
Frontiers in Public Health 01 frontiersin.org

The association between 
brominated flame retardants and 
serum testosterone levels in 
American adult men: NHANES 
2013–2016
Xin Li 1, Mutong Chen 2, Qing Zheng 1, Zixuan Wang 3,4, Dini Lin 3,4* 
and Mengmeng Peng 3,4*
1 Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical 
College, Shantou, China, 2 Cancer Hospital of Shantou University Medical College, Shantou, China, 
3 Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 
China, 4 Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complication, 
Wenzhou, China

Background: Brominated flame retardants (BFRs), especially polybrominated 
diphenyl ethers (PBDEs), are commonly utilized, yet their possible endocrine-
disrupting effects have sparked significant concerns. Nonetheless, the link 
between exposure to BFRs and serum testosterone levels in adult males is still 
not well comprehended.

Methods: We analyzed data from 1,150 men aged ≥20 years from the 
National Health and Nutrition Examination Survey (NHANES) in 2013–2016. 
Serum concentrations of BFRs (PBDE congeners: PBDE-28, PBDE-47, etc.) 
and testosterone levels were measured via mass spectrometry and liquid 
chromatography–tandem mass spectrometry, respectively. Free testosterone 
(FT) and bioavailable testosterone (BAT) were calculated using the Vermeulen 
equation, based on measured total testosterone (TT), sex hormone-binding 
globulin (SHBG), and serum albumin concentrations. Linear regression models 
were used to evaluate the association between BFRs and TT, BAT, FT, and SHBG, 
adjusting for confounders including age, race, and lifestyle factors. We  also 
evaluated potential associations modified by age, and conducted a sensitivity 
analysis to assess the robustness of the observed associations.

Results: After all continuous variables were log2-transformed and potential 
confounders were adjusted, significant inverse associations were found 
between PBDE-28 and PBDE-47 levels with TT (β  = −0.641, 95% CI: −1.098, 
−0.185) and FT (β = −0.883, 95% CI: −1.616, −0.149). Specifically, in the stratified 
analysis, older men (≥60 years) showed stronger associations between PBDE-
28 and PBDE-47 exposure with lower testosterone levels (β  = −0.892, 95% 
CI: −1.472, −0.311 for PBDE-28 and β  = −0.695, 95% CI: −1.199, −0.191 for 
PBDE-47). Sensitivity analysis confirmed that PBDE-28 and PBDE-47 were 
consistently associated with reduced testosterone and free testosterone levels, 
with the associations remaining significant even after adjusting for potential co-
exposures and lifestyle factors.

Conclusion: Our findings suggest that exposure to PBDE-28 and PBDE-47 is 
associated with lower testosterone levels, particularly in older men. These results 
highlight the potential reproductive risks posed by BFR exposure, warranting 
further investigation into the long-term health impacts.
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1 Introduction

Brominated flame retardants (BFRs) consist of various 
brominated organic substances that are incorporated into diverse 
materials to diminish the potential for fire hazards. These 
compounds can be  classified into three primary categories 
according to how they bind with polymers: brominated monomers, 
reactive agents, and additives (1, 2). Due to the non-covalent nature 
of their binding to polymers, BFRs are known to continuously leach 
out from products and permeate into the surrounding environment 
(3). Numerous epidemiological studies have shown a significant 
link between exposure to brominated flame retardants (BFRs) and 
serious health issues or disturbances related to the nervous system, 
reproductive system, thyroid activity, and liver health (3–5). 
Polybrominated diphenyl ethers (PBDEs) are among the most 
widely used brominated flame retardants (BFRs) and are regarded 
as reactive BFRs, which are thought to pose a heightened risk to 
human health (1, 6). Commercial PBDE formulations are made up 
of a combination of congeners, which typically feature 
pentabromodiphenyl ethers (Penta-BDEs), octabromodiphenyl 
ethers (Octa-BDEs), and decabromodiphenyl ethers (Deca-BDEs). 
Penta-BDEs and Octa-BDEs were discontinued in the United States 
in 2004, while the production of Deca-BDEs ceased in 2013 (7). 
Although BFRs, including PBDEs, are being phased out, the 
persistence in consumer durables, food and indoor dust suggests 
that human exposure to these compounds will continue (8–12). As 
lipophilic molecules, BFRs can also accumulate in organisms, 
leading to biological amplification in the food chain (13). Moreover, 
the control of BFRs leading to the restoration of toxicokinetic 
dynamics does not necessarily guarantee the restoration of 
toxicodynamic dynamics, which highlights the fact that even 
limited early exposure might result in enduring consequences (14). 
It is foreseeable that human health will remain potentially affected 
by BFRs for decades (15).

