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Background: Sarcopenia is a condition that adversely affects individuals’ quality 
of life and physical health. Exposure to heavy metals poses a significant risk 
to human health; however, the impact of heavy metal exposure on sarcopenia 
remains unclear. Therefore, this study expects to construct a risk prediction 
machine model of heavy metal exposure on sarcopenia and to interpret and 
analyze it.

Methods: Model construction was based on data from the NHANES database, 
covering the years 2011 to 2018. The predictor variables included BA, CD, CO, 
CS, MN, MO, PB, SB, SN, TL, and W. Additionally, demographic characteristics 
and health factors were included in the study as confounders. After identifying 
the core variables, optimal machine learning models were constructed, and 
SHAP analyses were performed.

Results: We found that the LGBM model exhibited the best predictive 
performance. SHAP analysis revealed that TL, SN, and CS negatively influenced 
the prediction of sarcopenia, while CD positively contributed to it. Additionally, 
le8 BMI was the covariate that had the most significant positive impact on the 
prediction of sarcopenia in our model.

Conclusion: For the first time, we have developed a machine learning (ML) model 
to predict sarcopenia based on indicators of heavy metal exposure. This model 
has accurately identified a series of key factors that are strongly associated with 
sarcopenia induced by heavy metal exposure. We can now identify individuals at 
an early stage who are suffering from sarcopenia due to heavy metal exposure, 
thereby reducing the physical and economic burden on public health.
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1 Introduction

Sarcopenia is a concept introduced in 1988, which refers to the presence of low muscle 
mass with low muscle function. In the context of the increasingly severe aging population, 
sarcopenia, an age-related geriatric syndrome, is progressively emerging as a condition that 
adversely affects the life, health, and quality of life of older adults. Some studies indicate that 
the prevalence of sarcopenia ranges from 8 to 36% in individuals under 60 years of age and 
from 10 to 27% in those over 60 years of age (1). While sarcopenia itself poses risks of mobility 
problems, falls and even bone fractures (2), some researchers in recent years have also found 
a strong link with liver disease (3), cardiovascular disease (4) and even cancer (5). This 
indicates that, in addition to the health risks directly associated with sarcopenia, there is a 
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substantial likelihood that it can contribute to an increased risk of 
other diseases, as well as a combination of conditions that may 
exacerbate overall health threats. Furthermore, sarcopenia can lead to 
heightened healthcare costs, with patients incurring significantly 
higher expenses for hospitalization, in-home care, and other related 
services (6). Therefore, in light of these numerous risks, the European 
Working Group on Sarcopenia in Older People 2 (EWGSOP2) urges 
professionals to take proactive measures and commit to the early 
detection and treatment of sarcopenia. This approach aims to mitigate 
the financial burden and physical harm associated with the advanced 
stages of the condition (7).

In addition to primary sarcopenia, which is associated with aging, 
secondary sarcopenia, resulting from other diseases, has also emerged 
as a significant risk factor (8). More specifically, sarcopenia has been 
identified as resulting from a complex interplay of interdependent 
pathophysiological mechanisms, including aging, physical inactivity, 
neuromuscular injury, postprandial anabolic resistance, insulin 
resistance, lipotoxicity, endocrine factors, oxidative stress, 
mitochondrial dysfunction, and inflammation (9). It is common for 
patients with neurological critical illnesses to experience reduced 
muscle mass, decreased strength, and neurological impairment. Both 
muscle atrophy and muscle weakness can lead to a decline in physical 
function (10). It has been found that oxidative stress, resulting from an 
imbalance between the production of reactive oxygen species and 
antioxidant defenses, contributes to the development of sarcopenia 
(11). There is a significant relationship between inflammation and 
oxidative stress, where inflammation can result from oxidative stress-
induced redox imbalance and the sustained upregulation of 
pro-inflammatory mediators (12). The rapid loss of muscle mass and 
strength is primarily attributed to excessive protein catabolism (13). 
Inflammatory cytokines activate numerous molecular pathways 
involved in skeletal muscle atrophy during inflammation, resulting in 
an imbalance between protein synthesis and catabolism, which 
subsequently affects sarcopenia (14). Additionally, the effects of 
environmental pollution on health are closely linked to age. Age is a 
significant factor influencing serum chemical levels, and the 
accumulation of chemicals in human serum tends to increase with 
advancing age (15). Of particular concern is the risk of heavy metal 
exposure. Such exposure can jeopardize biological functions and 
growth, potentially leading to the development of various serious 
diseases when metals accumulate in one or more organs (16). Due to 
the significant negative effects of heavy metal exposure on human 
health, there has been an increase in contemporary studies aimed at 
identifying the specific detrimental impacts of heavy metals on the 
human body, as well as potential countermeasures. Existing research 
indicates that health issues associated with heavy metal exposure may 
include cardiovascular disease, neurological damage, kidney 
impairment, and an elevated risk of cancer and diabetes. The prevailing 
theory regarding the mechanism of heavy metal toxicity in humans, 
resulting from excessive intake, suggests that it involves the production 
of reactive oxygen species, which lead to oxidative damage and various 
health-related adverse effects (17). Mercury, lead, chromium, cadmium, 
and arsenic are the most common heavy metals that cause toxicity in 
humans. They lead to the production of reactive oxygen species (ROS), 
weaken antioxidant defenses, inactivate enzymes, and contribute to 
oxidative stress (18). Among the primary effects of mercury-induced 
toxicity are the inhibition of antioxidant defenses, alterations in the 
oxidant-antioxidant balance, and an increase in reactive oxygen species 

(ROS). These effects are associated with methylmercury, a neurotoxic 
compound that leads to lipid peroxidation, mitochondrial damage, 
microtubule disruption, and the accumulation of neurotoxic molecules 
(19). Manganese accumulation primarily occurs in the basal ganglia 
and can lead to manganese toxicity syndrome, which presents 
symptoms of cognitive dysfunction and motor impairment similar to 
those seen in Parkinson’s disease (PD) (20).

From this, we  identified a complex relationship between the 
numerous negative effects of heavy metal exposure and the mechanisms 
underlying sarcopenia. These mechanisms are associated with protein 
synthesis, mitochondrial damage, oxidative stress, biometabolism, 
neuronal damage, and various chronic diseases. However, despite the 
numerous potential molecular and pathological connections between 
heavy metal exposure and sarcopenia, there remains a significant gap in 
direct research examining the relationship between these two factors. 
While the existing literature primarily addresses the independent toxic 
effects of heavy metals or focuses on a singular cause of sarcopenia, there 
is a notable scarcity of systematic studies investigating the interactions 
between them. This is particularly true regarding large epidemiological 
samples and comprehensive molecular mechanistic analyses. This gap 
restricts our understanding of the specific role that heavy metal exposure 
plays in the development of sarcopenia and impedes the formulation of 
targeted prevention or intervention strategies.

