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Background:The prevalence of obesity, a commonmetabolic disorder, has been

increasing annually, particularly in older adults. This trend poses a significant

socioeconomic burden. The uric acid to high-density lipoprotein cholesterol

ratio (UHR)was defined by dividingUA (mg/dL) byHDL-C (mg/dL) andmultiplying

by 100%. According to recent clinical research, UHR has emerged as a potential

innovative indicator in metabolic status evaluation, supported by contemporary

biomarker research. This cross-sectional study investigated the association

between the UHR index and obesity prevalence among older Americans.

Objective: This cross-sectional research employed nationally representative

survey data to Examine the connection between the UHR index and obesity

among older individuals aged 60 and above.

Methods: This study utilized data from the National Health and Nutrition

Examination Survey (NHANES) spanning 2011 to 2016. Individuals who were

60 years old or older were included in the study (n = 3,822). The relationship

between UHR levels and obesity (as measured by a body mass index of 30

kg/m² or greater or a waist-to-height ratio (WHtR) ≥0.5) was investigated using

weighted multivariable logistic regression analyses, with adjustments made for

sociodemographic characteristics, behavioral patterns, and clinical covariates,

adjusting for sociodemographic, behavioral, and clinical covariates. Restricted

cubic spline, ROC curves, threshold analysis, and subgroup analysis were

also used.

Result: After full adjustment for confounders, UHR was positively associated

with the risk of obesity as defined by BMI (highest quartile vs. lowest

quartile: OR = 6.13, 95% CI = 4.01–9.39; P-trend < 0.001) and UHR

was positively associated with the risk of obesity as defined by WHtR

(highest quartile vs. lowest quartile: OR = 20.21, 95% CI = 8.33–49.02; p-

trend < 0.001). In addition, The restricted cubic spline analysis uncovered

a nonlinear dose-response relationship (P < 0.01), and threshold analysis

found inflection points of −2.485 in obesity defined by BMI and −2.503 in

WHtR. Subgroup analyses showed that the association between UHR and

obesity in older Americans was consistent across subgroups, demonstrating

high reliability (all P-interaction > 0.05). The AUC for UHR predicting

obesity defined by BMI was calculated to be 0.65 (95% CI = 0.63–0.66).
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The UHR predicted AUC for obesity as defined by men’s body mass index

(BMI) was 0.67 (95% CI = 0.65–0.70). UHR predicted an AUC of 0.69

(95% CI = 0.67–0.72) for obesity defined by body mass index (BMI) in females.

The AUC for UHR predicting obesity defined by WHtR was calculated to be 0.75

(95% CI = 0.72–0.78). UHR predicted an AUC of 0.76 (95% CI = 0.72–0.80) for

obesity defined by WHtR in males, and UHR predicted an AUC of 0.83 (95% CI =

0.79–0.87) for obesity defined by WHtR in females.

Conclusion: The findings demonstrate a notable positive correlation between

UHR and obesity in older adults, with this association remaining evident

following adjustment for multiple confounding variables. These results imply

that systematic evaluation of UHR levels could serve as an e�ective

strategy for proactively detecting populations susceptible to obesity-related

metabolic disorders.

KEYWORDS

uric acid to high-density lipoprotein cholesterol ratio (UHR), HDL cholesterol, uric acid,

geriatric obesity, NHANES, metabolic syndrome

Introduction

Obesity, a prevalent clinical metabolic disorder, is

conventionally defined as a Body Mass Index (BMI) ≥30.0 (1) or

waist-to-height ratio (WHtR) ≥ 0.5 (2). Recent epidemiological

data indicate that 38% of the global population is classified as

overweight or obese, with projections estimating a rise to 51%

by 2035 (3). Concurrently, the aging global population has

been associated with a rising prevalence of obesity among older

adults (4). Obesity in older adults is strongly linked to severe

comorbidities, including cardiovascular disease (5), type 2 diabetes

mellitus (6), hypertension (7), and dyslipidemia (8), thereby

imposing substantial socioeconomic burdens and contributing

to escalating global mortality rates (9). Traditional modalities for

obesity assessment, such as Magnetic resonance imaging (MRI),

are often technically complex and financially prohibitive, limiting

their utility in clinical practice and large-scale epidemiological

studies (10). Furthermore, the association between BMI and

obesity is influenced by demographic variables such as race,

gender, and age (11). Critically, BMI fails to adequately capture

the pathophysiological impact of excess adiposity, potentially

leading to underestimation of obesity-related health risks (12).

Epidemiologic studies investigating obesity in older adults have

demonstrated that BMI has less ability than waist-to-height ratio

(WHtR) to distinguish individuals with high muscle mass from

those with excess fat or abdominal obesity (13). UHR can be

calculated from routine blood tests, thus avoiding measurement

errors common in anthropometric indices (e.g., posture-related

waist-to-height ratios). This is particularly advantageous for

bedridden or frail older adults for whom accurate anthropometric

measurements are difficult. UHR is less expensive than MRI

and has a shorter detection time. More importantly, UHR does

not require specialized operators. Therefore, to determine the

relationship between UHR and obesity in older adults and to

identify a simple and convenient health assessment metric, we

assessed cross-sectional associations between UHR and obesity

in older adults as defined by BMI and obesity in older adults

as defined by WHtR using data from the National Health and

Nutrition Examination Survey (NHANES) conducted in the

United States from 2011 to 2016.