Testosterone is the main male sex hormone, mostly secreted by the 
testes, with a small amount secreted by the adrenal glands (16). Normal 
levels of testosterone play an important role in male health, exerting 
significant effects on male sexual characteristics, brain functionality, 
muscle quality, and bone density (17, 18). Reduced serum testosterone 
(equal to or below 300 ng/dL) commonly manifests as decreased 
frequency of sexual thoughts and desire, increased body weight, and 
impaired erectile function (19, 20). Additionally, low testosterone 
levels is associated with diabetes, depressive symptoms, fatigue, as well 
as an increased risk of cardiovascular disease (21–26). In the 
United States, the prevalence of low testosterone levels among men 
aged 45 and above is as high as 40%, and the proportion is projected 
to increase in the coming decades (27). Studies have shown that many 
factors are associated with decreased testosterone levels, including 
advancing age, obesity, sedentary lifestyle, alcohol consumption, and 
the use of medications (28, 29). Moreover, research has also uncovered 
the possible influence of environmental endocrine-disrupting 
chemicals (EDCs) on the development of low testosterone, alongside 

these risk factors (30, 31). Given the significance of androgens in the 
general health of adult men, identifying factors that influence hormone 
levels has become a crucial issue in men’s well-being (32).

Research both in vitro and in vivo has been carried out to evaluate 
how BFRs affect testosterone levels. However, these studies mainly 
rely on laboratory data, and the findings remain perplexing without 
definitive conclusions. According to previous studies, the 
administration of BDE209 has been found to impact the production 
of testicular steroids and spermatogenesis in adult or prepubertal 
mice, resulting in a significant reduction in serum testosterone levels 
(33–35). A different investigation has demonstrated that mature male 
rats exposed to a complex mixture of three commercial BDE 
compounds—specifically DE-71 (52.1%), DE-79 (0.4%), and Deca-
BDE-209 (44.2%)—along with hexabromocyclododecane (HBCDD 
at 3.3%), exhibited no notable impact on serum testosterone levels 
(36). Additionally, the limited number of epidemiological studies 
available is insufficient to fully elucidate the relationship between 
BFRs and testosterone, lacking generalizability to the adult men in 
the United States. In 2013, a study uncovered a positive correlation 
between the concentration of Octa-BDEs (the combined total of 
PBDE-183 and PBDE-201) in indoor dust and testosterone levels 
among males recruited from an infertility clinic in the Boston area. 
Conversely, there is an inverse relationship between the concentration 
of Deca-BDEs and testosterone levels (37). In a cross-sectional study 
conducted on fertile males from Greenland, Poland, or Ukraine, it 
was observed that environmental exposure to BDE-47 and BDE-153 
was not associated with any alterations in testosterone levels (38). 
This study employed a significant representative sample from the 
United States to explore the association between BFR exposure and 
testosterone levels.

2 Materials and methods

2.1 Data sources

The data utilized in this study were sourced from the National 
Health and Nutrition Examination Survey (NHANES), a survey 
that holds national representativeness and is carried out by the 
National Center for Health Statistics (NCHS). NHANES makes use 
of a stratified, multistage probability sampling framework to 
evaluate the health and nutritional standing of the 
non-institutionalized civilian populace in the United States (39). 
For this analysis, data were restricted to 2013–2014 and 2015–2016 
continuous data cycles, which included comprehensive information 
on BFRs and serum testosterone levels. To ensure reliable estimates, 
we combined the two survey cycles for our analyses. All data were 
gathered in accordance with the standardized procedures set by the 
NCHS. The study was approved by the NCHS Research Ethics 
Review Board, and every participant gave their written informed 
consent prior to getting involved.
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2.2 Study population

Data were obtained from the 2013–2014 and 2015–2016 
continuous NHANES cycles. The initial dataset included 5,293 adult 
men aged 20 years or older. Participants were excluded if they were 
using hormone therapy (n = 34) or had missing data on sex hormone 
variables, covariates, or serum BFRs. Following the implementation 
of these exclusion criteria, the final analysis comprised a total of 1,150 
participants. Furthermore, PBDE congeners were selected based on a 
criterion of having greater than 50% detection rates in both the 2013–
2014 and 2015–2016 NHANES cycles (Figure 1).