Currently, studies of relatively complex linear or non-linear 
relationships have shown that multiple variables play a role, making it 
difficult for traditional statistical methods to capture the correlations 
and clarify the relationships. In this regard, we  have found that 
machine learning is able to capture such complex correlation patterns 
and identify potential relationships between different elements through 
its powerful feature selection and non-linear modeling capabilities. The 
process of machine learning (ML) involves learning from data and 
typically employs concepts from optimization theory and numerical 
analysis to tackle specific problems. By focusing on the mathematical 
structures involved, we can achieve varying levels of adaptability for 
post hoc visualization and interpretation, while also balancing trade-
offs between computational complexity, data volume, and performance 
(21). The use of ML is more mature in medical applications, including 
drug discovery and development (22), structural health monitoring 
(23), and medical imaging (24). In terms of disease prediction, 
one-class logistic regression (OCLR) models have been used to find 
correlations between tumor stem cells and immune checkpoint 
expression and infiltrating immune cells (25). SHapley Additive 
exPlanations (SHAP) is a widely used method for interpreting machine 
learning models, providing detailed insights into model predictions by 
illustrating the contribution of each feature to the overall output. In this 
study, SHAP effectively identifies heavy metal-related features that are 
significantly associated with the risk of sarcopenia, while eliminating 
variables that contribute weakly or interfere with the model. This 
approach results in a streamlined and efficient model, enhancing the 
accuracy and speed of subsequent predictions, mitigating issues such 
as overfitting, and improving the model’s generalization capabilities.

Therefore, we sought to explore the relationship between heavy 
metal exposure and sarcopenia by examining various factors associated 
with heavy metal exposure. Utilizing data from the NHANES database, 
we  constructed an accurate prediction model for sarcopenia by 
incorporating information related to heavy metal exposure, demographic 
characteristics, and health factors. This model employed multiple ML 
algorithms and SHAP interpretable machine learning techniques to 
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identify which heavy metal exposures significantly contribute to the risk 
of sarcopenia. By highlighting the detrimental effects of heavy metal 
exposure, we present new opportunities for early screening and risk 
prediction of sarcopenia. This proactive approach aims to mitigate the 
potential health risks associated with the interplay between heavy metal 
exposure and sarcopenia through timely disease onset screening.

2 Methodology

2.1 Study population

The National Health and Nutrition Examination Survey (NHANES) 
is a program conducted by the National Center for Health Statistics 
(NCHS), a division of the Centers for Disease Control and Prevention 
(CDC) in the United States. Its primary objectives are to assess the 
health and nutritional status of both adults and children, determine the 
prevalence of major diseases and associated risk factors, and provide 
data to support the development of nutrition and health policies. The 

survey received approval from the Research Ethics Review Board of the 
NCHS, and informed consent was obtained from all participants.1 Given 
the ethical compliance and public accessibility of the database, this study 
will utilize data from the NHANES database covering the years 2011 to 
2018. For the data screening process (see Figure 1), samples with missing 
indicators related to sarcopenia (including skeletal muscle measurements 
of the limbs and height), unmeasured indicators associated with heavy 
metal exposure, and missing values for the remaining covariates 
exceeding 30% were excluded. Multiple imputation was employed to 
address the missing data. Ultimately, 3,741 adults (aged ≥ 18 years) with 
measured levels of nine urinary heavy metals were included in the study.

1 https://www.cdc.gov/nchs/nhanes/about/erb.html

FIGURE 1

Flowchart of the study design.
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2.2 Assessment of sarcopenia

The appendicular skeletal muscle mass index (ASMI) is a crucial 
metric for assessing sarcopenia. It is measured using dual-energy 
X-ray absorptiometry (DXA) and is calculated by incorporating 
factors such as gender, height, and weight. The index is determined by 
dividing skeletal muscle mass by the square of height (in meters) (4). 
It is generally accepted that men with an Appendicular Skeletal Muscle 
Index (ASMI) of less than 7.0 kg/m2 and women with an ASMI of less 
than 5.4 kg/m2 exhibit sarcopenia or may be at risk for developing 
sarcopenia. For the sake of model stability and sample size 
considerations, categorizing sarcopenia and potential sarcopenia as 
two distinct variables when analyzing sarcopenia data will significantly 
increase the complexity of model evaluation and introduce additional 
uncertainty. The following aspects may present challenges: (i) Sample 
Sparsity Problem: The sample size of each subgroup after segmentation 
may fall below the robust training threshold for machine learning 
models (e.g., Random Forest/XGBoost). According to the theory of 
sparse data proposed (26), models are prone to overfitting when the 
sample size of certain classes is less than 5–10 times the number of 
features. (ii) SHAP Interpretive Distortion: In cases of unbalanced 
sample distribution (e.g., n < 50 in the confirmed diagnosis group), 
the game theory-based calculation of SHAP values may exhibit a 
widening of the confidence interval (27). Consequently, the ranking 
of feature importance may be  significantly altered due to sample 
perturbation. (iii) Multiple Hypothesis Testing Problem: The 
introduction of new classification dimensions can compound the 
variance of model assessment metrics (e.g., AUROC, sensitivity), 
necessitating data calibration. This, in turn, may lead to a further 
reduction in statistical efficacy. To address this issue, this paper 
categorizes both sarcopenia and phenomena that may exhibit 
sarcopenia symptoms under a single category of sarcopenia. This 
approach eliminates the previous distinction between the two, 
ensuring an adequate sample size and enhancing the robustness of the 
model while minimizing bias and errors that may arise from improper 
sample segmentation.

2.3 Assessment of heavy metal exposure

Inductively coupled plasma mass spectrometry (ICP-MS) is a 
multi-elemental analytical technique employed to measure various 
elements in urine, including barium (BA), cadmium (CD), cobalt 
(CO), cesium (CS), manganese (MN), molybdenum (MO), lead (PB), 
antimony (SB), tin (SN), thallium (TL), and tungsten (W). Samples 
were collected using standards from the NHANES database, and 
creatinine levels were analyzed using the Jaffé reaction, in which 
creatinine reacts with picric acid in an alkaline solution to form a red 
creatinine-picric acid complex. The ICP-MS was calibrated using a 
certified standard, and quality control (QC) procedures included the 
use of internal standards and duplicate analyses to ensure analytical 
accuracy and precision. Values below the limit of detection (LOD) 
were replaced with the square root of the LOD divided by 2. All metal 
concentrations were adjusted for urinary creatinine (μg/g). For 
detailed information on urine sampling, storage, measurement, and 
quality control (QC) procedures for metals, please refer to the 
NHANES website. Although the concentration of heavy metals in 
urine primarily indicates recent exposure, it may also indirectly reflect 

changes in an individual’s short-term health status. In this study, 
we presented the urinary levels of 11 heavy metal substances: BA, CD, 
CO, CS, MN, MO, PB, SB, SN, TL, and W, and processed the data 
in quartiles.

2.4 Covariates

In this study, the baseline regression model incorporated 
demographic characteristics and health factors as covariates.

2.4.1 Demographic characteristics
Four indicators of demographic characteristics—namely age, sex 

(male/female), ethnicity, and education—were utilized as covariates. 
Age was analyzed as a continuous variable using actual values, while 
the other three indicators were coded as categorical variables for 
numerical analysis. For the gender variable, males were assigned a 
value of 1, and females were assigned a value of 2. Ethnicity was 
categorized with values ranging from 1 to 5 for Mexican American, 
Other Hispanic, Non-Hispanic White, Non-Hispanic Black, and 
Other Race (including multiracial). Educational attainment was 
classified on a scale from 1 to 5, corresponding to the following 
categories: Less than 9th grade, 9th-11th grade (including 12th grade 
without a diploma), High school graduate/GED or equivalent, some 
college or AA degree, and College graduate or above.