The mechanistic interplay between composite metabolic

indices and obesity in older adults has garnered significant

research interest In the last few years (14). Uric acid (UA),

the terminal product of purine metabolism, exhibits dual roles

in energy homeostasis. On the one hand, UA potentiates lipid

accumulation via activating adipogenesis-related enzymes (15);

conversely, its antioxidative properties may mitigate metabolic

dysregulation (16). In contrast, high-density lipoprotein cholesterol

(HDL-C) is essential for maintaining cholesterol homeostasis and

modulating lipid metabolism through its mediation of reverse

cholesterol transport (17). The uric acid to HDL-C ratio (UHR)

is particularly important in older adults due to age-related

physiological and socio-environmental vulnerabilities. Aging is

characterized by a progressive decrease in renal uric acid excretion

and HDL cholesterol synthesis (18, 19), thus creating a metabolic

environment conducive to an elevated UHR. Mechanistically,

elevated UHR exacerbates oxidative stress and adipogenesis,

thereby promoting obesity. Hyperuricemia, a key component

of UHR, is associated with increased reactive oxygen species

(ROS) production (20), which impairs mitochondrial function

in adipocytes, accelerating lipid peroxidation and ectopic fat

deposition (21). At the same time, low HDL-C levels impair

cholesterol reverse transporter and antioxidant defenses, further

amplifying oxidative damage and adipose tissue inflammation (22).

These processes may synergistically drive adipocyte hypertrophy

and visceral fat accumulation, leading to metabolic imbalances. In

turn, oxidative stress and chronic inflammation are central to the

pathogenesis of aging-related diseases such as cardiovascular and

kidney diseases (23, 24). Studies have shown that elevated UHR

is inversely correlated with circulating alpha-klotho, suggesting

that it has utility in predicting renal aging and frailty (25).

Long-term cross-sectional studies also support this hypothesis.
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For example, it has been shown that severe obesity is strongly

associated with elevated serum uric acid and lowered high-density

lipoprotein cholesterol (26, 27). While UA levels demonstrate a J-

curve association with obesity (28), reduced HDL-C is strongly

linked to central adiposity (29). Although obesity-related indicators

such as body mass index (BMI) and waist circumference are closely

associated with physiological aging, substantial inter-individual

variability exists in the predictive performance of these biomarkers

in older adults (30). Emerging studies indicate that UHR is

pivotal to age-related body composition changes (25, 31). As a

composite metric, UHR sensitively reflects dysregulation of the

lipid-purine metabolic axis, with elevated values demonstrating

robust correlations with visceral fat accumulation and insulin

resistance (32). Nevertheless, the clinical utility of UHR in geriatric

obesity assessment remains underexplored, particularly given age-

specific physiological shifts such as dynamic muscle-to-fat ratio

alterations and attenuated metabolic compensatory mechanisms.

Therefore, elucidating the relationship between UHR and obesity

in aging populations may yield a novel biomarker for the early

detection of geriatric obesity.

The well-established association between the urea-to-creatinine

ratio (UHR) and inflammatory pathologies, including hypertension

(33) and non-alcoholic fatty liver disease (NAFLD) (34), prompts

scientific inquiry into its potential role in geriatric obesity. Current

evidence remains scarce regarding UHR’s specific relationship

with obesity in the aging population. Therefore, we aimed

to elucidate the relationship between UHR and obesity in

older Americans.

Materials and methods

NHANES employs a complex probabilistic sampling

methodology across multiple stages to generate nationally

representative estimates through its population-based cross-

sectional design (35). Given NHANES’s complex multistage

sampling design, we used survey weights to ensure that the

estimates were nationally representative. Ethics clearance

was obtained from the National Center for Health Statistics

Institutional Review Board prior to study implementation,

with documented informed consent acquired from all subjects

preceding any research procedures.

Study population

We analyzed pooled data from three NHANES cycles (2011–

2016). We handle missing data by deleting column by column.

From an initial sample of 29,902 participants, exclusion criteria

were systematically applied: (1) participants younger than 60 years

of age (n = 24,369); (2) 22 subjects lacked BMI measurements,

250 lacked the UHR index, and 761 lacked the WHtR; subsequent

exclusions included those with missing data on educational

attainment (n = 3), Poverty Income Ratio (PIR, n = 436), alcohol

consumption (n = 134), smoking status (n = 4), marital status (n

= 4), diabetes (n = 93), and hypertension (n = 4). The final study

population consisted of 3,822 eligible participants (Figure 1).

FIGURE 1

Flow-chart of the study samples.

Definitions of exposure and outcome
variables

Following the National Heart, Lung, and Blood Institute

(NHLBI) criteria, obesity among older adults was defined, and

body mass index (BMI) was calculated by dividing weight in

kilograms by height in meters squared (kg/m²). Participants were

then classified into obese (BMI ≥ 30) or non-obese (BMI < 30)

groups (36). To account for the limitations of the older population,

where changes in body composition and sarcopenia may confound

BMI, we introduced an alternative way of defining obesity, namely

waist-to-height ratio (WHtR) ≥ 0.5 (2).

The uric acid to high-density lipoprotein cholesterol ratio

(UHR) served as the exposure variable in this research. The Uric

acid-to-HDL ratio (UHR) was defined by dividing UA (mg/dL) by

HDL-C (mg/dL) and multiplying by 100%. The data necessary for

calculating the UHR were derived from the physical examination

records of the National Health and Nutrition Examination Survey

(NHANES) spanning the years 2011–2016. The UHR consists

of UA and HDL-C, measured by blood in the morning in a

fasting state, with the subject fasting for 8–12 h before blood

collection. UA is measured: Serum uric acid concentration is

measured by the DxC800 Automated Laboratory Analyzer using

the timed endpoint method, where the enzyme urease reacts with

uric acid to produce hydrogen peroxide. Peroxidase promotes

the reaction of aminoantipyrine (4-AAP) and 3,5-dichloro-2-

hydroxybenzenesulfonate (DCHBS) with hydrogen peroxide, and
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the resulting product is measured at 520 nm. HDL-C is measured

by adding magnesium sulfate solution to the sample to form a

complex with the non-HDL-C, with the aim of not subsequently

reacting with the measurement reagent. The next step is converting

HDL cholesterol esters to HDL cholesterol by polyethylene glycol

esterase. Finally, 4-amino antipyrine and HSDA react with the

hydrogen peroxide generated from the reaction to form a blue

dye, and finally, HDL-C levels are determined by photometric

measurement at 600 nm using a Hitachi 7600 fully automated

biochemical analyzer (25). UHR values (expressed in mg/dL for

both components) were categorized into quartiles (Q1-Q4) to

ensure the accuracy of the data (37).