2.3 Measurement of serum BFRs and 
exposure to BFRs

BFRs concentrations were measured in NHANES using 
automated liquid–liquid extraction, followed by sample cleanup and 
analysis with isotope dilution gas chromatography coupled with high-
resolution mass spectrometry (ID-GC/HRMS) (40). To ensure the 
stability of model, only BFR congeners with detection rates above 50% 
were included in the primary analysis. The selected BFRs included 
2,4,4-Tribromodiphenyl ether (PBDE28) and 2,2,4,4- 
Tetrabromodiphenyl ether (PBDE47). All BFR concentrations 
underwent log transformation because of their skewed distribution to 
the right. The exposure levels were divided into quartiles, with the 
reference group in regression models being the lowest quartile.

2.4 Outcome measurement

In the NHANES study, the levels of serum total testosterone (TT) 
and estradiol (E2) were gaged. This was done through isotope dilution 
liquid chromatography and tandem mass spectrometry, with the 
measurements taken at a solitary time point, be it in the morning, 
afternoon, or evening. The levels of Sex hormone-binding globulin 
(SHBG) were determined through its interaction with immuno-
antibodies. Subsequently, the products of this reaction were gaged by 
means of chemiluminescence detection, which utilized a 
photomultiplier tube. The free androgen index (FAI) was calculated as 

TT (ng/dL) divided by SHBG (nmol/L). Additionally, the TT/E2 ratio 
was used as an indirect marker of circulating free testosterone (FT) 
and aromatase activity. Furthermore, FT and bioavailable testosterone 
(BAT) were computed using the Vermeulen equation, which estimates 
FT and BAT based on measured TT, SHBG, and serum albumin 
concentrations. The Vermeulen methodology provides a reliable 
assessment of testosterone fractions that are available for biological 
activity (41). The primary outcome of this study was the association 
between BFRs exposure and serum testosterone levels, with 
testosterone deficiency (TD) defined as TT < 300 ng/dL, in accordance 
with the American Urological Association (AUA) guidelines.

2.5 Covariates

In the analysis, a number of categorical covariates were 
incorporated, taking into account their possible links with both BFR 
exposure and serum testosterone levels. Age was split into three 
brackets: 20 to 40 years old, 40 to 60 years old, and over 60 years old. 
Race and ethnicity were grouped as Mexican American, Non-Hispanic 
Black, Non-Hispanic White, Other Hispanic, and other races. 
Socioeconomic status was gaged using the poverty-income ratio 
(PIR). It was divided into low-income (≤1.3), middle-income (greater 
than 1.3 up to 3.5), and high-income (greater than 3.5). Education 
level was sorted into high school or below, some college experience, 
and college graduate or higher. Marital status was classified as 
Married/Living with a Partner, Never Married, and Widowed/
Divorced/Separated. Covariates related to health included 
hypertension, which was defined as self-reported use of 
antihypertensive medications or measured systolic blood pressure of 
at least 140 mmHg or diastolic blood pressure of at least 90 mmHg. 
Diabetes was defined as self-reported diabetes or a fasting plasma 
glucose level of at least 126 mg/dL or glycated hemoglobin (HbA1c) 
of at least 6.5%. Lifestyle factors covered leisure-time physical activity 
(LTPA), which was put into three categories. There were the inactive 
(those who did not take part in any leisure-time physical activity), the 
insufficiently active (people who engaged in moderate activity one to 
five times a week with metabolic equivalents [METs] between 3 and 
6, or vigorous activity one to three times a week with METs over 6), 
and the active (those who met and exceeded the above criteria) (42). 
Smoking status was categorized into two groups: those who had never 
smoked and those who were either current or former smokers. 
Alcohol consumption, on the other hand, was ascertained via self-
reporting. People who drank a minimum of 12 standard alcoholic 
beverages in any particular year were labeled as alcohol drinkers. 
These variables were then included in regression models to account 
for possible confounding factors that could influence the relationship 
between BFR exposure and serum testosterone levels.

