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Background: Allergic conditions including hay fever are a sentinel measure of
environmental impact on human health in early life. In this study we investigated
the association between climate indicators and allergic rhinitis (hay fever)
incidence in children and adolescents in Freiburg im Breisgau (Germany), as a
representative study site for an urban German environment.

Methods: Data on climate indicators and hay fever incidence in children and
adolescents in the period 2013 to 2021 were implemented within the free
software environment for statistical computing R using generalized additive
Gamma family models.

Results: Our results from all “seasonal”, “non-seasonal”, and “single-factor”
models could not support the associations between the hay fever incidence
and the precipitation as well as the concentrations of PM10, NO2, and O3
in Freiburg. However, they indicated statistically significant associations with
temperature, and wind speed at the 5% level. The hay fever incidence was
highest, as the temperature was between 4–6◦C, and 10–17◦C, and the wind
speed was between 2.0 and 2.1m/s.

Conclusions: This knowledge could be of relevance for the choice of patient
treatment procedure in Freiburg, as the symptoms of a cold or flu can easily be
mistaken for an allergy, especially in the cold season.

KEYWORDS
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1 Introduction

Climate change is one of the most difficult and complex challenges facing the
world, causing numerous environmental changes such as rising temperatures, changes in
precipitation, more intense and frequent extreme events such as heat waves, droughts,
storms (1), and worsening air quality (2). All these climate change indicators have
increasingly negative impacts on humans and natural systems (3, 4).
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Allergic conditions are a sentinel measure of environmental
impact on human health in early life. In Germany, approximately
34% of the population is affected by at least one allergic disease
in their lives, and half of the population has shown allergic
sensibilization (5). Respiratory allergies are among the most
common respiratory diseases and represent a major contributor to
both direct and indirect healthcare costs. Allergic rhinitis or hay
fever is the predominant prevalent type of respiratory allergy and
known for affecting the quality of life. Studies disclosed that in
Germany 15% of adults (6), and 9.9% of children and adolescents
(7, 8) suffered from hay fever. Consequently, treatment costs for
only pollen allergy sufferers amount to around 240 million Euros
on average every year (9).

There is a notable amount of literature on the association
between hay fever and climate indicators, but the outcomes are
often mixed and sometimes contradictory. Regarding temperature
and extreme events, several studies demonstrated, that both, heat
and cold, can significantly increase the risk of hay fever (10–15).
In contrast, Hsieh et al. reported a negative relationship between
temperature and rhinitis cases (16), while Wang et al. found a
positive association (17). Interestingly, until now, very few studies
report on the effect of wind speed and precipitation on hay fever.
The existing studies on this topic have produced conflicting results,
for instance Wang et al. found that wind speed is negatively
associated with hay fever (17), whereas Lou et al. found a positive
association (18). Similarly, the relationship between precipitation
and allergic rhinitis has also yielded conflicting findings. A study by
Wang et al. reported a positive association between precipitation
and hay fever (17), whereas a study by Peternel et al. found that
the more it rains the less allergen exposure occurs (19). Therefore, a
negative association between precipitation and hay fever incidence
could be expected.

Additionally, an increasing concentration of ground-level
ozone (O3) has also been considered as a climate change indicator.
O3 is a respiratory irritant and can worsen hay fever symptoms as
demonstrated in some studies (20–24). However, also no significant
association was found between the allergic rhinitis and O3 (25–
27). The formation (and degradation) of O3 correlates well with
nitrogen oxide (NO2) levels (28, 29). Hence, it is important to
pay attention to the relationship between NO2 and hay fever, as
well. Higher NO2 concentration may be associated with lower
pollen quantity due to the negative effects of NO2 on either
the development of plants or on their blossoming and pollen
production (30–32). In vitro, NO2 can cause a general drop in
the germination and allergenic protein content of exposed pollen
grains (33, 34). Thus, a negative relationship between pollen season
and NO2 could be assumed. While Burte et al. and Gehring et al.
could not find evidence of association between NO2 and rhinitis
(35, 36), others reported that the exposure to NO2 negatively
impacted the respiratory system and exacerbated the severity of
the allergic airway inflammation (37, 38). Similar to the gaseous air
pollutants, contrasting results about association between hay fever
and PM10 levels were also found.While Kang et al. indicated that no
significant correlations were observed between changes in the PM10

concentration and allergic symptom scores (39), Pénard-Morand
et al. and Puklová et al. found that PM10 positively associated with
both lifetime and current allergic rhinitis (40, 41).