Covariates

For smoking history, we based the question, “Have you ever

smoked at least 100 cigarettes in your life?” We categorized

them as having a history of smoking and not having a history

of smoking. High-risk alcohol consumption was identified as

consuming four or more drinks per day (38). Physical activity

levels were divided into low (<500 MET min/week) and

high (≥500 MET min/week) categories, in line with national

guidelines (39). Clinical characteristics were determined through

standardized measurements and validated criteria. Diagnostic

criteria for hypertension included fulfillment of at least one of

these parameters: (1) recorded systolic blood pressure ≥140

mmHg; (2) measured diastolic blood pressure ≥ 90 mmHg; (3)

physician-confirmed medical history disclosed by participants;

or (4) active pharmacological treatment for blood pressure

regulation (40). Identification of type 2 diabetes mellitus (T2DM)

required meeting any of these established indicators: (1) medically

verified patient disclosure; (2) prescribed administration of

antidiabetic medications; (3) fasting blood glucose levels ≥126

mg/dL (7.0 mmol/L); or (4) hemoglobin A1c values ≥6.5% (41).

Comprehensive operational definitions for all study variables are

documented in the standardized National Health and Nutrition

Examination Survey (NHANES) methodological guidelines,

accessible at: https://www.cdc.gov/nchs/nhanes/.

Statistical analysis

Statistical analyses were performed using R statistical software

(version 4.3.1). The significance of all statistical tests was p <

0.05. The National Health and Nutrition Examination Survey

(NHANES) employed a multistage, stratified sampling approach

to collect nationally representative data, incorporating appropriate

sample weights to ensure population representativeness. By

NHANES analytical guidelines, sample weights were applied

throughout our analyses to account for the complex survey design.

Since the heterogeneous distribution of UHR data may affect model

stability, we log-transform the data to improve model stability.

Weighted multivariate logistic regression analyses were conducted

to evaluate the association between the UHR index and obesity

risk in older adults. The UHR index was categorized into quartiles

(Q1–Q4), with the lowest quartile (Q1) as the reference category.

Three distinct models were constructed: Model 1 presented

crude estimates without covariate adjustment, while subsequent

models progressively adjusted for demographic characteristics

(age, sex, race), socioeconomic factors (education level, marital

status, poverty-income ratio), lifestyle variables (smoking status,

alcohol consumption, physical activity equivalents), and clinical

comorbidities (hypertension, diabetes mellitus). Post-adjustment

for covariates, Smooth curve fitting was performed to examine the

association between UHR and obesity in older adults, threshold

effects for nonlinear models were determined, and meaningful

inflection points were identified. In addition, subgroup analyses

were conducted across demographic characteristics, behavioral

patterns, and health status, and interaction terms were added to

test for heterogeneity between subgroups. All results are reported

as odds ratios (ORs) with corresponding 95% confidence intervals

(CIs) and p-values. Finally, the predictive performance of the

UHR for obesity in older adults, as well as older men and

women, was assessed using the subject’s work characteristic curve

(ROC). We also determined the critical value of the UHR through

ROC analysis.

Results

Baseline characteristics

The study involved 3,822 subjects comprising 1,900 males

and 1,922 females. Table 1 shows that out of 3,822 subjects,

1,466 (38.36%) were diagnosed as obese. The obese group had

a significantly higher UHR and a younger mean age compared

to the non-obese group. Slightly lower economic levels in the

obese group relative to the non-obese group and there were

significant differences in racial distribution: higher proportions

of non-Hispanic whites and non-Hispanic blacks and lower

proportions of other races (including multiracial). In terms of

educational attainment, those with some college or AA degree

were more highly represented among the obese. Marital status

showed that a higher proportion of the obese group was married.

Behavioral characteristics showed that the obese group had a higher

proportion of smokers, a higher proportion of alcohol drinkers,

and a significantly higher proportion of high-intensity exercisers.

In terms of health status, the frequency of hypertension was much

higher in the obese group than in the non-obese group (p < 0.001

in all cases), and the frequency of diabetes mellitus in the obese

group was similar to the frequency of non-diabetes mellitus. In

conclusion, there were significant differences between the obese

and non-obese groups in terms of age, UHR, WHtR, PIR, race,

literacy, marital status, smoking history, physical activity, and

health status (hypertension and diabetes) (p < 0.001).

Table 2 summarizes the baseline characteristics of older adults

stratified by quartiles of the UHR index to investigate the potential

association between UHR levels and the incidence of obesity in

older adults (Table 2). The UHR index was categorized into four

quartiles, i.e., Q1, Q2, Q3, and Q4. Those in the fourth quartile

had a higher body mass index (BMI), a lower level of household

income, and a higher prevalence of smoking. The BMI, PIR,
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TABLE 1 Baseline characteristics of the study participants.

Variable Total (n = 3,822) Non-obesity (n = 2,356) Obesity (n = 1,466) P

Age 69.14 (0.17) 69.80 (0.25) 68.10 (0.23) <0.001

PIR 3.09 (0.07) 3.16 (0.08) 2.99 (0.10) 0.045

Gender 0.121

Male 1,900 (46.45) 1,250 (47.81) 650 (44.31)

Female 1,922 (53.55) 1,106 (52.19) 816 (55.69)

Race <0.001

Mexican American 451 (3.86) 237 (3.31) 214 (4.73)

Other Hispanic 449 (3.65) 273 (3.70) 176 (3.58)

Non-Hispanic White 1,748 (78.85) 1,097 (79.01) 651 (78.59)

Non-Hispanic Black 799 (7.81) 436 (6.87) 363 (9.28)

Other race—including multiracial 375 (5.84) 313 (7.12) 62 (3.83)