2.6 Statistical analyses

In the descriptive analyses, we calculated median (interquartile 
range, IQR) ± standard deviation (SD) for continuous variables and 
the frequencies for categorical variables. To investigate the association 
between BFR exposure and sex hormone levels, we employed crude 
model and adjusted model, adjusting for potential confounders 
including age, race/ethnicity, poverty-income ratio, education, marital 

FIGURE 1

Flow diagram of the screening and enrollment of study participants.

https://doi.org/10.3389/fpubh.2025.1589047
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2025.1589047

Frontiers in Public Health 04 frontiersin.org

status, smoking status, alcohol drinking, hypertension, diabetes, and 
leisure-time physical activity. Furthermore, we employed GVIF to 
detect multicollinearity in the regression analysis by assessing the 
variance inflation of each independent variable, which helps evaluate 
the reliability and stability of the model. All covariates included in the 
models had GVIF values below 5.0, indicating acceptable levels of 
multicollinearity. Due to the right-skewed distribution of continuous 
variables, including BFRs and sex hormone levels, all continuous 
variables were log2-transformed prior to analysis. Only BFRs with a 
detection rate >50% were included in the analysis. Although age was 
categorized into three groups for descriptive purposes, a binary 
stratification (<60 years and ≥60 years) was used in effect modification 
analysis based on literature indicating accelerated age-related 
hormonal changes after 60 years of age (43).

Additionally, Sensitivity analysis was conducted to assess the 
robustness of the observed associations between BFRs and hormone 
levels, with a particular focus on testosterone and SHBG. We used 
lipid adjusted concentrations as a replacement for the original 
measured concentration of BFRs to reduce variability since differences 
in individuals’ serum lipid concentrations are canceled out (44, 45). 
For BFRs that were detectable in less than 50% of the samples, multiple 
regression analyses were conducted by categorizing exposure into 
detectable (> LOD) and nondetectable (< LOD) levels.

All statistical analyses were conducted using Empower®.1 A 
two-tailed p-value <0.05 was considered statistically significant.

3 Results

3.1 Participant characteristics

A total of 1,150 participants were included in the analysis 
(Table 1). The median age was evenly distributed across the three 
groups: 35.13% were aged 20–40 years, 31.13% were 40–60 years, and 
33.74% were 60 years or older. The majority were Non-Hispanic White 
(39.57%), followed by Non-Hispanic Black (20.78%), Mexican 
American (14.96%), and other racial/ethnic groups (24.70%).

Regarding socioeconomic factors, 66.09% were married or living 
with a partner, while 30.70% had a poverty-income ratio below 1.4. 
Educational attainment varied, with 45.57% having a high school 
education or less and 25.57% holding a college degree or higher. 
Among health-related characteristics, 35.48% had a BMI ≥ 30, 44.78% 
had hypertension, and 21.48% had diabetes. Additionally, 52.00% 
were current or former smokers, and 90.52% reported 
alcohol consumption.

Log2-transformed PBDE levels showed high variability, with 
mean (SD) values of 6.61 (0.88) for PBDE47, 6.00 (0.92) for PBDE153, 
and 4.36 (0.85) for PBDE100. Notably, PBDE concentrations were 
originally measured in pg/g lipid and as we mentioned before, they 
were log2-transformed to address skewed distributions. As a result, 
the transformed values are unitless but retain interpretive relevance in 
terms of fold-change. The mean (SD) testosterone level was 14.58 
(6.38) nmol/L, while E2 was 25.32 (9.96) pg/mL.

1 www.empowerstats.com

3.2 Associations between brominated 
flame retardants and sex hormones

Table  2 presents the associations between PBDEs and sex 
hormone levels in American adult men. Regression coefficients for 
PBDEs and testosterone levels are presented based on log2-
transformed data, reflecting the effect size per doubling of the BFR 
concentration. After adjusting for potential confounders, we observed 
that PBDE-28 and PBDE-47 were significantly associated with lower 
levels of TT, FT, and Cbat (p < 0.05).

Specifically, PBDE-28 showed a negative association with TT 
(β  = −0.641, 95% CI: −1.098, −0.185), FT (β  = −0.883, 95% CI: 
−1.616, −0.149), and Cbat (β = −0.207, 95% CI: −0.379, −0.035). 
Similarly, PBDE-47 was inversely associated with total testosterone 
(β  = −0.468, 95% CI: −0.887, −0.049), FT (β  = −0.800, 95% CI: 
−1.473, −0.127), and Cbat (β = −0.188, 95% CI: −0.345, −0.030). 
These findings suggest that higher PBDE-28 and PBDE-47 exposure 
may be linked to decreased androgen levels.