All these contradictory results call for further research to better
understand these relationships and develop effective prevention
and intervention strategies, especially in the context of climate
change. Furthermore, the effects of climate change indicators
are multifaceted, with each geographic region having its own
characteristics. Specifically, we clarified that children with hay
fever have an elevated risk of developing asthma (42), which has
been associated with long-term reductions in adult lung function
(43). Furthermore, children are potentially more susceptible to
environmental allergens and pollutants due to their higher oxygen
consumption per unit of body weight and the immaturity of their
respiratory and immune systems (44). Additionally, as children
spend more time in outdoor environments, their exposure to
outdoor environmental factors is likely to be greater (44).

Against this background, the present study investigated the
association between different climate change indicators and hay
fever in children and adolescents in the middle European city
Freiburg im Breisgau (Germany) using quarterly incidence data
from 2013 to 2021 in the age group 0–17 years.To the best of our
knowledge, there are no comparable studies for Germany covering
the last decade.

2 Materials and methods

2.1 Study area

Freiburg im Breisgau (Germany) was chosen as a representative
study site for an urban setting, because of its unique characteristics.
The city has attracted global attention for its sustainable urban
development, successes in green, low-carbon economy, mobility,
energy, and land use planning (45). Freiburg is located on the
western edge of the Black Forest in the Upper Rhine Valley
in southwestern Germany, and it is well known as one of the
warmest areas in the country. It has a size of 15,307 ha (46), a
population of 234,442 people (47), and a high population density
of 1,511/km2. An overview map of the study area can be seen
from Figure 1 (for detailed material and methods consult the
Supplementary material S1).

2.2 Data of climate indicators

For this study, several climate indicators, such as daily
mean temperature at 2m above ground level (◦C), daily total
precipitation (mm), and daily mean wind speed (m/s) of station
no. 1443 Freiburg, sampled from 2007 to 2021, have been provided
by the German Meteorological Service (Deutscher Wetterdienst
DWD, 2022). Hourly data for ozone O3 (µg/m3) and nitrogen
dioxide NO2 (µg/m3) from 2007 to 2021, as well as particulate
matter of aerodynamic diameter less than 10µm PM10 (µg/m3)
from 2013 to 2021 for the Freiburg DEBW084 station, provided
by Federal Environment Agency, have also been selected. These
stations are typical for urban residential areas away from the
major roads (Figure 1). For the studied period, the measurement of
particulate matter of aerodynamic diameter <2.5µm PM2.5 in the
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FIGURE 1

An overview map of Freiburg im Breisgau. The population decreases gradually across regions from black to gray. The red and blue points are the
observation stations of the meteorological parameters and the air pollutants, respectively.

study area could not be fully accounted for, as the stationmeasuring
PM2.5 was not established until 01.01.2019.

2.3 Respiratory allergy data

Quarterly incidence of hay fever per 1,000 children and
adolescents at risk aged 0–17 years in Freiburg, from 2013
until 2021, were provided by the Central Research Institute of
Ambulatory Health Care (Germany). Calculations were done using
outpatient claims data of the German Statutory Health Insurance
according to § 295 of the German Code of Social Law (Fünftes
Sozialgesetzbuch, SGB V). The methodology applied to estimate
hay fever incidence (HFI) based on insurance claims has been
described elsewhere (7). In brief, the occurrence of newly diagnosed
hay fever was assessed in annual cohorts of patients in the age
group 0–17 years, who were observable in the year of reporting,
and in the three previous years, or who were born in this four-
year period. The children and adolescents, who did not receive
a diagnosis of hay fever during the pre-observation period were
eligible for inclusion into the population at risk. Incident cases were
identified using diagnoses coded according to the International
Statistical Classification of Diseases and Related Health Problems,
10th revision, German modification (ICD-10-GM-codes: 30.1 for
hay fever due to pollen, J30.2 for other seasonal hay fever). New hay
fever cases were defined as the first occurrence of disease-specific
diagnostic codes in the respective populations at risk, together
with the disease modifier “assured” after a diagnosis-free period
of 3 years and repeated coding at least once in the following four
quarters after the index quarter. Quarterly cumulative incidence
was calculated per 1,000 children and adolescents under risk.

