes were part

of connected components spanning all regions. After the Delta

variant’s emergence, this proportion declined to 28%. Detailed

statistics on nodes and edges within region-specific and age-specific

networks can be found in Tables 1, 2.

2.2 Empirical e�ective reproduction
number

In our infection networks, each node represents an individual,

and each directed edge denotes the transmission link between

an infector and an infectee. Infector nodes have outgoing edges,

indicating the spread of infection to others, while infectee nodes

have incoming edges, representing transmission from a source.

Each node is associated with relevant attributes, including report

date, age, and residence area, allowing for a detailed reconstruction

of transmission pathways. To quantify transmission dynamics, we

calculate the empirical reproduction number Rt , which reflects

the average number of secondary infections generated by an

infector at time t. Unlike theoretical estimates derived from

compartmental models, our empirical Rt is directly computed

from the infection network by averaging the number of infectees

linked to each infector in the infection tree. This approach provides

a data-driven measure of disease spread, capturing real-world

transmission patterns and temporal variations in infectiousness.

By leveraging network-based calculations, our method offers a

more precise representation of outbreak dynamics, enabling a

deeper understanding of how infections propagate across different

demographic and geographic groups. Furthermore, this approach

enables us to capture local and temporal fluctuations such as

superspreading events.

To quantify transmission dynamics from our infection network

data, we define the empirical effective reproduction number Rt as

the average number of secondary infections generated per infector

within a rolling n-day window. Each time point t corresponds to the

end of a 7-day period (week t), with the calculation incorporating

data from the preceding n days, ending on day 7t. The parameter

n controls the length of this rolling window, thereby balancing

temporal resolution and smoothness in the Rt estimate. While

a smaller n (e.g., 3–5 days) can capture rapid fluctuations more

effectively but may introduce noise, a larger n (e.g., 10–14 days)

produces smoother estimates at the cost of delayed responsiveness.

Here, we set n = 7 to align with both weekly public health reporting

cycles and the need for a stable yet responsive measure of epidemic

dynamics. Specifically, we construct a sequence of daily infection

networks Gk = (Vk,Ek), where:

• Vk denotes the set of individuals infected on day k,

• Ek ⊆ Vk × Vk is the set of directed edges representing

transmission links, where each edge (i, j) ∈ Ek indicates that

individual i transmitted the infection to individual j on day k.

Let V ′
k
⊆ Vk denote the set of infectors on day k, defined as those

nodes with at least one outgoing edge (i.e., out-degree ≥ 1). We

then define the empirical effective reproduction numberRt as:

Rt =

7t
∑

k=max(1,7t−n+1)

|Ek|

7t
∑

k=max(1,7t−n+1)

|V ′
k
|

(1)

Here, |Ek| denotes the number of secondary transmission events

(edges) observed on day k, and |V ′
k
| is the number of unique

infectors on that day. The term max(1, 7t − n + 1) prevents the

summation from exceeding the dataset’s range, which is particularly

important during the outbreak’s initial stages. This empirical

approach offers a real-time assessment of disease spread based on

observed transmission events, providing a more precise depiction

of outbreak dynamics and capturing the heterogeneous nature of

COVID-19 transmission.

Nevertheless, this method can overestimate Rt when contact

tracing capacity is limited, resulting in incomplete networks. To

mitigate this issue, we adjusted the denominator by incorporating

the proportion of disconnected nodes, thereby reducing the

inflation ofRt estimates.

Rt =

7t
∑

k=max(1,7t−n+1)

|Ek|

7t
∑

k=max(1,7t−n+1)

|V ′
k| +

7t
∑

k=max(1,7t−n+1)

α

(

|Vk| − |V ′
k|

)

. (2)

We introduce the parameter α to adjust for incomplete contact

tracing, thereby preventing overestimation of the empirical Rt .
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FIGURE 2

Illustration of the empirical Rt calculation at time t and t+ 1. Orange nodes represent infectors, blue nodes indicate infectees, and merged

blue-orange nodes denote individuals acting as both infectors and infectees. (A) At time t, the empirical Rt is computed as the ratio of infectees to

infectors, yielding a value of 2. (B) At time t+ 1, the network consists of 24 infectees (blue nodes) and 12 infectors (orange nodes), resulting in an

empirical Rt of 2.