For other PBDE congeners, the associations with sex hormones 
were generally not statistically significant. Although negative trends 
were observed for PBDE-85, PBDE-99, PBDE-100, PBDE-153, and 
PBDE-154, their confidence intervals included zero, indicating no 
strong evidence of association. Additionally, PBDE-209 showed a 
weak positive association with FT (β = 0.515, 95% CI: −0.274, 1.303) 
but was not statistically significant. Overall, our results highlight 
PBDE-28 and PBDE-47 as the primary PBDEs associated with lower 
testosterone levels in adult men.

3.3 Stratified analysis

To explore potential effect modification by age, we conducted a 
stratified analysis for men aged <60 years and ≥60 years, with the 
results summarized in Table 3. Among men <60 years, no significant 
associations were observed between PBDEs and testosterone, FT, or 
CBAT levels. In contrast, among men ≥60 years, PBDE-28 
(β = −0.892, 95% CI: −1.472, −0.311, P interaction = 0.0788) and 
PBDE-47 (β = −0.695, 95% CI: −1.199, −0.191, P interaction = 0.0627) 
were inversely associated with testosterone, while PBDE-100 also 
showed a negative association (β = −0.519, 95% CI: −1.032, −0.005), 
though the interaction was not statistically significant (P 
interaction = 0.1103). Similarly, FT levels were significantly lower in 
association with PBDE-17, PBDE-28, and PBDE-47 exposure among 
older men, with PBDE-28 exhibiting the strongest inverse relationship 
(β  = −1.829, 95% CI: −2.783, −0.875, P interaction = 0.032). For 
CBAT, no notable associations were detected in younger men, whereas 
PBDE-17, PBDE-28, and PBDE-47 showed inverse associations in 
older men, with PBDE-28 (β = −0.429, 95% CI: −0.652, −0.205, P 
interaction = 0.032) and PBDE-47 (β  = −0.291, 95% CI: −0.485, 
−0.096, P interaction = 0.0955) demonstrating the most pronounced 
effects. In terms of SHBG, a significant positive association was 
observed for PBDE-17 in older men (β = 1.773, 95% CI: 0.535, 3.010, 
P interaction = 0.1945), while no other PBDEs showed notable 
associations in either age group. Interaction analyses revealed that 
PBDE-28, PBDE-47, and PBDE-17 exhibited significant age-related 
differences in their effects, with inverse associations between PBDE 
exposure and testosterone, FT, and CBAT being more pronounced in 
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TABLE 1 Population characteristics of American adult men in NHANES 2013–2016 (n = 1,150).

Participant characteristics Median (IQR) or Mean ± SD

Age (year) [20, 40] 404 (35.13)

[40, 60] 358 (31.13)

[60] 388 (33.74)

Race ethnicity old (%) Mexican American 172 (14.96)

Non-Hispanic Black 239 (20.78)

Non-Hispanic White 455 (39.57)

Other Hispanic 122 (10.61)

Others 162 (14.09)

Marital status all cycle (%) Married/Living with Partner 760 (66.09)

Never married 219 (19.04)

Widowed/Divorced/Separated 171 (14.87)

Poverty income ratio breaks (%) <1.4 353 (30.70)

1.4–3.5 418 (36.35)

>3.5 379 (32.96)

Education (%) High school or less 524 (45.57)

Some college 332 (28.87)

Colleage graduate or higher 294 (25.57)

Time of venipuncture (%) Afternoon 400 (34.78)

Evening 173 (15.04)

Morning 577 (50.17)

BMI type (%) <25 306 (26.61)

25–29.9 436 (37.91)

>29.9 408 (35.48)

Smoke (%) No 552 (48.00)

Yes 598 (52.00)

Alcohol user (%) No 109 (9.48)

Yes 1,041 (90.52)

LTPA BINDED (%) No 547 (47.57)

Moderate 290 (25.22)

Vigorous 313 (27.22)

Hypertension (%) No 635 (55.22)

Yes 515 (44.78)

Diabetes mellitus (%) No 903 (78.52)

Yes 247 (21.48)

Brominated flame retardants PBDE17 (mean (SD)) 3.85 (1.68)

PBDE28 (mean (SD)) 3.88 (0.72)

PBDE209 (mean (SD)) 2.46 (0.87)

PBDE47 (mean (SD)) 6.61 (0.88)

PBDE85 (mean (SD)) 1.08 (0.92)

PBDE99 (mean (SD)) 4.27 (1.01)

PBDE100 (mean (SD)) 4.36 (0.85)

PBDE153 (mean (SD)) 6.00 (0.92)

PBDE154 (mean (SD)) 0.86 (0.90)

(Continued)
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men ≥60 years (P interaction < 0.1), suggesting that older adults may 
be more vulnerable to PBDE-related endocrine disruption.