Demographic details for the population at risk of hay fever are
provided in the Supplementary material S2.

Quarter one (Q1) refers to the months of January, February,
and March; quarter two (Q2) to the months of April, May and
June. Quarter three (Q3) refers to the months of July, August
and September, and quarter four (Q4) to the months of October,
November and December.

2.4 Data analysis and method description

First, we analyzed the time evolution of the variables. Since
the variables had been collected at different frequencies, we had to
work with the lowest frequency available, i.e., the quarterly data.
For this purpose, we aggregated the data at the higher frequency to
the quarterly level by averaging or summing up by using functions
in Microsoft Excel © Version 2301. In the next steps, methods
and packages within the free software environment for statistical
computing R (Version 4.2.2, Germany) were used. We computed
correlations among the climate indicators in order to understand
their dependencies and potentially multicollinearity that may lead
to confounding effects and, thus, poor estimates of their association
with the HFI. We presented in this paper results on the Spearman
rank correlations, as they are less sensitive to outliers and the
normality assumption. However, for robustness check, we also
implemented the classical Pearson correlation. The results were
consistent with those obtained from the Spearman correlation
analysis, both in terms of direction and magnitude. Therefore,
we did not include them in the manuscript; however, they are
available from the authors upon request. Next, we implemented
generalized additive models (GAMs) with the Gamma distribution
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family [the function “gam()” from the package mgcv] to analyse the
associations between the climate indicators and the hay fever. This
is a very general methodological framework that can capture linear,
monotonic or more complex nonlinear relationships, depending
on the way each variable responds to changes in the dependent
variables (48, 49).

Here we first computed models named “seasonal”, which
focused on studying the multivariables’ effects on the HFI with
time seasonality controlled for. As described below, we work with
semi-annual seasonality. Here, the seasonality was added in the
model as a categorical variable including two categories Q1Q4 and
Q2Q3, since Q1 and Q4 shared closely similarities, as are the other
two quarters. We applied cubic regression splines smooth function
for the temperature, NO2 and O3, since they are useful for fitting
models with seasonal patterns (50, 51). For the other variables, we
kept the thin plate regression splines, which are the default smooth
(52). Based on environmental theory and previous studies, there
may be interactions between PM10, NO2, O3 and precipitation
(53–56), as well as wind speed (57, 58), between NO2 and O3

(59), and between temperature and wind speed (60). Therefore, we
also considered these interactions in our models by using tensor
product smooths function (50, 52). Since categorical data, here
for the seasonality, in GAMs are treated as a linear term without
smoothing (48), we applied the seasonality in linear manner.

For the robustness check, we assessed additional models
assigned here as “single-factor” and “non-seasonal”. Due to the
limited data, we needed to balance the effects of adding further
variables in the regression: more relevant variables added, less
bias in the estimates, but lower standard errors; less variables
added, more bias, but higher standard error. Therefore, for the
“single-factor” models we retained the seasonality and one climate
indicator as the only two predictors at a time. For the non-seasonal
models, we fitted the joint effect of the predictors, and excluded the
seasonality, which allow us to examine contribution of seasonality
by comparing the results.

In all models, we computed functions “gam.check()”, and
“AIC()” to achieve optional fitness. The statistically significant level
has been chosen at upmost 5%. We estimated the quarterly HFI
using the “predict” function for all chosen predictors, with setting
the other predictors to their medians (61). Finally, we applied the
package “ggplot2” to visualize the significant associations.

3 Results

3.1 Variation in hay fever incidence

Figure 2 displays the HFI’s levels across years and quarters. No
significant changes in the quarterly and yearly HFI between 2013
and 2021 were observed, which might be due to the relatively short
window. HFI was significantly higher in Q2 than in the other three
quarters over all 9 years investigated (p= 4.07e-12).

3.2 Variation in climate indicators

Figures 3A, B provide the time series of quarterly observations
of the climate indicators as explanatory variables and the HFI as
the dependent variable. Quarterly variations in hay fever frequency

corresponded to changes in the quarterly temperature (Figure 3A),
the quarterly wind speed (Figure 3A), and the quarterly O3

(Figure 3B), whereas they varied inversely with the quarterly
NO2 (Figure 3B). No correspondences between other indicators
were observed.