2.4.2 Health factors
Health factors were specifically evaluated in terms of Life’s 

Essential 8 (Le8) score and the prevalence of chronic diseases. The Le8 
is the most recent measure of cardiovascular health (CVH) developed 
by the American Heart Association (28). This score is divided into an 
overall score and individual component scores. The individual score 
indicators consist of four health behaviors (diet, physical activity, 
tobacco exposure, and sleep) and four health factors (Body Mass 
Index (BMI), non-high-density lipoprotein cholesterol (Non-HDL-C) 
levels, blood glucose, and blood pressure) (29). Based on these scores, 
a 0–3 coding system was applied at three levels: 0–49 (low level), 
50–79 (moderate level), and 80–100 (high level) (30).

Chronic disease conditions were coded based on the presence or 
absence of 14 specific chronic diseases. These diseases included 
Hypertension, diabetes, asthma, overweight, arthritis, heart failure, 
coronary heart disease, angina pectoris, heart attack, stroke, 
emphysema, chronic bronchitis, liver condition, and cancer. A value 
of 0 is assigned to indicate the absence of disease, a value of 1 is 
assigned to indicate the presence of any one of the aforementioned 
diseases, and a value of 2 is assigned to indicate comorbidities (i.e., the 
presence of two or more diseases).

2.5 Statistical analyses

2.5.1 Baseline regression analysis and logistic 
regression analysis

In the baseline analysis, continuous variables among the covariates 
were characterized using medians and interquartile ranges (Q1 and 
Q3), while categorical variables were presented as the number of cases 
(denoted as N) along with their corresponding percentages (%). The 
Wilcoxon rank-sum test and the Pearson chi-square test were 
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employed to compare the differences between the two groups, those 
with and without oligomyelitis. Subsequently, a logistic regression 
model was introduced to explore the association between heavy metal 
exposure and sarcopenia in greater depth, utilizing the odds ratio 
(OR) and its range within the 95% confidence interval (95% CI). 
Additionally, adjusted models were constructed by incorporating 
various categories of covariates. In this context, Model 1 served as the 
initial model without any adjustments. Considering that the potential 
confounders addressed in this study encompass two key dimensions—
demographic characteristics and health factors—adjustment was 
implemented in Model 2, which focused on covariates related to 
demographic characteristics. Furthermore, Model 3 builds upon 
Model 2 by incorporating adjustments for health factors.

2.5.2 Model development
The dataset comprises a training set of 70% (n = 1,220) and a test 

set of 30% (n = 523). The training set is designed to utilize 70% of the 
data samples to identify latent patterns and intrinsic correlations 
among the samples, while continuously optimizing the model 
parameters through iterative methods to validate the model and 
mitigate the risk of overfitting. The remaining 30% of the data samples 
are allocated to the test set, which is essential for effectively assessing 
the model’s generalization capability. Given the complexity of multiple 
factors influenced by the machine learning (ML) algorithm, the 
performance of the ML algorithm may exhibit varying degrees of 
fluctuations and challenges. Consequently, this study employs a 
combination of Boruta regression and Lasso regression to identify the 
truly significant features from the provided feature set. Boruta 
algorithm is a feature selection method based on the Random Forest 
technique. It primarily filters the feature set by assessing the correlation 
with the dependent variable through the average reduction in 
precision values. Additionally, it effectively identifies important 
variables through multiple dynamic iterations (31). It possesses a 
robust feature selection capability and can identify the features that 
are truly valuable for model prediction. The Lasso algorithm is an 
extension of linear regression that reduces model complexity, 
enhances the model’s generalization ability, and aids in identifying 
important predictor variables by incorporating L1 regularization. It 
effectively maintains strong feature selection performance even when 
confronted with datasets containing a large number of features. The 
combination of the two algorithms effectively explores the key features 
hidden within the data while efficiently eliminating irrelevant or 
redundant information. It accurately identifies the truly critical 
influential features from a large set of voluminous data. Based on the 
specific screened samples of sarcopenia and non-sarcopenia data, 
we found that the number of non-sarcopenia samples was 1,508, while 
the number of sarcopenia samples was 235, resulting in an imbalance 
ratio of 6.417. Due to the imbalance between the samples of sarcopenia 
and non-sarcopenia data after screening, the study employs a 
combination of Synthetic Minority Over-sampling Technique 
(SMOTE) and under-sampling techniques to process the data. This 
approach ensures a balanced representation of sarcopenia and 
non-sarcopenia data during model construction. Consequently, the 
data were balanced between the sarcopenia and non-sarcopenia 
groups in the model development.

On this basis, six models were employed to model the core 
variables and assess the risk prediction ability of heavy metal exposure 
on sarcopenia. The models included Categorical Boosting (CatBoost), 

Gradient Boosting Decision Tree (Decision Tree, GBDT), Logistic 
Regression, Random Forest (RF), and Light Gradient Boosting 
Machine (LGBM). The evaluation metrics used to assess the 
performance of these models included Area Under the Receiver 
Operating Characteristic Curve (AUROC), accuracy, balanced 
accuracy, F1 score, and Matthews Correlation Coefficient (MCC). The 
initial six machine learning models were evaluated collectively, and 
the optimal model was selected based on these metrics. The values of 
AUROC, Accuracy, Balanced Accuracy, and F1 Score range from 0 to 
1 (0 to 100%), while the value of the Matthews Correlation Coefficient 
(MCC) ranges from −1 to 1. The closer the values of all evaluation 
metrics are to 1, the better the model’s performance. After selecting 
the optimal model, the SHAP algorithm was employed for 
interpretability and importance analysis. This method quantifies the 
contribution of each feature to the model’s output by calculating the 
Shapley value for each feature. Additionally, the contributions of 
different feature values to the model output are visually represented 
by visualizing the SHAP values. After constructing the model, the 
model-building and evaluation process is repeated using the K-fold 
cross-validation method. In this approach, each of the K sections is 
used as a test set in turn, and the average performance is then 
calculated (32).

All statistical analyses in this study were performed in R software 
4.4.1 and Python 3.11 environments. Similarly, a two-tailed test was 
performed and a p-value < 0.05 was considered statistically significant.

3 Results

3.1 Baseline characteristics and logistic 
regression

A total of 235 individuals with sarcopenia were selected for the 
baseline analysis and compared with 1,508 individuals without 
sarcopenia. The baseline characteristics are presented in Table  1. 
Among the 1,743 participants in this study (mean age: 37.00 years), 
295 (16.92%) identified as Mexican-American, 189 (10.84%) as other 
Hispanic, 586 (33.62%) as non-Hispanic White, 353 (20.25%) as 
non-Hispanic Black, and 320 (18.36%) as Other Race or Multiracial. 
There was a significant difference in racial distribution between the 
two groups (p < 0.001). Starting with the health factor covariates, 
we observed significant differences between the two samples regarding 
chronic diseases, including hypertension, diabetes, overweight, heart 
disease, emphysema, and sarcopenia (p < 0.05). Notably, hypertension 
and overweight were significantly more prevalent (p < 0.001). 
Additionally, the two groups exhibited significant differences in le8, 
le8 pa, le8 BMI, le8 non hdl, le8 glucose, and le8 bp 6 indicators were 
significantly different (p < 0.05), and le8, le8 BMI, le8 non hdl, and le8 
glucose demonstrated even greater significance (p < 0.001). Among 
the indicators related to heavy metal exposure, we  found that the 
differences were not statistically significant only for MN and PB 
(p > 0.05). In contrast, the other heavy metal exposures showed 
significant differences (p < 0.05), with notably higher differences 
between the two groups observed for CS, SB, SN, and TL (p < 0.001).