Education <0.001

<9th grade 548 (6.71) 329 (6.89) 219 (6.44)

9–11th grade 487 (9.24) 292 (9.05) 195 (9.52)

High school grad/GED or equivalent 888 (22.49) 526 (21.18) 362 (24.56)

Some college or AA degree 1,064 (31.83) 624 (29.50) 440 (35.49)

College graduate or above 835 (29.73) 585 (33.38) 250 (23.99)

Married 0.030

Yes 2,119 (62.37) 1,330 (64.54) 789 (58.97)

No 1,703 (37.63) 1,026 (35.46) 677 (41.03)

Smoking 0.032

Yes 1,934 (51.23) 1,199 (49.12) 735 (54.55)

No 1,888 (48.77) 1,157 (50.88) 731 (45.45)

Alcohol 0.102

Yes 2,546 (72.39) 1,613 (73.54) 933 (70.58)

No 1,276 (27.61) 743 (26.46) 533 (29.42)

Physical activity <0.001

High physical activity 1,905 (45.66) 1,085 (40.80) 820 (53.27)

Low physical activity 1,917 (54.34) 1,271 (59.20) 646 (46.73)

Hypertension <0.001

Yes 2,686 (66.45) 1,557 (61.11) 1,129 (74.81)

No 1,136 (33.55) 799 (38.89) 337 (25.19)

Diabetes <0.001

Yes 1,354 (28.74) 660 (20.39) 694 (41.84)

No 2,468 (71.26) 1,696 (79.61) 772 (58.16)

UHR 0.11 (0.00) 0.10 (0.00) 0.13 (0.00) <0.001

WHtR 0.62 (0.00) 0.57 (0.00) 0.72 (0.00) <0.001

UHR, UA (mg/dL) by HDL-C (mg/dL) and multiplying by 100%.

WHtR, waist-to-height ratio.

Bolded p-values: statistically significant.

WHtR, gender, ethnicity, education, marital status, smoking status,

and physical activity prevalence of hypertension, diabetes, and

obesity significantly differed between the first, second, third, and

fourth quarters (p < 0.05). The prevalence of obesity increased

progressively with increasing quartiles of the UHR index (P-trend

< 0.001).
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TABLE 2 Baseline characteristics according to UHR index qualities.

Variable Total (n = 3,822) Q1 (n = 831) Q2 (n = 955) Q3 (n = 1,024) Q4 (n = 1,012) P

BMI 29.23 (0.19) 25.99 (0.37) 28.99 (0.28) 30.20 (0.30) 31.73 (0.34) <0.001

Age 69.14 (0.17) 69.13 (0.34) 69.40 (0.26) 69.09 (0.34) 68.93 (0.24) 0.410

PIR 3.09 (0.07) 3.33 (0.12) 3.12 (0.09) 2.94 (0.09) 2.98 (0.08) <0.001

WHtR 0.62 (0.00) 0.57 (0.01) 0.62 (0.00) 0.64 (0.00) 0.65 (0.00) <0.001

Gender <0.001

Male 1,900 (46.45) 191 (20.15) 391 (38.49) 570 (54.94) 748 (72.15)

Female 1,922 (53.55) 640 (79.85) 564 (61.51) 454 (45.06) 264 (27.85)

Race 0.002

Mexican American 451 (3.86) 84 (2.98) 112 (3.91) 142 (4.83) 113 (3.73)

Other Hispanic 449 (3.65) 84 (2.52) 130 (4.57) 112 (3.59) 123 (3.91)

Non-Hispanic White 1,748 (78.85) 405 (82.41) 432 (78.49) 443 (76.38) 468 (78.11)

Non-Hispanic Black 799 (7.81) 175 (7.46) 193 (7.77) 224 (8.65) 207 (7.34)

Other race—including multiracial 375 (5.84) 83 (4.63) 88 (5.25) 103 (6.55) 101 (6.91)

Education <0.001

<9th grade 548 (6.71) 95 (4.31) 146 (7.45) 150 (7.35) 157 (7.74)

9–11th Grade 487 (9.24) 95 (7.25) 118 (9.06) 132 (10.64) 142 (9.99)

High school grad/GED or equivalent 888 (22.49) 177 (21.92) 205 (20.63) 245 (22.91) 261 (24.52)

Some college or AA degree 1,064 (31.83) 240 (30.23) 255 (29.35) 307 (34.68) 262 (33.07)

College graduate or above 835 (29.73) 224 (36.29) 231 (33.51) 190 (24.42) 190 (24.68)

Married 0.014

Yes 2,119 (62.37) 428 (61.99) 482 (57.26) 598 (63.64) 611 (66.58)

No 1,703 (37.63) 403 (38.01) 473 (42.74) 426 (36.36) 401 (33.42)

Smoking <0.001

Yes 1,934 (51.23) 348 (45.32) 443 (46.42) 545 (52.66) 598 (60.52)

No 1,888 (48.77) 483 (54.68) 512 (53.58) 479 (47.34) 414 (39.48)

Alcohol 0.316

Yes 2,546 (72.39) 534 (72.04) 608 (69.73) 687 (72.69) 717 (75.10)

No 1,276 (27.61) 297 (27.96) 347 (30.27) 337 (27.31) 295 (24.90)

Physical activity <0.001

High physical activity 1,905 (45.66) 404 (42.01) 434 (40.77) 526 (49.57) 541 (50.29)

Low physical activity 1,917 (54.34) 427 (57.99) 521 (59.23) 498 (50.43) 471 (49.71)

Hypertension <0.001

Yes 2,686 (66.45) 519 (56.88) 661 (62.97) 751 (71.10) 755 (74.81)

No 1,136 (33.55) 312 (43.12) 294 (37.03) 273 (28.90) 257 (25.19)

Diabetes <0.001

Yes 1,354 (28.74) 177 (14.41) 300 (23.49) 378 (31.64) 499 (45.39)

No 2,468 (71.26) 654 (85.59) 655 (76.51) 646 (68.36) 513 (54.61)

Bolded p-values: statistically significant.
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TABLE 3 Logistic regression results showed an association between the

Ln UHR index and BMI-defined obesity in older adults.