To discover possible changes in climate indicators in the
individual quarters of the study period associated with hay fever,
we first visualized the meteorological parameters in Figure 4. In
contrast to a stable average temperature throughout the years in
Freiburg, a significant increase in temperature could be detected
for Q3 and Q4, during the period 2007–2021 (p = 0.001 and
0.039, respectively). No significant changes in wind speed and
precipitation were found.

Next, we considered the temporal course of the most abundant
air pollutants NO2, ground-level O3, and PM10. The NO2 and the
PM10 showed significantly decreases over the observed years (p
= 0.021 and 0.001, respectively), whereas the O3 concentration
remained unchanged (Figure 5).

As one may observe from Figures 2–5, the variables at hand
display quarterly seasonality effects. However, given that we have
only a few numbers of observations per series (36), we needed to
balance the effects of adding further variables in the regression, i.e.
balance between reducing the bias in the estimates and increasing
their standard errors. This trade-off is particularly important when
dealing with such a small sample size. Therefore, we worked here
with semi-annual seasonal variables, instead of quarterly.

3.3 Correlations between climate
indicators

In Figure 6, we present results from computing the Spearman
rank correlation among the climate indicators.

The results given in Figure 6 align with the basic environmental
principles: temperature clustered around two means due to
seasoning effects, precipitation, PM10 and NO2 were right skewed,
indicating a higher probability mass to lower values, while the
O3 level seemed to be rather uniformly distributed, wind speed
distributed normally. We also observed high correlations between
the temperature and the O3 (positive 71%), as well as the
NO2 (negative 81%). Correlations between the NO2 and the
PM10 (positive 55%), as well as the O3 (negative 78%) have
been also detected. The correlations among the other factors
were smaller, and sometimes not statistically significant at 5%
level. Accordingly, for our regression analysis, we considered
temperature, precipitation, wind speed, and PM10 as predictors
in a first step. Then, the effects of O3, and NO2 were
considered, by successively replacing the temperature and PM10.
Due to the limited data, we individually applied the interactions
between each two indicators, which have been mentioned at the
method description.

3.4 Outcome model

Results from our “seasonal”, “single factor”, and “non-
seasonal” models provide the estimated associations between the
HFI and the temperature (Figure 7), as well as the wind speed

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1587767
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Dao-Siebel et al. 10.3389/fpubh.2025.1587767

FIGURE 2

Quarterly HFIs for Freiburg in the period between 2013 and 2021. Bars are HFI data corresponding to Q1-4.

FIGURE 3

Time series of the quarterly HFI from 2013 to 2021 and climate indicators (A) meteorological parameters, i.e. temperature, precipitation, and wind
speed; (B) PM10 from 2013 to 2021 and gaseous air pollutants (O3, NO2) from 2007 to 2021. The gaps in the graphs are due to missing data.

(Figure 8). The two associations were statistically significant at
5% significance level. The association between the temperature
and the HFI varied in a larger scale than the one of the wind
speed. In our “seasonal” and “non-seasonal” models, we also
identified a significant relationship between the HFI and the
O3. This may be caused by a confounding variable, i.e. the
wind speed. When we excluded this variable in the models,
O3 was no longer significant. Hence, we did not visualize
this association here. For precipitation, PM10, NO2 as well as
the interactions, we could not find any statistically significant
association with the HFI at the 5% level. However, it is important
to emphasize that the associations between the HFI and the
interactions among temperature and wind speed, as well as the
one among wind speed and O3 were significant at 9% and 6%
level, respectively. These associations may be significant at 5%
level in a larger dataset. Models’ summaries can be found in
Table 1.

The smoothed curve in Figure 7 indicated that the direction
of the relationship between the HFI and the temperature changed
midway through the range of the temperature. Overall, the curve
shows optimal ranges of the temperature were between 4–6◦C and
10–17◦C. The curve started high, then increased rapidly to 2.5 new
cases as the temperature is at 6◦C. After that, the curve sloped
downward, indicating a negative relationship. In other words, the
more the temperature rose (up to 8◦C), the more the HFI reduced.
As the temperature rose from 8◦C to 13◦C, the curve was upward-
sloping, showing a positive relationship. Here, the HFI reached its
highest peak with an incidence of almost 4 new cases. After this
point, the hay fever slowly decreased with the temperature.