Each model included one log2-transformed PBDE congener as 
the independent variable and serum hormone (total testosterone, free 
testosterone, or SHBG) as the dependent variable. Multiple linear 
regression models were used and all models were adjusted for 
covariates described in the Methods.

3.4 Sensitivity analysis

After the replacement of the original serum BFR concentration 
with a lipid-adjusted concentration, the result demonstrated that 
PBDE209 exposure was significantly associated with a reduction 
in TT (β = −0.566, 95% CI: −1.074, −0.059, p < 0.05), whereas 
PBDE47 exhibited a significant negative correlation with both FT 
(β  = −0.037, 95% CI: −0.073, −0.001, p  < 0.05) and Cbat 
(β = −0.009, 95% CI: −0.017, −0.000, p < 0.05). Although other 
BFRs showed predominantly negative estimates, their confidence 

intervals encompassed the null, suggesting weaker or 
non-significant associations. The wide confidence intervals 
observed for PBDE85 and PBDE154 indicate potential instability 
in the effect estimates, likely due to sample size limitations or 
individual variability. Sensitivity analysis was conducted using 
log2-transformed PBDE concentrations to ensure the robustness 
of the observed associations with testosterone levels. After 
accounting for key covariates like age, BMI, smoking status, and 
possible environmental co-exposures, these findings stayed 
consistent (Table 4).

4 Discussion

Using a large and representative sample of American adult men, 
we observed a negative correlation between serum levels of BFRs and 
TT and FT levels. Importantly, our study found no association 
between BFRs and TD.

TABLE 2 Associations between brominated flame retardants and sex hormones in American adult men in NHANES 2013–2016 [Coefficients (95% 
confidence interval)] (n = 1,150).

Brominated flame 
retardantsa

Total testosteroneb Free testosterone Cbat Sex hormone 
binding globulin

PBDE17 −0.033 (−0.317, 0.250) −0.160 (−0.615, 0.295) −0.037 (−0.144, 0.069) 0.225 (−0.791, 1.240)

PBDE28 −0.641 (−1.098, −0.185) * −0.883 (−1.616, −0.149) * −0.207 (−0.379, 

−0.035) *

−1.332 (−2.970, 0.305)

PBDE47 −0.468 (−0.887, −0.049) * −0.800 (−1.473, −0.127) * −0.188 (−0.345, 

−0.030) *

−0.687 (−2.190, 0.817)

PBDE85 −0.220 (−0.608, 0.167) −0.466 (−1.088, 0.155) −0.109 (−0.255, 0.036) −0.694 (−2.081, 0.693)

PBDE99 −0.272 (−0.634, 0.090) −0.494 (−1.075, 0.087) −0.116 (−0.252, 0.020) −0.594 (−1.891, 0.704)

PBDE100 −0.314 (−0.744, 0.117) −0.454 (−1.144, 0.237) −0.106 (−0.268, 0.056) −1.005 (−2.546, 0.535)

PBDE153 −0.044 (−0.453, 0.365) −0.170 (−0.826, 0.486) −0.040 (−0.194, 0.114) −0.113 (−1.577, 1.350)

PBDE154 −0.136 (−0.536, 0.263) −0.457 (−1.097, 0.184) −0.107 (−0.257, 0.043) −0.247 (−1.678, 1.184)

PBDE209 −0.002 (−0.493, 0.490) 0.515 (−0.274, 1.303) 0.121 (−0.064, 0.305) −1.214 (−2.973, 0.545)

aPBDE17–2,2′,4,4′,5,5′-hexabromobiphenyl (pg/g); PBDE28–2,4,4′-tribromodiphenyl ether (pg/g); PBDE47–2,2′,4,4′-tetrabromodiphenyl ethr (pg/g); PBDE85–2,2′,3,4,4′-pentbromodiphenyl 
ethr (pg/g); PBDE99–2,2′,4,4′,5-pentabromodiphnyl ethr (pg/g); PBDE100–2,2′,4,4′,6-pentabromodiphyl ether (pg/g); PBDE153–2,2′,4,4′,5,5′-hxbromodiphnyl ethr (pg/g); PBDE154–
2,2′,4,4′,5,6′-hxabromodiphyl ethr (pg/g); PBDE209, Decabromodiphenyl ether (pg/g).
bTotal testosterone (nmol/L); Free testosterone (nmol/L); Cbat (nmol/L); Sex hormone binding globulin (nmol/L); Estradiol (pg/ml).
*p < 0.05. Brominated flame retardants were log2-transformed. Estimates were adjusted for age (continuous), race/ethnicity (categorical), marital status (categorical), poverty income ratio 
(continuous), education level (categorical), time of venipuncture (categorical), BMI (categorical), smoking (categorical), drinking (categorical), ltpa binded (categorical), hypertension 
(categorical), diabetes mellitus (categorical).