The results of the logistic regression analysis indicated a 
correlation between heavy metal exposure and sarcopenia. As 
shown in Figure 2, CD, PB, SN, and TL were significantly associated 
with the risk of sarcopenia. The logistic regression analysis results 
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TABLE 1 Comparison of baseline characteristics between sarcopenia and non-sarcopenia groups.

Variable Non-sarcopenia Sarcopenia p-value

N = 1,508 N = 235

Age (years), Median (IQR) 37.20 (12.60) 35.72 (13.58) 0.117

Sex, N (%) 0.939

  Male 766.00 (50.80) 120.00 (51.06)

  Female 742.00 (49.20) 115.00 (48.94)

Race, N (%) <0.001

  Mexican American 266.00 (17.64) 29.00 (12.34)

  Other Hispanics 171.00 (11.34) 18.00 (7.66)

  Non-Hispanic white 505.00 (33.49) 81.00 (34.47)

  Non-Hispanic blacks 340.00 (22.55) 13.00 (5.53)

  Other (including multiracial) 226.00 (14.99) 94.00 (40.00)

Educational level, N (%) 0.196

  Below 9th grade 82.00 (5.44) 12.00 (5.11)

  Grades 9–11 (including those without a grade 12 diploma) 195.00 (12.93) 40.00 (17.02)

  High school graduation or equivalent 382.00 (25.33) 49.00 (20.85)

  Some college or AA degree 452.00 (29.97) 63.00 (26.81)

  Bachelor’s degree or higher 397.00 (26.33) 71.00 (30.21)

Hypertension, N (%) <0.001

  No 1,154.00 (76.53) 204.00 (86.81)

  Yes 354.00 (23.47) 31.00 (13.19)

Diabetes, N (%) 0.004

  No 1,393.00 (92.37) 229.00 (97.45)

  Yes 115.00 (7.63) 6.00 (2.55)

Asthma, N (%) 0.077

  No 1,260.00 (83.55) 207.00 (88.09)

  Yes 248.00 (16.45) 28.00 (11.91)

Overweight, N (%) <0.001

  No 937.00 (62.14) 226.00 (96.17)

  Yes 571.00 (37.86) 9.00 (3.83)

Arthritis, N (%) 0.326

  No 1,327.00 (88.00) 212.00 (90.21)

  Yes 181.00 (12.00) 23.00 (9.79)

Heart Failure, N (%) 0.613

  No 1,494.00 (99.07) 232.00 (98.72)

  Yes 14.00 (0.93) 3.00 (1.28)

Coronary heart disease, N (%) 0.163

  No 1,492.00 (98.94) 230.00 (97.87)

  Yes 16.00 (1.06) 5.00 (2.13)

Angina pectoris, N (%) 0.275

  No 1,494.00 (99.07) 231.00 (98.30)

  Yes 14.00 (0.93) 4.00 (1.70)

Heart attack, N (%) 0.003

  No 1,496.00 (99.20) 228.00 (97.02)

  Yes 12.00 (0.80) 7.00 (2.98)

Stroke, N (%) 0.775

(Continued)
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TABLE 1 (Continued)

Variable Non-sarcopenia Sarcopenia p-value

N = 1,508 N = 235

  No 1,486.00 (98.54) 231.00 (98.30)

  Yes 22.00 (1.46) 4.00 (1.70)

Emphysema, N (%) 0.043

  No 1,500.00 (99.47) 231.00 (98.30)

  Yes 8.00 (0.53) 4.00 (1.70)

Chronic Bronchitis, N (%) 0.389

  No 1,449.00 (96.09) 223.00 (94.89)

  Yes 59.00 (3.91) 12.00 (5.11)

Liver Condition, N (%) 0.570

  No 1,459.00 (96.75) 229.00 (97.45)

  Yes 49.00 (3.25) 6.00 (2.55)

Cancer, N (%) 0.858

  No 1,460.00 (96.82) 227.00 (96.60)

  Yes 48.00 (3.18) 8.00 (3.40)

le8, N (%) <0.001

  49 ≥ x ≥ 0 118.00 (7.82) 7.00 (2.98)

  79 ≥ x ≥ 50 827.00 (54.84) 104.00 (44.26)

  100 ≥ x ≥ 80 563.00 (37.33) 124.00 (52.77)

le8 hei, N (%) 0.974

  49 ≥ x ≥ 0 820.00 (54.38) 129.00 (54.89)

  79 ≥ x ≥ 50 428.00 (28.38) 65.00 (27.66)

  100 ≥ x ≥ 80 260.00 (17.24) 41.00 (17.45)

le8 pa, N (%) 0.009

  49 ≥ x ≥ 0 367.00 (24.34) 79.00 (33.62)

  79 ≥ x ≥ 50 52.00 (3.45) 6.00 (2.55)

  100 ≥ x ≥ 80 1,089.00 (72.21) 150.00 (63.83)

le8 smoke, N (%) 0.506

  49 ≥ x ≥ 0 263.00 (17.44) 43.00 (18.30)

  79 ≥ x ≥ 50 54.00 (3.58) 5.00 (2.13)

  100 ≥ x ≥ 80 1,191.00 (78.98) 187.00 (79.57)

le8 sleep, N (%) 0.713

  49 ≥ x ≥ 0 267.00 (17.71) 44.00 (18.72)

  79 ≥ x ≥ 50 330.00 (21.88) 46.00 (19.57)

  100 ≥ x ≥ 80 911.00 (60.41) 145.00 (61.70)

le8 BMI, N (%) <0.001

  49 ≥ x ≥ 0 479.00 (31.76) 1.00 (0.43)

  79 ≥ x ≥ 50 470.00 (31.17) 27.00 (11.49)

  100 ≥ x ≥ 80 559.00 (37.07) 207.00 (88.09)

le8 non hdl, N (%) <0.001

  49 ≥ x ≥ 0 501.00 (33.22) 54.00 (22.98)

  79 ≥ x ≥ 50 362.00 (24.01) 50.00 (21.28)

  100 ≥ x ≥ 80 645.00 (42.77) 131.00 (55.74)

le8 glucose, N (%) <0.001

  49 ≥ x ≥ 0 103.00 (6.83) 4.00 (1.70)
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TABLE 1 (Continued)

Variable Non-sarcopenia Sarcopenia p-value

N = 1,508 N = 235

  79 ≥ x ≥ 50 171.00 (11.34) 12.00 (5.11)

  100 ≥ x ≥ 80 1,234.00 (81.83) 219.00 (93.19)

le8 bp, N (%) 0.022

  49 ≥ x ≥ 0 164.00 (10.88) 14.00 (5.96)

  79 ≥ x ≥ 50 387.00 (25.66) 53.00 (22.55)

  100 ≥ x ≥ 80 957.00 (63.46) 168.00 (71.49)

BA, Median (IQR) 0.004

  Q1 359.00 (23.81) 81.00 (34.47)

  Q2 381.00 (25.27) 54.00 (22.98)

  Q3 379.00 (25.13) 54.00 (22.98)

  Q4 389.00 (25.80) 46.00 (19.57)

CD, Median (IQR) 0.026

  Q1 376.00 (24.93) 62.00 (26.38)

  Q2 377.00 (25.00) 68.00 (28.94)

  Q3 386.00 (25.60) 39.00 (16.60)

  Q4 369.00 (24.47) 66.00 (28.09)

CO, Median (IQR) 0.011

  Q1 362.00 (24.01) 75.00 (31.91)

  Q2 378.00 (25.07) 66.00 (28.09)