The second factor associating the HFI in a statistically
significant manner was the wind speed (Figure 8). The wind
speed had a bell-shaped association with HFI, where the curve
direction changed at the middle. The HFI increased and reached
its highest point at 3.2 new cases as the wind speed was
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FIGURE 4

(A) Average temperature, (B) total precipitation, and (C) average wind speed based on the data in Freiburg from 2007 and 2021, given per quarter. The
lines are quarterly average temperature, total precipitation, and wind speed in (A–C). The color intensity fades gradually in the order of the quarters,
from 1 to 4.

in the range from 2.0 to 2.1 m/s. Beyond this point, the
HFI decreased.

4 Discussion

A causal association between pollen and hay fever is well
known. In general, pollen season is going to get longer and more
intense with climate change (62–65), including alder, hazel, ash
(66), birch, oak and pine (67), or herbaceous plants like grasses (68,
69) and ragweed (70). However, some other published literature
showed no trends (71), or even decreasing trends (66, 72). The
magnitude of flowering-intensity trends varies depending on the
species, the geographical area, the flowering season, and climatic
trends (73). In Germany, most hay fever cases are caused by eight
different plant species. Hazel, alder, and birch from the Betulaceae
(74, 75), ash (74, 76), grasses, rye, mugwort and ragweed (77). Air
pollen concentrations of these plants are currently reported highest
during Q2 and Q3.

Temperature is well known to affect pollen seasons (77–81),
and in our study, this climate indicator was significantly associated
with the HFI. Within the typical temperature range in Q1, the
HFI rapidly increased and reached its first peak, which could be
due to the effect of early bloomers’ pollen, i.e. hazel and alder.This
finding is important for the community in Freiburg for choosing
the right therapeutic approach in patient treatment, since the
symptoms for the common cold or flu can easily be mistaken
with hay fever during this quarter. The second, more pronounced
peak in HFI observed at ambient temperatures between 8◦C and
13◦C is likely attributable to increased exposure to mid-spring
pollens, particularly from species such as ash and birch, as this
temperature range coincides with their peak pollination period,
typically occurring during the transition from the first to the second
quarter of the year. The third peak could reflect the effect of the
late flowers, i.e. grasses, rye, mugwort, and ragweed on the HFI.
As we observed a significant increase in average temperature in
Freiburg in Q3 and Q4 and its warmer-in-the-future tendency,
the pollen season could be expected to start earlier in the future
for trees that flower in late winter or early spring, such as hazel,
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FIGURE 5

Average concentration of (A) O3, (B) NO2, and (C) PM10, based on quarterly data for Freiburg from 2007 and 2021. The gaps in the graphs are due to
missing data, which however does not cover the period considered in our analysis. The color intensity fades gradually in the order of the quarters,
from 1 to 4.

alder, birch, and ash. For grasses, rye, mugwort, and ragweed, an
extension of the vegetation period is to be expected in Freiburg,
thus continuous pollen production later in the year may occur in
the future. This assumption aligns with the results by Bergmann
et al., that species advanced their pollen season more in early spring
(e.g., hazel and alder by up to 2 days per year), than in mid spring
(birch, ash) (82). A study from Poland demonstrated that grasses’
pollen seasons lengthened by 2 to nearly 4 days between 1996 and
2011, which is related to warmer summer temperatures and later
pollen season end dates (83). Zhang and Steiner predicted, that
in the future warmer end-of-century temperatures will advance
the onset of spring emissions by 10–40 days, and delay the onset
of summer/fall emissions from weeds and grasses by 5–15 days,
also extend the season length (84). Furthermore, Ziska et al.
illustrated, that ragweed plants in America grew faster, flowered
earlier, produced more pollen in cities than in rural sites, and
persisted longer until the plants die in the first frost (85). The
pollen season’s prolongation could in turn lead to an increase in

the pollen’s total amount in the air, increasing the risk for hay
fever sufferers.

Higher fall temperatures could lead to more unpredictable
and extreme weather, e.g. storms, which could also have serious
consequences for hay fever sufferers. Pollen grains can be carried
along by thunderstorms on the ground, and the less resistant inner
part of the pollen could be released into atmosphere and trigger
additional allergic reactions (86).