TABLE 1 (Continued)

Participant characteristics Median (IQR) or Mean ± SD

Sex hormones Total testosterone (nmol/L) (mean (SD)) 14.58 (6.38)

Free testosterone (nmol/L) (mean (SD)) 0.26 (0.11)

Cbat (nmol/L) (mean (SD)) 6.00 (2.63)

Sex hormone binding globulin (nmol/L) (mean (SD)) 45.21 (25.00)

Estradiol (pg/ml) (mean (SD)) 25.32 (9.96)

IQR, Inter quartile range. Poverty-Income Ratio (PIR): A measure of socioeconomic status, divided as follows: <1.4: Low-income group; 0.4–3.5: Middle-income group; >3.5: High-income 
group. Alcohol User: Defined as consuming at least 12 standard alcoholic beverages in a year. Hypertension: Defined as the self-reported use of antihypertensive medications or a measured 
systolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg. PBDE17–2,2′,4,4′,5,5′-hexabromobiphenyl (pg/g); PBDE28–2,4,4′-tribromodiphenyl ether (pg/g); PBDE47–
2,2′,4,4′-tetrabromodiphenyl ethr (pg/g); PBDE85–2,2′,3,4,4′-pentbromodiphenyl ethr (pg/g); PBDE99–2,2′,4,4′,5-pentabromodiphnyl ethr (pg/g); PBDE100–2,2′,4,4′,6-pentabromodiphyl 
ether (pg/g); PBDE153–2,2′,4,4′,5,5′-hxbromodiphnyl ethr (pg/g); PBDE154–2,2′,4,4′,5,6′-hxabromodiphyl ethr (pg/g); PBDE209, Decabromodiphenyl ether (pg/g). Total testosterone 
(nmol/L); Free testosterone (nmol/L); Cbat (nmol/L); Sex hormone binding globulin (nmol/L); Estradiol (pg/ml).
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TABLE 3 Associations between BFRs and sex hormones by age groups in American adult men in NHANES 2013–2016.

Brominated 
flame retardants

Age (year) Testosterone Free Testosterone Cbat Sex hormone 
binding 
globulin

Estradiol

PBDE17 <60 0.138 (−0.383, 0.659)

0.172 (−0.683, 1.027)

0.040 (−0.160, 

0.241) 0.272 (−1.679, 2.223)

0.670 (−0.198, 

1.538)

≥60 −0.186 (−0.516, 0.145)

−0.873 (−1.416, −0.331)

−0.205 

(−0.332, 

−0.078) 1.773 (0.535, 3.010)

−0.191 (−0.742, 

0.360)

P for interaction 0.2953 0.0392* 0.0392* 0.1945 0.0945

PBDE28 <60 −0.066 (−0.803, 0.671)

−0.173 (−1.384, 1.038)

−0.041 

(−0.324, 0.243)

−0.489 (−3.268, 

2.290)

−0.452 (−1.685, 

0.781)

≥60 −0.892 (−1.472, −0.311)

−1.829 (−2.783, −0.875)

−0.429 

(−0.652, 

−0.205) 0.322 (−1.866, 2.510)

−0.573 (−1.544, 

0.398)

P for interaction 0.0788 0.032* 0.032* 0.6467 0.8774

PBDE47 <60 0.156 (−0.605, 0.917)

0.013 (−1.239, 1.266)

0.003 (−0.290, 

0.297) 0.131 (−2.735, 2.998)

−0.561 (−1.834, 

0.711)

≥60 −0.695 (−1.199, −0.191)

−1.241 (−2.071, −0.411)

−0.291 

(−0.485, 

−0.096)

−0.524 (−2.423, 

1.376)

−0.229 (−1.072, 

0.614)

P for interaction 0.0627 0.0955 0.0955 0.7035 0.6634

PBDE85 <60 −0.009 (−0.764, 0.746)