  Q3 390.00 (25.86) 44.00 (18.72)

  Q4 378.00 (25.07) 50.00 (21.28)

CS, Median (IQR) <0.001

  Q1 354.00 (23.47) 87.00 (37.02)

  Q2 369.00 (24.47) 68.00 (28.94)

  Q3 387.00 (25.66) 43.00 (18.30)

  Q4 398.00 (26.39) 37.00 (15.74)

MN, Median (IQR) 0.414

  Q1 141.00 (9.35) 19.00 (8.09)

  Q2 800.00 (53.05) 138.00 (58.72)

  Q3 209.00 (13.86) 31.00 (13.19)

  Q4 358.00 (23.74) 47.00 (20.00)

MO, Median (IQR) 0.002

  Q1 359.00 (23.81) 79.00 (33.62)

  Q2 373.00 (24.73) 61.00 (25.96)

  Q3 382.00 (25.33) 54.00 (22.98)

  Q4 394.00 (26.13) 41.00 (17.45)

PB, Median (IQR) 0.080

  Q1 377.00 (25.00) 73.00 (31.06)

  Q2 377.00 (25.00) 55.00 (23.40)

  Q3 369.00 (24.47) 62.00 (26.38)

  Q4 385.00 (25.53) 45.00 (19.15)

SB, Median (IQR) <0.001

  Q1 562.00 (37.27) 123.00 (52.34)

  Q2 301.00 (19.96) 37.00 (15.74)
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(see Table 2) revealed that, in Model 1, which did not adjust for 
covariates, the risk of sarcopenia was significantly higher for CD 
(Q3: OR = 1.953, 95% CI = 1.208–3.172, p = 0.006), PB (Q2: 
OR = 1.649, 95% CI = 1.018–2.678, p = 0.042), SN (Q2: OR = 0.616, 
95% CI = 0.395–0.953, p = 0.031; Q3: OR = 0.401, 95% CI = 0.243–
0.651, p = 0.000), and TL (Q2: OR = 0.480, 95% CI = 0.280–0.817, 
p = 0.007; Q3: OR = 0.445, 95% CI = 0.241–0.811, p = 0.009). 
Among the substances studied, CD exposure must reach a 
concentration level of Q3 to exhibit toxic effects. The CD muscle 
toxin may disrupt calcium metabolism or mitochondrial function; 
however, it requires a Q3 concentration to surpass the physiological 
compensatory mechanisms. The results for PB were significant in 
Q2 but not in Q3 or Q4, which may have been influenced by 

confounding factors, or the accuracy of the assay may have 
diminished at higher concentrations of PB. This necessitates further 
adjustments to analyze the covariates. Both SN and TL demonstrated 
a reduced risk (OR < 1) in Q2 and Q3, with the magnitude of the 
effect increasing with exposure. In Q3, both substances continued 
to show a reduced risk (OR < 1), and effect sizes also increased 
with exposure.

In Model 2, which adjusted for demographic characteristics, the 
associations remained significant: CD (Q3: OR = 2.396, 95% 
CI = 1.333–4.339, p = 0.004), PB (Q2: OR = 1.815, 95% CI = 1.083–
3.053, p = 0.024), SN (Q3: OR = 0.519, 95% CI = 0.309–0.858, 
p = 0.012), and TL (Q2: OR = 0.437, 95% CI = 0.248–0.765, p = 0.004; 
Q3: OR = 0.335, 95% CI = 0.175–0.630, p = 0.001). Additionally, BA 

FIGURE 2

Forest plot of logistic regression results showing odds ratios for sarcopenia across quartiles of metal exposure.

TABLE 1 (Continued)

Variable Non-sarcopenia Sarcopenia p-value

N = 1,508 N = 235

  Q3 288.00 (19.10) 32.00 (13.62)

  Q4 357.00 (23.67) 43.00 (18.30)

SN, Median (IQR) <0.001

  Q1 348.00 (23.08) 88.00 (37.45)

  Q2 383.00 (25.40) 61.00 (25.96)

  Q3 380.00 (25.20) 51.00 (21.70)

  Q4 397.00 (26.33) 35.00 (14.89)

TL, Median (IQR) <0.001

  Q1 385.00 (25.53) 99.00 (42.13)

  Q2 353.00 (23.41) 61.00 (25.96)

  Q3 401.00 (26.59) 41.00 (17.45)

  Q4 369.00 (24.47) 34.00 (14.47)

W, Median (IQR) 0.026

  Q1 437.00 (28.98) 91.00 (38.72)

  Q2 361.00 (23.94) 49.00 (20.85)

  Q3 355.00 (23.54) 49.00 (20.85)

  Q4 355.00 (23.54) 46.00 (19.57)

Median (IQR) or Frequency (%). Bold values indicate statistically significant differences between groups (p < 0.05).
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TABLE 2 Correlation analysis between heavy metal exposure and sarcopenia.