In essence, α accounts for potentially underobserved transmission

by incorporating a fraction of disconnected nodes into the

denominator, approximating a fully connected network under real-

world limitations. We included Figure 2 for enhancing the better

understanding of calculating empiricalRt .

We additionally estimated the effective reproduction number

using Cori’s method (3), a widely applied approach for time-

varying Rt based on incidence data. In this framework, Rt is

calculated as the ratio of newly observed cases at time t to the

total infectiousness of preceding cases, where infectiousness is

determined by summing confirmed cases weighted by a serial

interval distribution. To maintain consistency with our empirical

network-based approach, we used a seven-day sliding window

and adopted age- and region-specific serial intervals (4). While

Cori’s method has been successfully employed in numerous

studies (6, 27, 28), its assumption of homogeneous mixing and

reliance on aggregated incidence data may overlook complex

structural and temporal heterogeneity in transmission dynamics.

By contrast, our proposed method reconstructs empirical infection

networks from infector–infectee pairs, directly computing Rt

from observed transmission events. This network-based framework

enables stratification by age and region, integrates mobility and

policy data, and offers a finer-grained representation of local

transmission patterns. As a result, it can capture rapid changes

and superspreading events more effectively than methods that

assume uniform mixing, particularly in heterogeneous settings

where COVID-19 transmission exhibits substantial variability

across populations and time.

Contact tracing may fail to capture all transmission links

due to factors such as asymptomatic cases, surges in incidence,

and inaccuracies in survey responses (29, 30). Nevertheless, our

empirical approach relies on constructing a complete infection

network. To address potential data incompleteness, we use

confidence intervals and estimate unreported transmissions by

sampling from a fitted degree distribution. The construction of

the confidence interval for the empirical reproduction number

(Rt) assumes that the infection network mirrors the underlying

social contact network, highlighting the importance of real-world

network structures. In light of data limitations and the complexity

of social networks, we employ an exponential degree distribution,

which effectively captures heterogeneous contact patterns and

is appropriate for incomplete datasets (31). To compute the

confidence interval, we repeatedly sample node degrees within

the exponential network over a specified time window. From

these sampled data, we generate empirical reproduction numbers

and define the confidence interval for (Rt) by selecting the 5%–

95% values observed across all samples. The exponential model

is advantageous for modeling heterogeneous contact behavior—

especially in the presence of partial data—while remaining

parsimonious enough to accommodate the long-tailed nature of

real-world transmission (31). Our initial analyses revealed right-

skewed degree distributions that fit well with an exponential

function, allowing for simpler calculations of network metrics

and estimates. However, we recognize that true contact networks

may be more complex—particularly when superspreader events

lead to heavy-tailed degree distributions—and thus plan to

evaluate alternative models (e.g., negative binomial or power-

law) in future work to further test model robustness and

improve realism.

2.3 Social distancing measures and
mobility

Using COVID-19 confirmed case data, we constructed

infection trees for four age groups (0–19, 20–29, 30–59, and

60+) and seven regions (Seoul, Incheon, Daegu, Ulsan, Gwangju,

Busan, and Daejeon). We also analyzed confirmed cases and

weekly mobility trend from SKT movement data by age and

region from February 2020 to December 2021 (32). The

background color in Figure 3 shows social distancing levels in non-

metropolitan areas, while the black dashed line indicates when

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1586786
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Kim et al. 10.3389/fpubh.2025.1586786

FIGURE 3

Temporal trends of COVID-19 incidence and mobility by age group and region (2020–2021) compared to 2019. (A, B) present the weekly number of

confirmed COVID-19 cases across di�erent age groups and regions, highlighting a sharp increase in cases during the dominance of the Delta variant.

The black dashed line marks the point at which the Delta variant accounted for more than 50% of cases. (C, D) illustrate weekly mobility trends by age

group and region, showing changes in mobility relative to 2019 levels. Mobility decreased during periods of stricter social distancing and increased as

restrictions were eased. The background shading represents the levels of social distancing policies implemented in non-metropolitan areas over time.

the Delta variant exceeded 50% (1). Figures 3A, B show a sharp

rise in confirmed cases during the Delta variant’s dominance.