Model 1, OR
(95% CI)

Model 2, OR
(95% CI)

Model 3, OR
(95% CI)

LnUHR 4.25 (3.39–5.32) 6.56 (4.92–8.75) 5.00 (3.75–6.67)

<0.001 <0.001 <0.001

LnUHR (quartiles)

Q1 Ref Ref Ref

Q2 2.31 (1.54–3.47) 2.74 (1.84–4.10) 2.60 (1.73–3.90)

<0.001 <0.001 <0.001

Q3 3.67 (2.47–5.45) 4.99 (3.40–7.32) 4.17 (2.83–6.15)

<0.001 <0.001 <0.001

Q4 5.23 (3.71–7.38) 8.34 (5.54–12.57) 6.13 (4.01–9.39)

<0.001 <0.001 <0.001

P for trend < 0.001 < 0.001 < 0.001

Model 1: Unadjusted.

Model 2: adjusted for age, gender, race, education, poverty-to-income ratio, marital status.

Model 3: Adds smoking status, drinking status, exercise equivalency, hypertension, and

diabetes to Model 2.

Correlation between UHR index and
obesity in older adults

To assess the association between UHR and obesity risk in older

adults, we used amultivariate logistic regressionmodel. Because the

heterogeneous distribution of UHR data may affect model stability,

we log-transformed the UHR data, and the unadjusted and adjusted

models are shown in Tables 3, 4. For the association between UHR

and obesity in older adults defined by BMI, as shown in Model

1, without any adjustment for variables, the odds ratio (OR) was

4.25 (95% CI, 3.39–5.32; P < 0.001). The odds ratio (OR) was 6.56

(95% CI, 4.92–8.75; P < 0.001) after adjusting for gender, age, race,

household poverty-to-income ratio, education, and marital status

in Model 2. Smoking status, drinking status, exercise equivalents,

hypertension, and diabetes were added to Model 3, and the odds

ratio (OR) was 5.00 (95% CI, 3.75–6.67; P < 0.001).

For UHR vs. obesity in older adults defined by WHtR, the

odds ratio (OR) was 10.75 (95% CI,6.58–17.57; P < 0.001) without

any adjustment for variables, as shown in Model 1. After adjusting

for gender, age, race/ethnicity, household poverty-to-income ratio,

education, and marital status in Model 2, the odds ratio (OR)

was 18.33 (95% CI, 10.17–33.06; P < 0.001). Smoking status,

drinking status, exercise equivalents, hypertension, and diabetes

were added to Model 3, and the odds ratio (OR) was 15.67 (95%

CI, 8.92–27.55; P < 0.001). This trend suggests that UHR is an

independent risk factor for obesity in older adults and that its

risk effect remains robust even after full correction for potential

confounding variables.

Nonlinear associations and threshold e�ect

To examine the nonlinear dose-response relationship

between the UHR index and obesity prevalence in older adults,

TABLE 4 Logistic regression results showed an association between the

Ln UHR index and obesity defined by WHtR in older adults.

Model 1, OR
(95% CI)

Model 2, OR
(95% CI)

Model 3, OR
(95% CI)

LnUHR 10.75 (6.58–17.57) 18.33

(10.17–33.06)

15.67 (8.92–27.55)

<0.001 <0.001 <0.001

LnUHR (quartiles)

Q1 Ref Ref Ref

Q2 2.78 (1.51–5.13) 3.41 (1.86–6.25) 3.17 (1.72–5.84)

0.002 <0.001 <0.001

Q3 6.82 (3.44−13.50) 8.91 (4.35–18.26) 7.11 (3.45−14.63)

<0.001 <0.001 <0.001

Q4 20.64 (8.87–48.02) 30.72

(12.65−74.61)

20.21 (8.33–49.02)

<0.001 <0.001 <0.001

P for trend < 0.001 < 0.001 < 0.001

Model 1: Unadjusted.

Model 2: adjusted for age, gender, race, education, poverty-to-income ratio, marital status.

Model 3: Adds smoking status, drinking status, exercise equivalency, hypertension, and

diabetes to Model 2.

restricted cubic spline analyses were implemented across three

adjusted models (Figures 2A–F) As illustrated in the figure,

nonlinear associations were consistently observed in all models,

demonstrating a direct proportional relationship where elevated

UHR indices corresponded with progressively higher obesity risks

in older adults. The analytical framework employed restricted

cubic splines with full covariate adjustment across models. Odds

ratios (ORs) for obesity outcomes are presented as solid crimson

trajectories and 95% confidence intervals depicted through

semi-transparent red shading. Segmented regression models

were used to calculate the threshold effect for each interval. In

the relationship between UHR and obesity, as defined by BMI,

the inflection point of the UHR index was −2.485. A significant

positive correlation was observed when the UHR index was lower

than −2.485 (OR = 14.96, 95% CI: 6.73, 33.25); a significant

positive correlation was observed when the UHR index exceeded

−2.485 (OR = 3.23, 95% CI: 2.40, 4.34). In the relationship

between UHR and WHtR, the inflection point of the UHR index

was −2.503, and when the UHR index was below −2.503, a

significant positive correlation was observed (OR = 0.11, 95% CI:

0.09, 0.12); when the UHR index exceeded −2.503, a significant

positive correlation was observed (OR = 0.06, 95% CI: 0.04–0.07)

(Tables 5, 6).

ROC curve

A receiver operating characteristic curve (ROC) analysis was

used to assess the predictive performance of UHR about obesity

risk in older adults (Figure 3). The area under the curve (AUC)

indicates the predictive value of the index; a larger AUC indicates

a better predictive value, while a smaller AUC indicates a lower

predictive value. As shown, the ROC curve demonstrates the
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FIGURE 2

The association between UHR and obesity (defined by BMI) (A–C) in older adults and the association between UHR and WHtR (D–F) in older adults.