Variable name Model 1 Model 2 Model 3

OR (95%CI) p-value OR (95% CI) p-value OR (95% CI) p-value

BA

Q2 0.768 (0.507–1.158) 0.210 0.593 (0.382–0.915) 0.019 0.603 (0.366–0.986) 0.045

Q3 0.852 (0.545–1.325) 0.479 0.636 (0.394–1.019) 0.061 0.651 (0.376–1.120) 0.123

Q4 0.808 (0.486–1.337) 0.409 0.538 (0.311–0.924) 0.025 0.593 (0.317–1.101) 0.099

CD

Q2 1.452 (0.965–2.191) 0.074 1.512 (0.972–2.358) 0.067 1.488 (0.915–2.428) 0.110

Q3 0.917 (0.563–1.484) 0.726 1.025 (0.595–1.760) 0.927 0.971 (0.536–1.753) 0.922

Q4 1.953 (1.208–3.172) 0.006 2.396 (1.333–4.339) 0.004 1.838 (0.938–3.622) 0.077

CO

Q2 1.456 (0.938–2.264) 0.094 1.550 (0.976–2.467) 0.064 1.823 (1.078–3.098) 0.026

Q3 1.238 (0.721–2.121) 0.437 1.306 (0.735–2.318) 0.362 1.729 (0.906–3.310) 0.097

Q4 1.635 (0.924–2.892) 0.091 1.784 (0.955–3.340) 0.070 2.044 (1.011–4.150) 0.047

CS

Q2 0.903 (0.567–1.437) 0.667 0.910 (0.559–1.481) 0.705 0.889 (0.514–1.536) 0.674

Q3 0.614 (0.342–1.095) 0.100 0.569 (0.308–1.042) 0.069 0.544 (0.274–1.071) 0.080

Q4 0.602 (0.307–1.170) 0.137 0.625 (0.309–1.254) 0.188 0.745 (0.337–1.635) 0.464

MN

Q2 1.375 (0.818–2.420) 0.247 1.561 (0.904–2.812) 0.122 1.411 (0.761–2.715) 0.287

Q3 1.445 (0.767–2.784) 0.261 1.467 (0.755–2.911) 0.263 1.405 (0.665–3.021) 0.378

Q4 1.358 (0.748–2.546) 0.325 1.446 (0.777–2.776) 0.255 1.406 (0.701–2.899) 0.345

MO

Q2 1.064 (0.696–1.625) 0.773 1.037 (0.665–1.616) 0.873 0.976 (0.597–1.596) 0.924

Q3 1.156 (0.691–1.935) 0.581 1.056 (0.617–1.809) 0.842 1.255 (0.685–2.307) 0.463

Q4 0.994 (0.542–1.821) 0.986 0.954 (0.508–1.787) 0.882 0.931 (0.472–1.837) 0.837

PB

Q2 1.140 (0.738–1.759) 0.552 1.175 (0.746–1.849) 0.486 0.972 (0.590–1.598) 0.912

Q3 1.649 (1.018–2.678) 0.042 1.815 (1.083–3.053) 0.024 1.301 (0.732–2.316) 0.370

Q4 1.383 (0.786–2.427) 0.259 1.613 (0.880–2.951) 0.121 1.001 (0.502–1.984) 0.998

SB

Q2 0.691 (0.445–1.055) 0.092 0.824 (0.522–1.282) 0.398 0.979 (0.594–1.595) 0.934

Q3 0.642 (0.396–1.023) 0.067 0.861 (0.516–1.415) 0.561 1.170 (0.658–2.058) 0.588

Q4 0.755 (0.469–1.203) 0.241 0.952 (0.575–1.565) 0.848 1.125 (0.642–1.961) 0.679

SN

Q2 0.693 (0.463–1.031) 0.072 0.831 (0.547–1.256) 0.380 0.917 (0.579–1.448) 0.710

Q3 0.616 (0.395–0.953) 0.031 0.838 (0.526–1.327) 0.452 0.795 (0.469–1.339) 0.390

Q4 0.401 (0.243–0.651) 0.000 0.519 (0.309–0.858) 0.012 0.589 (0.329–1.041) 0.071

TL

Q2 0.705 (0.458–1.082) 0.111 0.689 (0.437–1.081) 0.106 0.716 (0.426–1.198) 0.205

Q3 0.480 (0.280–0.817) 0.007 0.437 (0.248–0.765) 0.004 0.428 (0.224–0.809) 0.009

Q4 0.445 (0.241–0.811) 0.009 0.335 (0.175–0.630) 0.001 0.369 (0.177–0.757) 0.007

W

Q2 0.807 (0.531–1.214) 0.307 0.800 (0.517–1.227) 0.310 0.919 (0.561–1.496) 0.735

Q3 1.009 (0.641–1.580) 0.967 1.012 (0.628–1.623) 0.962 0.940 (0.553–1.594) 0.820
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(Q1: OR = 0.593, 95% CI = 0.382–0.915, p = 0.019; Q3: OR = 0.538, 
95% CI = 0.311–0.924, p = 0.025) demonstrated a significant 
correlation after adjusting for demographic characteristics. At this 
point, the risk effect of CD and PB was heightened, while the 
protective effect of TL continued to increase. In contrast, the protective 
effect of SN may have been diminished by age-related factors. Some 
of this protective effect was reduced after adjustment, likely due to the 
greater muscle mass observed in the younger group. Additionally, the 
inclusion of BA demonstrated a protective effect in both quartiles Q1 
and Q3 (OR ≈ 0.55).

When health-related covariates were incorporated in Model 3, 
we  found that BA (Q1: OR = 0.603, 95% CI = 0.366–0.986, 
p = 0.045), CO (Q1: OR = 1.823, 95% CI = 1.078–3.098, p = 0.026; 
Q3: OR = 2.044, 95% CI = 1.011–4.150, p = 0.047), and TL (Q2: 
OR = 0.428, 95% CI = 0.224–0.809, p = 0.009; Q3: OR = 0.369, 95% 
CI = 0.177–0.757, p = 0.007) were correlated with sarcopenia. In 
this process, we found that the protective effect of TL remained 
significant after several adjustments (OR ≈ 0.4), and the confidence 
interval did not significantly widen. In BA-Q1, the protective effect 
continued to be  significant (OR ≈ 0.6); however, this effect 
disappeared in Q3. The apparent protectiveness observed in Q3 may 
be attributed to a healthier lifestyle (e.g., exercise, diet) within this 
population. The true effect was diminished after adjustments, which 
warrants further analysis in the discussion. Additionally, the 
emerging risk factor CO increased the risk in both Q1 and Q3 
intervals (OR ≈ 1.8–2.0).

In summary, the logistic regression analysis confirmed that BA, 
CD, CO, PB, SN, and TL were associated with sarcopenia across 
multiple models.

3.2 Selection of model variables

The study conducted variable screening using a combination of 
the Boruta and Lasso algorithms. The Boruta algorithm identified 15 
variables (see Figure  3). Corresponding to the red module in 
Figure 3B, the variables identified through the shaded feature variable 
training include le8 BMI, race, TL, CS, SN, CD, le8, le8 pa, MO, age, 
le8 smoke, CO, PB, le8 glucose, and SB.

Lasso analysis was further conducted by setting the number 
of Lambda values to 100, the Lambda filtering threshold to 
minimum, the loss type to deviance, and determining the optimal 
regularization parameter (λ) through 10-fold cross-validation. In 
Figure 4A, Lambda min (−5.226) represents the value of λ that 
minimizes the CVM to its minimum value, and Lambda 1se 
(−3.923) indicates the maximum λ value within one standard 
error of the minimum CVM. Additionally, as shown in Figure 4B, 
when Lambda min is −5.226, the variables converge relatively 
well, resulting in the identification of a total of 12 variables. These 
variables include age, race, edu, CD, CS, SN, TL, Chronic disease, 
le8 pa, le8 smoke, le8 BMI, le8 non hdl.

TABLE 2 (Continued)

Variable name Model 1 Model 2 Model 3

OR (95%CI) p-value OR (95% CI) p-value OR (95% CI) p-value

Q4 1.158 (0.700–1.902) 0.563 1.038 (0.610–1.754) 0.890 1.296 (0.711–2.359) 0.397

OR, odds ratio; CI, confidence interval. Model 1 adjusted no confounding factor; Model 2 adjusted age, sex, race, education level; Model 3 adjusted Le8 scores (le8, le8 BMI, le8 bp, le8 pa, le8 
hei, le8 smoke, le8 non hdl, le8 glucose and le8 sleep) and 14 chronic diseases (Hypertensive, Diabetes, Eczema, Overweight, Arthritis, Heart Failure, Coronary heart disease, Angina pectoris, 
Heart Disease, Stroke, Emphysema, Chronic Bronchitis, Liver Disease and Cancer) under the basic of Model 2.

FIGURE 3

Boruta algorithm feature screening plot. (A) Boruta feature screening importance score plot. (B) Corresponding importance box plots for each variable 
of Boruta feature screening.
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By combining the two algorithms (see Figure 5), we will take the 
intersection of the identified variables to construct the model, which 
includes CD, CS, SN, TL, age, race, le8 pa, le8 smoke, and le8 BMI, 
totaling 9 variables.

3.3 Model evaluation and comparison

The training set ROC curves for GBDT, RF, Logistic Regression, 
LGBM, Decision Tree, and CatBoost are presented in Figure 6A, while 

FIGURE 5

Boruta and Lasso feature selection overlap.

TABLE 3 Evaluation results of training set and test set.