Figures 3C, D depict weekly mobility trends, which decreased

with stricter social distancing and increased as restrictions

were relaxed. After the school closure policy was relaxed in

August 2021, in-person classes resumed, especially in non-

metropolitan areas, leading to increased mobility among younger

populations. During the early stage of COVID-19, the initial

outbreak led to a noticeable decline in mobility, particularly

in Daegu compared to other regions. Despite this decrease,

Daegu experienced a rapid surge in confirmed cases. During this

period, the mobility rate dropped to approximately 0.7, suggesting

that the superspreading event at the church (Table 3) played a

pivotal role in driving both the sharp rise in infections and

fluctuations in mobility. In contrast, during the Delta variant

wave, mobility trends exhibited an overall increase across seven

regions, even amid a significant rise in cases. This indicates

that, unlike the early outbreak phase, mobility patterns were less

influenced by case numbers, likely due to shifts in social distancing

policies (33).
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TABLE 3 Social distancing levels in metropolitan and non-metropolitan

areas (45, 46).

Timeline Metropolitan
area

Non-metropolitan area

2020-06-28 Level 1 Level 1

2020-08-23 Level 2

2020-08-30 Strengthened level 2

2020-09-14 Level 2

2020-10-12 Level 1 Level 1

2020-11-24 Level 2

2020-12-01 Level 1.5

2020-12-08 Level 2.5 Level 2

2021-02-15 Level 2 Level 1.5

2021-11-01 Level 0 Level 0

Social distancing is a public healthmeasure aimed at preventing

the spread of infectious diseases by encouraging individuals

to maintain physical distance from one another. This policy

is designed to block or reduce transmission pathways, thereby

slowing the spread of infection. During the COVID-19 pandemic,

social distancing was one of the critical disease control strategies

implemented globally. In South Korea, social distancing measures

were applied at various levels throughout pandemic, depending

on the outbreak’s severity. These levels were adjusted based on

the number of confirmed cases in each region and the strain on

the healthcare system. South Korea’s social distancing measures

were structured into five levels, each progressively strengthened or

relaxed according to the situation. The levels of social distancing for

metropolitan and non-metropolitan cities over different periods are

summarized in Table 4.

In March 2020, in response to the rapid spread of COVID-

19, the South Korean government temporarily closed all schools

nationwide and shifted to complete learning. As the situation

improved, the government began partially reopening schools in

May 2020, based on regional infection rates. High school seniors

were prioritized for in-person classes to prepare for college entrance

exams. At the same time, other grades attended on a rotating

schedule, either weekly or every other day, using a hybrid model

of in-person and remote learning. The school closure policies

for metropolitan and non-metropolitan areas are summarized in

Table 5.

3 Results

In this section, we constructed age-specific and region-

specific networks, enabling the direct calculation of the

empirical effective reproduction number from the resulting

infection tree. This approach highlights the importance of

empirical estimates of Rt , providing a more accurate reflection

of transmission dynamics across different demographics

and regions.

3.1 Age-specific empirical Rt

Understanding the temporal variations in the effective

reproduction number across different age groups provides crucial

insights into age-specific transmission dynamics and the impact of

social behaviors on disease spread. Figure 4 displays the temporal

changes in the effective reproduction number, mobility, and

confirmed cases across four age groups. The red curve represents

the effective reproduction number empirically calculated from the

infection network(Empirical Rt). In contrast, the orange curve

represents the Rt estimated using the EpiEstim R package, also

known as Cori’s method (hereafter referred to as Cori’s Rt). The

gray bars indicate the number of confirmed cases and the black

curve represents the mobility trend. The black dashed vertical line

marks the point at which the Delta variant became dominant,

and the background colors of the graph represent the social

distancing levels based on the non-metropolitan criterion. The

social distancing levels differ between metropolitan and non-

metropolitan areas, so the levels in the age-specific graphs are

marked according to the non-metropolitan standards. In all age

groups, a noticeable difference was observed between Cori’sRt and

the empiricalRt values.