(A) unadjusted. (B) Adjusted for age, gender, race, education, poverty-to-income ratio, and marital status. (C) Adds smoking status, drinking status,

exercise equivalency, hypertension, and diabetes to Model B. (D) unadjusted. (E) Adjusted for age, gender, race, education, poverty-to-income ratio,

and marital status. (F) Adds smoking status, drinking status, exercise equivalency, hypertension, and diabetes to Model E.

TABLE 5 Nonlinearity addressed through a two-piecewise linear model

(obesity defined by BMI).

Outcome E�ect P

Model 1 Fitting model by standard linear

regression

4.89 (4.01–5.96) <0.001

Model 2 Fitting model by two-piecewise linear regression

Inflection point −2.485

<-2.485 14.96 (6.73–33.25) <0.001

≥-2.485 3.23 (2.40–4.34) <0.001

P for likelihood test <0.001

CI, confidence interval; OR, odds ratio, UHR serum uric acid/high-density lipoprotein

cholesterol ratio.

predictive power of the UHR for obesity risk in older adults. In

the receiver operating characteristic analysis, the UHR predicted

the AUC for obesity as defined by BMI (95% CI): 0.65 (0.63–

0.66). UHR predicted AUC for obesity as defined by body

mass index (BMI) in older men (95% CI): 0.67 (0.65–0.70),

UHR predicted AUC for obesity as defined by body mass index

(BMI) in older women (95% CI): 0.69 (0.67- 0.72). The UHR

predicted the AUC for predicting obesity as defined by WHtR

(95% CI): 0.75 (0.72–0.78). AUC (95% CI) for obesity in older

men as defined by UHR predicted body mass index (WHtR):

0.76 (0.72–0.80), AUC (95% CI) for obesity in older women as

defined by UHR predictive body mass index (WHtR): 0.83 (0.79–

0.87).

TABLE 6 Nonlinearity addressed through two-piecewise linear model

(WHtR).

Outcome E�ect P

Model 1 Fitting model by standard linear

regression

0.07 (0.07–0.08) <0.001

Model 2 Fitting model by two-piecewise linear regression

Inflection point −2.503

<-2.503 0.11 (0.09–0.12) <0.001

≥-2.503 0.06 (0.04–0.07) <0.001

P for likelihood test <0.001

CI, confidence interval; OR, odds ratio; UHR serum uric acid/high-density lipoprotein

cholesterol ratio.

Subgroup analysis

In this study, subgroup analyses and interaction tests were

conducted to assess differences in the association between UHR

and obesity defined by body mass index (BMI) or obesity defined

by WHtR in older adults across subgroups to investigate the

heterogeneity of this association. As shown in Tables 7, 8, none

of the interaction P-values for the subgroups reached the critical

value of statistical significance (all interaction P-values were more

significant than 0.05), indicating that demographic characteristics,

behavioral patterns, and health status variables did not have a

significant effect on the positive association between UHR and

obesity, and that, based on the results of the interaction test, the
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FIGURE 3

The ROC curve between UHR and obesity in older adults. (A) The ROC curve between UHR and obesity (defined by BMI) in older adults; cut o�:

0.108. (B) The ROC curve between UHR and obesity (defined by BMI) in older adults (male); cut o�: 0.109. (C) The ROC curve between UHR and

obesity (defined by BMI) in older adults (female); cut o�: 0.076. (D) The ROC curve between UHR and obesity (defined by WHtR) in older adults; cut

o�: 0.09. (E) The ROC curve between UHR and obesity (defined by WHtR) in older adults (male); cut o�: 0.113. (F) The ROC curve between UHR and

obesity (defined by WHtR) in older adults (female); cut o�: 0.067.

possibility of multiplicity in the hypothesis test leading to false

positives was effectively controlled, and therefore no Bonferroni

correction. The above results indicate a high degree of consistency

in the positive association between UHR and obesity in older adults

in subgroups with different demographic characteristics, behavioral

patterns, and health status, which supports the robustness and

generalizability of the relationship.

Discussion

Using NHANES data from 2011 to 2016, this study examined

the relationship between UHR and obesity in older adults. After a

series of inclusion and exclusion, this study included as many as

3,822 cases. The data analysis revealed a positive relation between

UHR and the risk of obesity in older adults, and this correlation

was still evident after taking potential confounding factors into

account. When the UHR was treated as a categorical variable, the

risk of obesity defined by BMI in (Q4) was 6.13 times higher

than that in (Q1). The risk of obesity defined by WHtR in (Q4)

was 20.21 times higher than that in (Q1). Another noteworthy

finding was a significant nonlinear dose-response relation between

UHR and obesity in older adults. According to the ROC curve,

the UHR can be an important tool for identifying older women at

high risk for obesity. The analytical results provided evidence of a

statistically significant positive relation between UHR and obesity

in the geriatric population.

In older adults, BMI may underestimate obesity-related health

risks (inability to differentiate fat distribution), resulting in a

weaker predictive power of the UHR index. WHtR may be more

appropriate for the older adults, as it is more sensitive to central

obesity (independent of age-related muscle loss). The UHR index

is more valuable in identifying metabolic risk-associated obesity

(i.e., visceral adiposity), suggesting its potential as a complementary

clinical tool. The UHR index could serve as a crucial therapeutic

intervention target and a significant predictive factor in developing

obesity prevention strategies for older adult populations. The

consistency of the UHR-obesity association across heterogeneous

population strata (varying in demographic composition, lifestyle

patterns, and clinical status) was substantiated through rigorous

subgroup analyses and interaction evaluations, confirming the

epidemiological robustness of this metabolic relationship. This
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TABLE 7 Subgroup analysis for the association between UHR and obesity defined by BMI in older adults.