Model name Accuracy Recall F1-score MCC

GBDTTRAIN 1.00000 1.00000 1.00000 1.00000

RFTRAIN 0.87392 0.96767 0.89866 0.74727

LogisticTRAIN 0.87392 0.90416 0.89231 0.74069

LGBMTRAIN 1.00000 1.00000 1.00000 1.00000

DecisionTreeTRAIN 0.84390 0.94688 0.87513 0.68395

CatBoostTRAIN 0.98132 0.99654 0.98404 0.96198

GBDTTEST 0.92846 0.96196 0.93899 0.85407

RFTEST 0.85070 0.96196 0.88060 0.70288

LogisticTEST 0.84914 0.91304 0.87386 0.69102

LGBMTEST 0.96112 0.99185 0.96689 0.92159

DecisionTreeTEST 0.82426 0.95380 0.86135 0.64992

CatBoostTEST 0.93624 0.98370 0.94641 0.87180

FIGURE 4

Lasso algorithm eigenvalue screening plot. (A) Lasso regression Lambda and CVM plot. (B) Lasso regression Lambda and coefficients plot.
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Figure 6B displays the test set ROC curves. By evaluating both the 
training and test sets, we  determine that the LGBM model 
demonstrates the highest predictive performance, achieving a training 
set accuracy of 1.00000, a recall of 1.00000, an F1-score of 1.00000, 
and an MCC of 1.00000. In comparison, the test set results show an 
accuracy of 0.96112, a recall of 0.99185, an F1-score of 0.96689, and 
an MCC of 0.92159, indicating superior performance relative to the 
other models (see Table 3 for details). Additionally, the AUROC values 
were 1.000 for the training set and 0.986 for the test set, confirming 
LGBM as the most suitable model for adaptation. Consequently, 
LGBM was selected for the construction of the predictive model in the 
subsequent study.

3.4 Optimal model validation

To effectively address the issues of bias and variance during 
model selection, this study employs 5-fold cross-validation to 
accurately evaluate the performance of machine learning models. 
The dataset is divided into five disjoint subsets, with four subsets 
used as the training set and the remaining subset as the validation 
set in each iteration. This process is repeated five times to obtain 
a robust estimate of model performance. The results of the cross-
validation (see Figure  7) indicate that the LGBM model 
demonstrates exceptional predictive performance, achieving an 
accuracy of 0.9884 ± 0.00684.

FIGURE 6

ROC curves of the train and test sets of 6 ML models. (A) ROC curves of the train set. (B) ROC curves of the test set.

FIGURE 7

ROC curve for the 5-fold test.
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FIGURE 9

SHAP diagram. (A) SHAP importance plot; (B) SHAP bees plot; (C) SHAP heatmap; (D) SHAP line plot; (E) SHAP heat plot with age, race, Le8 BMI, Le8 
smoke, Le8 pa, CD, CS, SN, and TL.

FIGURE 8

ROC curve for Bootstrap evaluation.
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At the same time, resampling statistical validation for Bootstrap 
error assessment is conducted. The model’s performance is validated 
multiple times by resampling the training set using Bootstrap 
techniques to calculate the mean and variance of the performance 
metrics. This process generates multiple new datasets (referred to as 
Bootstrap samples) by randomly sampling from the original dataset 
with replacement, and then trains and evaluates the model on each 
sample. The Bootstrap method is particularly effective for addressing 
bias and variance issues that may arise during the model selection 
process, as it provides a robust estimation of model performance and 
ensures the validity and robustness of the selected models. According 
to Figure 8, we can observe that the LGBM_BR1TEST model exhibits 
the best performance, achieving an AUC value of 0.971, while the 

other models all have AUC values of 0.961 or higher, indicating good 
classification performance.

3.5 Visual analysis of feature importance

In this study, SHAP analysis was employed to evaluate the extent 
to which each input feature in LGBM contributes to the final output, 
as well as to establish a hierarchy of relative importance. The significant 
role of le8 BMI in predicting sarcopenia risk is illustrated in 
Figure 9A. Larger SHAP values indicate a greater influence on the 
model output, with importance decreasing in descending order from 
top to bottom. Other features, including TL, SN, age, le8 pa, CS, le8 

FIGURE 10

Logistic regression forest plot based on gender differences.
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FIGURE 11

Logistic regression forest plot based on age differences.

smoke, race, and CD metrics, also demonstrated substantial predictive 
power. Conversely, the swarm plot (Figure  9B) displays the 
distribution of SHAP values for heavy metal exposure and covariates, 
along with the direction of their influence on the model output. 
Regarding heavy metal exposure, we  found that TL and SN 
contributed negatively to the prediction of sarcopenia risk. When 
combined with the scatter plot (Figure  9E), a relatively complex 
nonlinear relationship emerges for CD, a heavy metal element, in 
relation to sarcopenia prediction. Among the covariates, le8 BMI 
exhibited a positive predictive relationship with sarcopenia. 
Additionally, age displayed a complex linear relationship that made its 
predictive direction challenging to ascertain, while le8 pa and le8 
smoke demonstrated a clear negative predictive relationship. 
Figure  9D reveals a more intricate relationship between race, a 

covariate, and sarcopenia, indicating that its role in sarcopenia should 
be carefully considered to avoid potential bias.

3.6 Interaction analysis

To address the effects of confounding variables, we conducted 
interaction analyses for specific discussions. Starting with gender 
differences, Figure  10 illustrates a significant interaction between 
different gender groups regarding CS and SN, revealing that the 
association between CS and sarcopenia was significantly negative in 
females. The results presented in Figure 11 indicate that the interaction 
among different age groups was not significant for all variables (with 
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p-values greater than 0.05 in all cases), suggesting that there is no 
meaningful difference in response or effect among various age groups 
concerning these variables. Regarding racial differences, we found that 
the association between heavy metal exposure and sarcopenia varied 
significantly across races (see Figure  12). Notably, non-Hispanic 
blacks exhibited a heightened response to heavy metal exposure, with 
the response at Q4 demonstrating a significant negative correlation 
with exposure levels of TL, CS, and SN. Figure 13 depicts a significant 
interaction between dietary factors (Hei) and CS levels, indicating a 
negative correlation. Furthermore, when analyzing chronic disease 
factors, we discovered that varying levels of chronic disease exposure 
significantly increased the risk of sarcopenia in populations with 
multiple comorbidities (see Figure 14). Reason: The revisions enhance 
clarity, improve vocabulary, and correct grammatical errors while 
maintaining the original meaning of the text.

4 Discussion

In this study, we utilized data from samples within the NHANES 
database spanning 2011 to 2018 to develop a ML model that integrated 
demographic characteristics (age, gender, ethnicity, and educational 
background), health factors (Le8 score and 14 chronic diseases), and 
components of heavy metal exposure to predict the risk of developing 
sarcopenia. Based on logistic regression analyses, we  identified 
significant correlations between BA, CD, CS, PB, SN, TL, and 
sarcopenia. Among the six ML models evaluated, the LGBM model 
proved to be the most effective for predicting the risk of sarcopenia 
associated with heavy metal exposure. Through SHAP analysis with 
the LGBM model, we discovered that TL, SN, and CS contributed 
negatively to the risk prediction of sarcopenia, while CD contributed 
positively. Although the direct effects of heavy metal exposure on 

FIGURE 12

Logistic regression forest plots based on racial differences.
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FIGURE 13

Logistic regression forest plot based on dietary differences.
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sarcopenia have not been clearly established in existing studies, it is 
important to consider the indirect pathways involved. The 
pathogenesis of sarcopenia also encompasses the effects of oxidative 
stress, inflammation, protein synthesis, and the nervous system. 
Heavy metal exposure has the potential to trigger these mechanisms, 
which are discussed in detail.