In Figure 4A for the 0–19 age group, despite very few confirmed

cases at the onset of the outbreak, Cori’s Rt is overestimated,

with values greater than 1, whereas the empirical Rt remains

below 1. Both Rt values spiked above 1 in the other age groups,

indicating the disease’s rapid spread at the onset of the outbreak.

Mobility trends in the 0–19 age group followed the patterns of

school closures and reopening policies (see Table 4). For instance,

mobility decreased during school closures, and the both Rt

values remained relatively stable. After August 2021, when school

closure policies were relaxed, mobility increased, particularly in

metropolitan areas, but the empirical Rt did not rise, indicating

that increased movement among younger populations did not lead

to an immediate spike in transmission, possibly due to vaccination

coverage or reduced susceptibility in certain cohorts.

For the 20–29 and 30–59 age groups, both Cori’s Rt and

empirical Rt exhibited similar trends early in the outbreak.

However, the empirical Rt showed more variability in response

to changes in confirmed cases. As the outbreak progressed,

particularly during the dominance of the Delta variant, the

empirical Rt remained consistently above 1 except 20–29 age

group, reflecting the continued spread of the virus. At the same

time, Cori’s Rt tended to stabilize around 1. At the onset of the

outbreak, mobility in these age groups dropped sharply due to

public health interventions and social distancing measures. This

decrease in mobility coincided with a sharp increase in both the

empiricalRt and Cori’sRt values, reflecting the initial rapid spread

of the virus despite reduced movement. During the period of Delta

variant dominance, mobility remained relatively low, while the

empirical Rt stayed above 1 for 30–59 age group, indicating that

even with restricted movement, the transmission of the variant

sustained high transmission in this age group. In the 60+ age

group, the empirical Rt also displayed larger fluctuations than

Cori’sRt , especially fromNovember 2020 to December 2021, when

Cori’s method showed relatively stable values close to 1. Detailed

numerical trends of the empirical and Cori’s Rt across age groups

are summarized in the Appendix Table A2.
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TABLE 4 The school closure policies in metropolitan and non-metropolitan areas.

Timeline Metropolitan area Non-metropolitan area

Year Month Elementary Middle High Elementary Middle High

2020 3 Closed Closed Closed Closed Closed Closed

5 Partial Partial Partial Partial Partial Partial

8 Closed Closed Partial Partial(1/3) Partial(1/3) Partial(1/3)

9 Partial(1/3) Partial(1/3) Partial(2/3) Partial(1/2) Partial(1/2) Partial

10 Partial(2/3) Partial(2/3) Partial Full Full Full

11 Partial(2/3) Partial(2/3) Partial (2/3) Full Full Full

12 Closed Closed Closed Closed Closed Closed

2021 3 Partial (2/3) Partial(2/3) Partial(2/3) Partial(2/3) Partial(2/3) Partial(2/3)

7 Closed Closed Closed Partial Partial Partial

8 Partial Partial Partial Full Full Full

11 Full Full Full Full Full Full

12 Partial(5/6) Partial(5/6) Partial(2/3) Full Full Full

This suggests that the empirical method better captured the

real-time transmission dynamics and spikes in confirmed cases

in older populations, whereas Cori’s method smoothed over these

fluctuations. For this age group, mobility increased during specific

periods, such as January and February 2021, while the empiricalRt

remained above 1. This indicates that older populations were more

mobile at certain times despite restrictions, potentially contributing

to sustained transmission.

3.2 Region-specific empirical Rt

Examining the spatial variations in the effective reproduction

number (Rt) provides valuable insights into how transmission

dynamics differ across regions. Factors such as population density,

mobility patterns, and the effectiveness of contact tracing can

significantly influence regional differences in Rt . By analyzing

these variations, we can better understand how localized outbreaks

unfold and how public health interventions have shaped the spread

of the virus in different geographic areas.

Figure 5 illustrates the temporal changes in the effective

reproduction number, mobility, and confirmed cases across seven

regions. The red curve represents Empirical Rt , while the orange

curve represents Cori’s Rt . The gray bars indicate the number

of confirmed cases by region, and the black curve shows the

mobility trend. The black dashed vertical line marks the point at

which the Delta variant became dominant, and the five background

colors of the graph represent the social distancing levels. In South

Korea, the level of social distancing were applied differently in

metropolitan and non-metropolitan areas depending on the spread

of COVID-19.