Variables n (%) OR (95%CI) P P for interaction

All patients 3,822 (100.00) 4.25 (3.39–5.32) <0.001

Age 0.174

60–70 2,071 (54.19) 5.04 (3.49−7.26) <0.001

70–80 1,133 (29.64) 3.66 (2.83–4.73) <0.001

≥80 618 (16.17) 3.06 (1.84–5.08) <0.001

Gender 0.222

Male 1,900 (49.71) 7.84 (5.23–11.76) <0.001

Female 1,922 (50.29) 5.51 (3.70–8.22) <0.001

Education 0.238

<9th Grade 548 (14.34) 2.17 (1.37–3.46) 0.002

9–11th Grade 487 (12.74) 5.47 (3.05–9.82) <0.001

High School Grad/GED or Equivalent 888 (23.23) 3.30 (1.98–5.49) <0.001

Some College or AA degree 1,064 (27.84) 4.72 (3.13–7.12) <0.001

College Graduate or above 835 (21.85) 4.81 (3.17–7.29) <0.001

Married 0.190

Yes 1,703 (44.56) 3.59 (2.67–4.82) <0.001

No 2,119 (55.44) 4.94 (3.44–7.09) <0.001

Smoking 0.809

Yes 1,934 (50.60) 4.30 (3.21–5.76) <0.001

No 1,888 (49.40) 4.09 (2.97–5.65) <0.001

Alcohol 0.120

Yes 2,546 (66.61) 4.81 (3.59–6.46) <0.001

No 1,276 (33.39) 3.16 (2.07–4.80) <0.001

Physical activity 0.673

High physical activity 1,905 (49.84) 3.89 (2.83–5.35) <0.001

Low physical activity 1,917 (50.16) 4.36 (2.97–6.41) <0.001

Hypertension 0.531

Yes 2,686 (70.28) 4.27 (3.20–5.69) <0.001

No 1,136 (29.72) 3.44 (2.01–5.90) <0.001

Diabetes 0.167

Yes 1,354 (35.43) 2.66 (1.87–3.79) <0.001

No 2,468 (64.57) 4.05 (2.82–5.80) <0.001

Bolded p-values: statistically significant.

result confirms our initial hypothesis and emphasizes the important

relationship between UHR and obesity in older adults. To

formulate practical therapeutic approaches for older adults, it is

crucial to thoroughly comprehend the relationship between UHR

and adiposity-related health conditions in aging individuals. The

uric acid and high-density lipoprotein cholesterol levels can be

regulated by interventions such as a healthy diet, exercise, smoking,

and drinking cessation. A series of measures may help reduce the

index of UHR in older adults, reducing the risk of obesity.

Understanding the complex relationship between UA and HDL

is essential for assessing health outcomes. Serving as a composite

marker, its association with a range of metabolic disorders, such as

non-alcoholic fatty liver disease (NAFLD) (34) and hypertension

(33), has been established. The UHR indicates the dynamic

equilibrium between the lipid-promoting attributes of UA and the

fat-breaking function of HDL-C (42). The interaction between

inflammatory and oxidative mechanisms in disease progression is

revealed. Adipose tissue hypertrophy and hyperplasia in obesity are

associated with hypoxic microenvironments that induce adipocyte

apoptosis and necrosis, subsequently generating excessive reactive

oxygen species (ROS) and activating oxidative stress pathways

(43). In addition, the adipose tissue of obese people secrets
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TABLE 8 Subgroup analysis for the association between UHR and obesity defined by WHtR in older adults.

Variables n (%) OR (95%CI) P P for interaction

All patients 3,822 (100.00) 10.75 (6.58–17.57) <0.001

Age 0.702

60-70 2,071 (54.19) 9.74 (5.41–17.52) <0.001

70-80 1,133 (29.64) 13.61 (5.93–31.23) <0.001

≥80 618 (16.17) 10.83 (4.34–27.00) <0.001

Gender 0.073

Male 1,900 (49.71) 12.16 (5.94–24.89) <0.001

Female 1,922 (50.29) 27.63(11.32–67.48) <0.001

Education 0.053

Less Than 9th Grade 548 (14.34) 2.43 (0.76–7.81) 0.142

9–11th Grade 487 (12.74) 8.71 (2.15–35.32) 0.004

High School Grad/GED or Equivalent 888 (23.23) 3.37 (1.30–8.74) 0.016

Some College or AA degree 1,064 (27.84) 20.00 (7.81–51.18) <0.001

College Graduate or above 835 (21.85) 11.64 (5.54–24.48) <0.001

Married 0.620

Yes 2,119 (55.44) 9.80 (5.02–19.15) <0.001

No 1,703 (44.56) 12.70 (6.05–26.68) <0.001

Smoking 0.141

Yes 1,934 (50.60) 7.44 (3.90–14.20) <0.001

No 1,888 (49.40) 15.18 (7.70–29.92) <0.001

Alcohol 0.801

Yes 2,546 (66.61) 10.86 (6.28–18.80) <0.001

No 1,276 (33.39) 9.65 (4.20–22.16) <0.001

Physical activity 0.957

High physical activity 1,905 (49.84) 10.62 (3.92–28.76) <0.001

Low physical activity 1,917 (50.16) 10.29 (5.62–18.84) <0.001

Hypertension 0.518

Yes 2,686 (70.28) 8.57 (4.27–17.17) <0.001

No 1,136 (29.72) 11.85 (6.03–23.32) <0.001

Diabetes 0.386

Yes 1,354 (35.43) 5.85 (2.32–14.76) <0.001

No 2,468 (64.57) 9.59 (5.47–16.80) <0.001

Bolded p-values: statistically significant.