Based on observed temperature trends over the past 15
years, it is plausible that the timing of new hay fever cases
in Freiburg may shift from Q2 toward Q1 and Q4, potentially
due to changes in pollen dynamics. Consequently, the hay
fever season could extend into the winter months, increase
in summer, and potentially become more evenly distributed
throughout the year. However, this remains a hypothesis that
requires further investigation. Our current data do not allow
for definitive conclusions regarding future temporal shifts in
HFI. Longitudinal monitoring of both climate indicators and
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FIGURE 6

Spearman rank correlation among climate indicators based on quarterly data for Freiburg from 2013 and 2021. On the diagonal we provide,
histograms and probability density shapes of the variables at hand. The upper triangular provides the correlations. The lower triangular provides the
respective p-values of the correlations from the upper triangular.

FIGURE 7

Association between the quarterly HFI and the quarterly average temperature [◦C] in Freiburg in calendar quarter from 2013 to 2021. The black line
represents the association, the gray shaded area represents 95%CI. To note, here we revealed the curve in the “seasonal” model, curves in the
“single-factor” and the “non-seasonal” models are similar.

aeroallergen concentrations, coupled with predictive modeling,
will be essential to confirm these potential trends. Future
studies incorporating fine-scale phenological data and patient-level

exposure assessments could provide a clearer understanding of
how climate change may alter the seasonal distribution of hay
fever cases.
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FIGURE 8

Association between HFI and average wind speed [m/s] in Freiburg in calendar quarter from 2023 to 2021. The black lines represent the associations
between HFI and the average wind speed, the gray shaded area represents 95%CI. Here we also revealed the curve in the “seasonal” model, curves in
the “single-factor” and the “non-seasonal” models are similar.

The second factor showing a significant relationship with the
hay fever was the wind speed. A study by Damialis et al. indicated
that pollen atmospheric movement is a very complex phenomenon
influenced by numerous environmental parameters with wind
playing a major role (87). The positive association in our study’s
result was indirectly in line with previous studies, indicating that
higher wind speeds reduce pollen grain mass via dehydration,
enhancing atmospheric dispersal (88). In addition, pollen that has
already been settled can be pushed upwards in the atmosphere
by the action of the wind (89). Interestingly, as the wind speed
exceeded 2.0 m/s, the HFI started decreasing, indicating a negative
association between the HFI and high wind speed in this study. This
aligns with findings by Wang et al. (17). One possible explanation
for such an event is provided by Niklas (90) and Oh (91) that
the wind decreases the amount of local pollen by carrying local
pollen to other places. No significant variation of the wind speed
was observed over the last 15 years in Freiburg. Thus, the same
association between the HFI and the wind speed is anticipated in
the future.

Until now, very few studies have investigated the association
between hay fever and precipitation, and only limited number
supported the association (17). Whereas several published
literatures suggested a relationship between precipitation and
pollen in relation to the slowdown in photosynthesis (92–94), the
wash-out effect (95), the thunderstorm’s effects (96), the enhanced
growth of trees/plants after getting nitrates in rainwater and the leaf
wetting effect (93). Additionally, precipitation is also related to the
increase of fungal spore (97). Nevertheless, these are just short-lived
effects, which is difficult to capture by our quarterly data.

Our insignificant relations between the HFI and the
concentrations of PM10, NO2, O3 in Freiburg align with
several studies (27, 39, 98–100), but do not support some others.
Regarding PM10, associations have been identified between PM10

and hay fever severity (35), hay fever prevalence (101). Specially,
PM10 may act as carrier of adsorbed allergens and cause allergic
reactions (102). Regarding NO2, a significant association with
hay fever prevalence was found by Teng et al. (101). In animal
tests, negative effects of NO2 on respiratory system and severity of
allergic airway inflammation have been also demonstrated (37, 38).
Additionally, effects of NO2 on various pollen allergens have been
assumed (33, 34, 90, 93, 103, 104), which may then affect hay fever
sufferers. Interestingly, only few studies indicated that ground-level
O3 increases hay fever risk (23, 105–107). Furthermore, individual
O3 molecules can cling to pollen surfaces and enter the airway
(108). O3 is also an important stress factor for plants, which can
damage plant cells, trigger them to discharge more pollen (109),
and alter allergenicity of pollen in both negative and positive
manners (110–113). However, all these results were derived for
high concentrations of the environmental stressors, whereas
the quarterly concentrations of PM10, NO2 and O3 in Freiburg
across the study years exhibited comparably low levels. This could
account for the insignificant findings reported in our study.