From the onset of the outbreak until the Delta variant became

dominant, the empirical Rt values were more responsive to

regional outbreaks and fluctuations in confirmed cases, accurately

reflecting dynamic transmission patterns across all regions. In

contrast, Cori’sRt displayed a smoother, more stable curve, making

it less sensitive to sudden spikes or declines in case numbers. As

a result, Cori’s method often underestimated transmission peaks,

with Rt tending to stabilize around 1. Due to very few confirmed

cases during the early stages of the outbreak, Cori’s method

overestimated, Rt values, exceeding 1 in most regions. Except

for Daegu, Cori’s Rt values in other regions were overestimated,

while empirical Rt values remained below 1 until the number

of confirmed cases began to rise. Daegu, the epicenter of the

early outbreak due to the superspreading event at the Shincheonji

Church in February 2020 it exhibited a distinct pattern. During this

period, empirical Rt accurately predicted the surge in confirmed

cases, while Cori’s Rt showed and initial overestimation that

gradually decreased.

Superspreading events occurred not only in the Daegu region

but across the entire country (see Table 5). The empirical method

more effectively captured real-time transmission dynamics and

spikes in confirmed cases, such as during superspreading events.

In Ulsan, during the social distancing Level 1.5 period around

December 2020, mobility decreased substantially, yet empiricalRt

soared to 5, reflecting a massive outbreak at a convalescent facility.

Gwangju displayed unique dynamics, with empiricalRt remaining

zero between May and July 2020, indicating very low transmission.

However, in January 2021, when an SSE occurred at a church,

the empirical Rt value correctly predicted the increase in cases.

Moreover, Daejeon experienced two major superspreading events:

one during Thanksgiving (October 2020) and another at a school

(between January 2021 and February 2021). In both instances,

empiricalRt rose sharply before confirmed cases surged.

After the Delta variant became dominant, constructing

infection networks for metropolitan areas posed challenges due

to the large urban population sizes. The scale of the cities made

effective contact tracing more difficult, likely affecting the accuracy

of empirical Rt values in these regions. As seen in Figures 5A, B,

in metropolitan areas like Seoul and Incheon, despite the rapid

increase in confirmed cases, the empirical Rt decreases to below
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TABLE 5 Selected region-specific superspreading events in South Korea

with reported date of index case.

Region Cluster Cluster
size

Reported
date of
Index
case

References

Seoul Church 563 3 August

2020

(47)

Seoul Rally 226 19 August

2020

(48)

Seoul Jail 1,052 28 November

2020

(49)

Seoul Restaurant 263 29 November

2020

(50)

Seoul University

Hospital

268 12 February

2021

(51)

Incheon Distribution

center

181 8 May 2020 (45)

Daegu Church 832 18 February

2020

(40)

Daegu Private

meeting,

Bar

415 10 May 2021 (52)

Ulsan Convalescent

facility

189 5 December

2020

(53)

Gwangju Convalescent

facility

175 1 January

2021

(54)

Gwangju Church 212 14 December

2021

(55)

Gwangju Church 149 24 January

2021

(56)

Daejeon Mission

school

157 20 January

2021

(57)

1. This reflects the challenges of accurately tracing transmission

routes in densely populated regions. The number of confirmed

cases and rapid transmission overwhelmed the contact tracing

efforts in these cities, leading to potential underreporting or

incomplete data on infection links. This could result in lower or

delayed empirical Rt values, as the full scope of transmission

events may not have been captured in real time. Detailed regional

trends of the empirical and Cori’s Rt estimates are provided in

Appendix Tables A3, A4.

However, non-metropolitan areas with smaller populations

were more likely to maintain accurate contact tracing, resulting

in more consistent and reliable Rt values. The difference in

tracing effectiveness between metropolitan and non-metropolitan

regions likely contributed to the observed discrepancies in infection

dynamics across these regions, particularly during the dominance

of the Delta variant’s. Thus, the large-scale population on contact

tracing in metropolitan areas likely impacted the accuracy of the

infection network and, consequently, the calculated Rt values

in those regions. Interestingly, there was no clear correlation

between mobility trends and Rt . Specifically, only in Ulsan was

a temporary spike in empirical Rt during holidays, such as the

Lunar New Year, when mobility increased. This signifies that

factors beyond mobility, such as public health interventions and

the effectiveness of contact tracing, played a more critical role in

transmission control.