TL is the heavy metal predicted to have the greatest contribution 
to sarcopenia. Research indicates that TL does not directly cause 
significant pathological damage to skeletal muscle and bone (33). 
However, it can affect the nervous system, leading to sensory and 
motor alterations. Additionally, toxicity associated with TL has been 
linked to the production of reactive oxygen species and mitochondrial 

FIGURE 14

Logistic regression forest plots based on differences in the prevalence of chronic diseases.
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dysfunction. Secondly, there are effects on inflammation. A 
longitudinal experiment found that exposure to TL triggers the 
production of inflammation (34). In a study examining the impact of 
heavy metal exposure on sarcopenia, it was noted that inflammation 
induced by heavy metal exposure mediates sarcopenia (35). Thus, TL 
affects sarcopenia through complex mechanisms. In animal 
experiments, chronic ingestion of small amounts of TL has been 
found to yield results similar to those observed in humans who are 
chronically exposed to small amounts of TL, leading to damage and 
mitochondrial changes in the neuronal cells of the chondrogenic 
system (36). Exposure to indium tin oxide nanoparticles (ITO NPs) 
associated with systemic inflammation (SN) resulted in diffuse 
inflammatory infiltration of brain tissue, increased glial cell reactivity, 
abnormal neuronal lineage transformation, impaired neuronal 
migration, and neuronal apoptosis linked to oxidative stress (37). 
Low-dose exposure to heavy metals may enhance cellular autophagic 
activity by regulating the expression of autophagy-related genes (38). 
Heavy metal exposure leads to a reduction in mitochondrial 
membrane potential, subsequently disrupting normal mitochondrial 
function and inducing apoptosis. Additionally, it results in an increase 
in reactive oxygen species (ROS) within the mitochondria. These ROS 
not only compromise the structure and function of the mitochondria 
but also initiate intracellular oxidative stress, exacerbating cellular 
damage. Furthermore, mitochondrial dysfunction releases 
mitochondrial DNA (mtDNA), which activates intracellular 
inflammatory signaling pathways and promotes the production of 
inflammatory factors. Heavy metal exposure may also contribute to 
other chronic diseases that mediate sarcopenia. An empirical study 
has found a negative correlation between blood cadmium levels and 
lung function parameters (39). Chronic exposure to CD leads to renal 
tubular dysfunction. CD toxicity severely impacts cardiac health and 
induces significant biochemical and physiological changes. 
Furthermore, overexposure to CD is strongly associated with lung 
damage. All of these chronic conditions have been linked to sarcopenia 
in existing studies. This indicates a significant association between TL, 
SN, CS, CD, and sarcopenia, which can be utilized to predict the onset 
of sarcopenia. In the subgroup analyses, we found that the interaction 
between age and different heavy metal exposure environments yielded 
non-significant results. Cruz-Jentoft et al. noted that the magnitude of 
the effect of age on muscle mass (β = −0.4 to −0.6 SD/decade) was 
significantly greater than that of other risk factors, which may lead to 
a modification effect of environmental exposure that is difficult to 
detect (7). At the molecular level, mitochondrial damage in aged 
muscle has reached a plateau, and additional heavy metal stress may 
not produce distinguishable additive effects (40).

The le8 BMI also plays a significant role as a covariate in predicting 
the risk of sarcopenia. The le8 BMI is derived from the categorical 
coding of Body Mass Index (BMI). According to the established criteria, 
a score closer to the normal BMI standard indicates a higher score, while 
a lower le8 BMI score. It has demonstrated that low BMI is associated 
with a higher incidence of sarcopenia (41), and that as BMI decreases, 
the risk of sarcopenia increases (42). It has been found that the prediction 
of sarcopenia may be invalidated in overweight and obese populations 
due to the detection of individual-specific factors (43). Thus, leaner 
individuals have a greater risk of developing sarcopenia. The relationship 
between aging, one of the major factors in the development of 
sarcopenia, and sarcopenia is strong, but due to its confounding 

influence by multiple factors and the specificity of the human body, the 
effect of age, a covariate, on sarcopenia is more complex and needs to 
be discussed relying more on more dimensions. le8 pa and le8 smoke 
provide a negative contribution to the prediction of sarcopenia. Physical 
activity played a role in reducing the risk of sarcopenia (44), whereas 
there was an association between smoking and the onset of sarcopenia, 
with gradients presenting a 5% increase in sarcopenia and a 6% increase 
in severe sarcopenia for an additional 1 cigarette per day. However, this 
high level of association is broad but imprecise (45).

This paper has the following limitations: (i) data from the NHANES 
database from 2011–2018 are analyzed with a lag for such nationwide 
surveys, despite the older timeframe of radiation. The NHANES 
surveys, although they have been sampled to the greatest extent 
possible from the national level, the special geographic areas such as 
remote areas, minorities, and concentrations of people with specific 
occupational exposures are poorly represented, leaving out groups that 
may be at high risk of exposure. (ii) a cross-sectional study design was 
used, which made it impossible to capture the dynamic process of 
changes in heavy metal exposure levels and sarcopenia-related 
indicators over time. It only presents the association between the two 
at a static point in time, making it difficult to determine whether heavy 
metal exposure triggers sarcopenia or whether sarcopenic patients are 
more susceptible to heavy metal contamination due to changes in their 
physical functioning, making it impossible to conclusively determine a 
causal relationship. The urine exposure indicator reflects recent 
exposure rather than a long-term chronic body burden. There is an 
urgent need to conduct prospective cohort studies or introduce 
methods such as time series analysis to explore the causal chain. (iii) 
the LGBM models performed well on the NHANES data, and although 
some prediction accuracy was achieved after repeated debugging on 
the existing datasets, the generalization ability of these models needs to 
be further tested. In the future, more robust and explanatory composite 
models can be constructed by combining multiple machine learning 
algorithms with traditional statistical analyses, while newer and more 
diverse datasets are continuously introduced to improve the scientific 
validity and accuracy of the prediction of heavy metal exposure and 
sarcopenia risk in an all-round way. (iv) Although we adjusted for the 
primary lifestyle covariates, there may be measurement errors since 
these factors were primarily obtained through questionnaires. 
Additionally, some potentially relevant factors (e.g., sleep quality, 
micronutrient intake) were not measured, which may have resulted in 
residual confounding. This limitation could have impacted the accuracy 
of our estimated exposure-outcome associations. Future studies should 
consider utilizing more precise measurement tools (e.g., accelerometers, 
dietary records) and a more comprehensive collection of covariates to 
minimize such biases.

5 Conclusion

The best LGBM model was developed and selected using data from 
samples of individuals with sarcopenia in the NHANES database, and 
the model was interpreted using SHAP. Our analysis revealed that TL, 
SN, CS, and CD were associated with the risk of developing sarcopenia. 
Specifically, TL, SN, and CS were found to have a negative impact on 
risk prediction, while CD contributed positively to the risk assessment. 
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Additionally, le8 BMI was identified as a significant covariate in this 
context. Furthermore, a strong correlation was observed between 
heavy metal exposure and the risk of sarcopenia, indicating that its 
inclusion in sarcopenia prediction models holds substantial practical 
value for identifying this condition. The ML model offers guidance for 
the development of sarcopenia prediction and presents new 
opportunities for identifying the risk of sarcopenia. Future studies 
should further investigate the relationship between other potential 
heavy metal exposures and sarcopenia, analyze their roles in muscle 
metabolism, neurotransmission, inflammation, and other 
pathophysiological processes, and elucidate the specific molecular 
mechanisms that contribute to the increased risk of sarcopenia.
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