Several limitations of our study have to be reported: the
hay fever data was sampled quarterly, which may not capture
short-term fluctuations in hay fever that occur due to changes
in environmental factors. When data are aggregated over a long
period, important information about short-term changes get lost.
Another shortcoming of our dataset is that hay fever data have
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TABLE 1 GAMs summaries for hay fever incidence.

Models Approximate significance of
smooth terms

edf Ref. df F p-value

Seasonal s (Wind) 3.653 4.289 15.88 2.27e-06

s (Temperature) 8.866 10.000 12.89 <2e-16

s (Precipitation) 1.000 1.000 2.596 0.123

s (PM10) 1.000 1.000 0.016 0.902

s (NO2) 0.00019 8.000 0.000 0.401

s (O3) 2.375 8.000 0.808 0.0435

ti (Wind, PM10) 1.554 1.877 0.543 0.496

ti (Wind, O3) 5.985 7.426 2.316 0.052

ti (Wind, NO2) 1.000 1.000 1.376 0.250

ti (Precipitation, PM10) 2.360 3.288 0.633 0.594

ti (Precipitation, O3) 2.138 2.570 2.824 0.100

ti (Precipitation, NO2) 1.000 1.000 3.106 0.092

ti (NO2 , O3) 2.059 2.418 1.172 0.254

ti (Temperature, Wind) 2.900 3.514 2.253 0.086

Seasonality Different between the models

Non seasonal s (Wind) 3.771 4.62 11.564 2.03e-05

s (Temperature) 8.437 10.00 27.078 <2e-16

s (Precipitation) 1.8569823 2.266 0.861 0.553

s (PM10) 1.959 2.388 1.489 0.231

s (NO2) 0.0001793 8.000 0.000 0.382

s (O3) 3.4584655 8.000 7.698 1.07e-06

Singel factor s (Wind) 3.362 4.165 4.291 0.006

s (Precipitation) 1.000 1.000 0.001 0.971

s (PM10) 3.455 4.268 1.249 0.292

s (Temperature) 4.135 8.000 3.199 0.0004

s (NO2) 2.638e-05 8.000 0.000 0.829

s (O3) 1.403 8.000 0.33 0.141

Seasonality Different between the models

Statistically significant p-values are shown in bold.

been reported as incidences, which only reflect the number of
new cases developed within the investigated time, but does not
provide information about the severity or duration of symptoms
experienced by new diagnosed and already affected patients.
Moreover, a longer time series of data may lead to better statistical
results in what regards the accuracy and precision of the effects
measured. The coronavirus pandemic in 2020 to 2022 had given
rise to social distancing and self-isolation. This might have led to a
decline in the number of doctor visits and fewer diagnosed cases in
consequence. It may also have resulted in fewer opportunities for
children and adolescents to be infected with respiratory and other
communicable diseases. This, in turn, may also have affected the
numbers of HFI during this time period. The German Statutory
Health Insurance is a group of public health insurance, which
covers most of the working classes. Data from privately insured
people, who potentially have higher living standards, were not

covered. This group also needs to be investigated in the future.
The stationary data may not fully capture the variations of the
climate indicators due to personal microclimate and mobility,
which is difficult to measure so far. Future studies should aim at
more individualized information regarding the microclimate and
mobility. Finally, the absence of pollen concentration data is a
significant limitation in our study, as pollen is typically the primary
trigger for hay fever, with climate factors as proxies. Future research
investigating associations with hay fever should also include the
pollen’s contribution in the analysis.

5 Conclusion

Our findings could not support the associations between the
HFI and the precipitation as well as the concentrations of PM10,
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NO2, and O3 in Freiburg. However, the results for the temperature
and the wind speed in relation to the HFI were highlighted.
Here, the HFI was highest when the temperature was between 4–
6◦C and 10–17◦C, and the wind speed was between 2.0 and 2.1
m/s. Thus, awareness of local environmental conditions may assist
healthcare providers in recognizing patterns of allergen exposure
that coincide with peaks in hay fever symptoms. While direct
monitoring of meteorological data is not expected in routine
clinical practice, integrating local environmental health advisories
and pollen forecasts into clinical awareness could improve
diagnostic accuracy. Such an approach may facilitate earlier
initiation of targeted therapies for allergic rhinitis, potentially
improving patient outcomes.
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