To complement our earlier comparisons between our

proposed empirical approach and Cori’s method, we conducted

additional analyses using the Wallinga-Teunis (WT) method (34).

As illustrated in Appendix Figures A2, A3, our method more

effectively captures local and temporal variations in transmission

dynamics—particularly during superspreading events and periods

of low incidence—compared to the WT method. By contrast, the

WT method often fails to produce estimates in low-incidence

settings, as observed in Daejeon during the initial stages of the

outbreak. These results underscore the robustness and practical

utility of our empiricalRt estimation framework.

Furthermore, we performed additional validation to

demonstrate that our method remains robust in the presence

of incomplete data—a common issue arising from untraceable

cases, such as pre-symptomatic or asymptomatic infections in

COVID-19. Specifically, we ran simulations using an Agent-

Based Model (ABM) on a random synthetic network of 10,000

individuals with a fixed degree, 4. Through an SIR framework, we

generated an infection network that enabled us to compute the

empirical effective reproduction number (Rt) and compare it with

both the theoretical basic reproduction number (R0) (58) and

Cori’s Rt (Appendix Figure A1, Table A1). Our results indicate

that our empirical approach provides more accurate estimates

of the effective reproduction number than Cori’s Rt during the

early stages of an epidemic, while remaining consistent with the

theoretical basic reproduction number (1.5) under varying levels

of data completeness. Moreover, we observed that the presence of

incomplete data did not significantly compromise the accuracy

of our method within this random network setup. Although we

have so far examined only random networks, different network

structures may influence empirical Rt estimates, and we intend to

explore these variations in future research.

4 Discussion

Accurate estimation of the effective reproduction number

(Rt) is crucial for guiding timely and impactful public health

interventions during epidemics such as COVID-19 (35, 36). In

this study, we introduce an innovative method for estimating

the empirical Rt by constructing infection networks from

detailed transmission data. This network-based approach

represents a powerful alternative to traditional methods—such

as Cori’s Rt and Bayesian filtering techniques—which typically

assume homogeneous transmission across a population. In

filtering-based methods, compartmental models (e.g., SIR)

are combined with statistical filtering and inherently assume

uniform mixing within the population. Such assumptions can

introduce significant inaccuracies, particularly in the context of

COVID-19, where transmission dynamics differ widely across

age groups and regions, and vary in response to public health

interventions (37).

By directly incorporating the inherent variability in

transmission, our infection network-based methodology addresses

these challenges more effectively than existing models. Compared
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FIGURE 4

The e�ective reproduction number and mobility trends by Age. (A) 0–19, (B) 20–29, (C) 30–59, and (D) 60+. The red curve represents the empirical

Rt, the orange curve represents Cori’s Rt. The gray bars indicate the number of confirmed cases and the black curve represents the mobility trend.

The background color of the graph represents the social distancing levels based on the non-metropolitan criterion. The confidence interval of both

are set between the 5th and 95th percentiles.

to established network-based approaches (34) or structured

populationmodels (38, 39), our method offers practical advantages.

For example, the Wallinga–Teunis (WT) approach constructs

probabilistic infection trees based only on aggregated case

counts and serial interval distributions, whereas our approach

uses empirical contact patterns and temporal information to

reconstruct the actual transmission network. This grounding

in observed data captures real-world dynamics more precisely.

Similarly, structured-population models stratify individuals into

subgroups based on select features, estimating within-group and

between-group transmission. Our method, in contrast, operates

at the individual level, incorporating actual contact data to build
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FIGURE 5

The e�ective reproduction number and mobility trend by Region. (A) Seoul, (B) Incheon, (C) Daegu, (D) Ulsan, (E) Gwangju, (F) Busan, and (G)

Daejeon. The red curve represents the e�ective reproduction number empirically calculated from the infection network, while the orange curve

shows Rt estimated using the EpiEstim R package. The gray bars indicate the number of confirmed cases and the black curve represents the mobility

trend. The background color of the graph represents the social distancing levels based on the non-metropolitan criteria. The metropolitan area is

marked as the same for both the enhanced social distancing level 2 and level 2.5. The confidence interval of both are set between the 5th and 95th

percentiles.
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an empirical infection network. This granularity enables a more

accurate portrayal of transmission pathways.