a large number of pro-inflammatory factors, such as tumor

necrosis factor-α (TNF-α) and interleukin-6 (IL-6), which not

only cause inflammation in adipose tissue but also spread to the

whole body through the systemic circulation (44). At the same

time, macrophages in adipose tissue are also activated, further

aggravating inflammation (45). Our study found a nonlinear

relationship between uric acid to high-density lipoprotein

cholesterol ratio (UHR) and obesity risk in older adults, whereas

previous studies reported an inverted U-shaped relationship

between uric acid and obesity. The ambivalent biological role

of uric acid (UA) manifests as a concentration-dependent

biphasic impact on adipogenesis regulation, demonstrating

both protective and pathogenic potentials within obesity-related

metabolic pathways. At physiological concentrations, UA reduces

the generation of reactive oxygen species (ROS) by inhibiting

NADPH oxidase activity and protecting mitochondrial function

in adipocytes. However, chronic hyperuricemia can activate

NLRP3 inflammasome, promote macrophage infiltration and

IL-1β release in adipose tissue, and induce adipocyte hypertrophy

and fibrosis (46). HDL-C and its major apolipoprotein component,
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ApoA-I, exert significant anti-inflammatory and organ-protective

effects by scavenging lipopolysaccharides (LPS), suppressing

pro-inflammatory cytokine production, and improving endothelial

function (47). Thus HDL-C reduces the gene transcription of

pro-inflammatory factors such as TNF-α, IL-6, and IL-8 (48). The

role of uric acid and high-density lipoprotein (HDL) cholesterol in

the pathogenesis of obesity and obesity-associated diseases is well

supported by the available evidence (49, 50). Elevated UA levels,

commonly seen in obese individuals, may exacerbate adipose tissue

inflammation through xanthine oxidase-driven oxidative stress

and impaired insulin signal (51).

High-density lipoprotein cholesterol (HDL-C) plays a

protective role against obesity by improving adipose tissue

function, modulating the secretion of adipokines such as

adiponectin and leptin, and exerting anti-inflammatory and

antioxidant effects (52). The superior predictive ability of the uric

acid to HDL-C ratio (UHR) for obesity may be partly attributed

to its reflection of uric acid-driven lipogenesis. Uric acid has been

shown to induce mitochondrial oxidative stress in hepatocytes,

inhibit aconitase activity in the tricarboxylic acid cycle, promote

cytoplasmic citrate accumulation, and activate key lipogenic

enzymes such as ATP-citrate lyase and fatty acid synthase, thereby

enhancing de novo lipid synthesis (53). HDL-C-mediated lipid

clearance: HDL-C enhances reverse cholesterol transport through

the ABCA1/G1 pathway and inhibits ectopic lipid deposition by

up-regulating adipose triglyceride lipase (ATGL) (54, 55).

This research contributes novel insights by (1) establishing

UHR as a feasible biomarker for geriatric obesity risk assessment,

(2) elucidating demographic-specific patterns of UHR-obesity

associations, and (3) providing accurate evidence for clinical

interpretation. These findings advance our pathophysiological

understanding of metabolic dysregulation in aging populations

while proposing practical tools for targeted screening and

preventive intervention development. The utilization of the UHR

index as a multidimensional biomarker has been demonstrated

to establish innovative frameworks for enhancing diagnostic

paradigms in geriatric adiposity assessment, and the interaction

between oxidative and inflammatory mechanisms sheds light on

the biological basis of this disease. So, the UHR holds promise

in the clinical diagnosis, therapeutic surveillance, and prognostic

assessment of obesity in older adults. This study demonstrates

notable strengths, including the novel integration of UA and HDL-

C as a composite biomarker. Previous studies have examined these

biomarkers individually and may have overlooked their dynamic

interactions in metabolic homeostasis. Our findings extend current

knowledge by demonstrating that the UHR index (integrating

UA and HDL-C) is associated with obesity metrics (e.g., waist

circumference, visceral fat area) more than either component

system alone. Compared to single metrics, UHR can identify

older subclinical obese populations with a propensity for abnormal

visceral fat accumulation 3–5 years earlier. This furnishes a valuable

tool for examining its association with obesity in the aged. UHR

has more obvious advantages than other metabolic markers: UHR

can reflect the advantages of uric acid metabolism and lipid

metabolism disorders at the same time, especially in obesity-

related metabolic syndrome, which has a high value of application.

However, metabolic heterogeneity exists in older adults obese

population, and some patients may show “metabolically healthy

obesity” (no apparent metabolic abnormality), while UHR mainly

relies on uric acid and HDL-C and is unable to comprehensively

assess other metabolic disorders, such as insulin resistance and

inflammatory status. In terms of the study population, Analytical

procedures were conducted using de-identified demographic and

health metrics from the 2011–2016 cycle of NHANES to ensure

the accuracy of the study as well as the breadth of the population.

Based on this, the study weighted the data. It used multi-

model logistic regression, restricted cubic spline curves, threshold

effect, and subgroup analyses to control for various types of

confounding factors, thus making the results more accurate. This

study demonstrates that elevated UHR index levels correlate

with increased obesity prevalence among older adults, carrying

significant population health ramifications for combating and

detecting obesity in this demographic.

Nevertheless, our research has certain constraints. The fact that

this investigation is cross-sectional comes first in our analysis. This

was able to determine associations between exposure factors and

outcomes, but it could not determine their causal relationship.

Therefore, it is necessary to perform Mendelian randomization,

for example, to confirm causality and to explore tissue-specific

effects through animal models. As a second point, the self-

reported confounders can be easily influenced by biased recall.

In addition, we might have failed to identify some potentially

confounding variables; the possibility of bias remains. Secondly,

the research concentrated on individuals aged 60 and above; as

a result, Caution is warranted when extrapolating these findings

to individuals under 60. Furthermore, the issues of whether UHR

can be combined with other indicators for predicting obesity in

older adults and the timing of UHR measurements need to be

addressed. Subsequent experiments will aid in comprehending the

potential mechanisms underlying the association between UHR

and obesity.

Conclusion

UHR is independently associated with obesity in older

adults. UHR can be used as a supportive indicator for obesity

risk stratification, but further validation in prospective cohorts

is needed. Interventions targeting UHR modulation may

contribute to developing targeted obesity prevention strategies in

aging populations.
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