Leveraging extensive transmission records from the Korea

Disease Control and Prevention Agency (KDCA) during the

first two years of the pandemic, we found that the empirical

Rt exhibited sharper fluctuations than Cori’s Rt , thus reflecting

sudden spikes in confirmed cases with higher fidelity. In contrast,

Cori’s estimates were smoother and less responsive to abrupt

changes, often underrepresenting transmission peaks—particularly

during short-term surges or explosive outbreaks. This divergence

was especially notable in the early outbreak in Daegu, where

a superspreading event at the Shincheonji Church triggered a

rapid rise in transmission (40). While our empirical Rt surged

in tandem with the outbreak, Cori’s Rt initially overestimated

overall transmission and then declined slowly, overlooking the

rapid escalation observed on the ground. Furthermore, during the

initial stages of the epidemic—when case numbers remained low—

Cori’s Rt often exceeded 1, whereas the empirical Rt consistently

stayed below 1 until case counts began to climb, aligning more

closely with real-world transmission patterns.

Our network-based approach also demonstrates a distinct

capacity to evaluate non-pharmaceutical interventions (NPIs),

which may be obscured by temporal smoothing in traditional

incidence-based methods. Regions that implemented stringent

social distancing and quarantine measures experienced Rt values

dropping below 1 within just a few weeks, in stark contrast

to regions with looser restrictions, where Rt remained above

1 for longer periods. These findings underscore the utility of

timely and highly resolved Rt monitoring, particularly in settings

characterized by substantial regional variability. This granularity

allows public health authorities to make faster, more informed

decisions about when to intensify or relax NPIs in order to

contain outbreaks effectively. Another major advantage of our

empirical approach is the ability to pinpoint superspreading

events, thereby illuminating the specific transmission pathways that

fuel rapid case escalation. Identifying high-risk individuals and

locations enables more targeted and resource-efficient intervention

strategies. The reconstruction of infection networks, therefore, not

only refines real-time Rt estimates but also offers critical insights

into preventing further spread in vulnerable communities.

Despite these strengths, our method is constrained by the

limitations of available contact tracing data. During high caseload

periods in metropolitan areas (e.g., Seoul and Incheon), contact

tracing systems were frequently overwhelmed, leaving numerous

confirmed cases without reliable infector–infectee linkages. This

incomplete dataset can bias empirical Rt estimates downward if

fewer secondary infections are observed. Additionally, partially

connected or disconnected (singleton) nodes may distort the

perceived network structure, particularly during large outbreaks

or underreporting of asymptomatic cases. Consequently, while

our approach delivers fine-grained insights when contact data are

robust, its interpretability must be contextualized according to

tracing efficacy and reporting quality. Moreover, heterogeneous

transmission drivers—such as individual behavior, population

density, and viral variants—can produce patterns not fully captured

in our networks (41–44).

Recognizing these limitations, future research should

concentrate on enhancing data completeness and refining

network construction methods. Incorporating more robust data

inputs, such as improved contact tracing, testing protocols,

and real-time mobility patterns, could reduce data gaps and

enable even more precise Rt estimates. Nevertheless, our

findings highlight the importance of integrating detailed

infection networks into epidemic modeling to obtain more

accurate, context-specific insights into disease transmission.

By doing so, public health decision-makers gain a stronger

basis for intervention planning, tailored to the dynamic and

heterogeneous nature of epidemics. Overall, our infection

network-based method for estimating Rt represents a critical

advancement in epidemiological analysis. By eschewing the

homogeneous-mixing assumptions of traditional models and

leveraging rich, individual-level data, we offer a tool that can

capture epidemic dynamics more sensitively and accurately. This

improved estimation of Rt is vital for forecasting outbreak trends,

assessing the impact of NPIs, and guiding strategic allocations

of public health resources—particularly in rapidly evolving

epidemic settings.
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