−0.246 (−1.490, 0.997)

−0.058 

(−0.349, 0.234)

−0.154 (−2.990, 

2.682)

−0.555 (−1.815, 

0.704)

≥60 −0.310 (−0.762, 0.142)

−0.557 (−1.301, 0.187)

−0.130 

(−0.305, 0.044)

−0.972 (−2.669, 

0.726)

0.257 (−0.497, 

1.011)

P for interaction 0.4948 0.6685 0.6685 0.6209 0.2688

PBDE99 <60 −0.035 (−0.703, 0.633)

−0.231 (−1.330, 0.869)

−0.054 

(−0.312, 0.204)

−0.186 (−2.696, 

2.324)

−0.538 (−1.652, 

0.576)

≥60 −0.371 (−0.805, 0.062)

−0.661 (−1.374, 0.052)

−0.155 

(−0.322, 0.012)

−0.603 (−2.232, 

1.025)

0.167 (−0.556, 

0.890)

P for interaction 0.398 0.5118 0.5118 0.7805 0.2887

PBDE100 <60 0.244 (−0.560, 1.048)

0.246 (−1.080, 1.573)

0.058 (−0.253, 

0.369) 0.044 (−2.977, 3.066)

−0.673 (−2.016, 

0.670)

≥60 −0.519 (−1.032, −0.005)

−0.626 (−1.473, 0.220)

−0.147 

(−0.345, 0.052)

−1.808 (−3.737, 

0.120)

0.166 (−0.691, 

1.024)

P for interaction 0.1103 0.2676 0.2676 0.3017 0.2926

PBDE153 <60 0.129 (−0.700, 0.958)

0.425 (−0.940, 1.789)

0.100 (−0.220, 

0.419)

−0.585 (−3.692, 

2.521)

−0.350 (−1.731, 

1.032)

≥60 −0.093 (−0.561, 0.374)

0.261 (−0.509, 1.031)

0.061 (−0.119, 

0.242)

−1.729 (−3.482, 

0.024)

0.388 (−0.391, 

1.168)

P for interaction 0.6401 0.8346 0.8346 0.5218 0.3525

PBDE154 <60 0.237 (−0.518, 0.993)

−0.005 (−1.249, 1.239)

−0.001 

(−0.293, 0.290) 0.474 (−2.363, 3.312)

−0.630 (−1.890, 

0.629)

≥60 −0.261 (−0.733, 0.211)

−0.569 (−1.346, 0.208)

−0.133 

(−0.315, 0.049)

−0.755 (−2.527, 

1.017)

0.186 (−0.601, 

0.973)

P for interaction 0.2637 0.4428 0.4428 0.4627 0.2721

(Continued)
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Our study revealed a significant relationship between PBDE-28 
and PBDE-47 levels and decreased testosterone levels in adult men. 
Research to date has primarily focused on BDE-47, which is the most 
prevalent PBDE congener found in human tissues (46). The primary 
histopathological changes in the testes of BDE-47-treated animals 
include degeneration and necrosis of the seminiferous epithelium, 
shedding of necrotic spermatocytes and supporting cells, and 
collapsed necrotic tubules (47). Several mechanisms have been 
proposed for BDE-47-induced testicular damage, including induction 
of apoptosis, increased reactive oxygen species (ROS), and disruption 
of hormonal homeostasis (48–51). Specifically, exposure to BDE-47 
strongly inhibited glutathione-associated enzymes (GPx, GST, and 
GSH), which may lead to increased peroxidation (52). BDE-47 
downregulated multiple genes involved in steroid hormone synthesis 
in Leydig cells, such as 17βHSD, Hsd3b6, Star, Asah1, Dhcr24, and 
Cyb5r3, suggesting that BDE-47 may impair spermatogenesis by 
inhibiting testosterone production (46–48, 53). The analysis of single-
cell RNA sequencing (scRNA-seq) data indicated a notable 
downregulation of Ncor1 and Kdm3a, implying that testicular injury 
induced by BDE-47 might occur via the alteration of androgen 
receptor signaling within supporting cells. Furthermore, BDE-47 
significantly reduced the expression of key genes involved in 
cholesterol biosynthesis, such as DHCR24 and CYBR3. These findings 

further support the notion that BDE-47 inhibits testosterone synthesis, 
as cholesterol is the precursor for all steroid hormones (31). 
Additionally, BDE-47 interferes with thyroid homeostasis and disrupts 
testicular steroidogenesis (31, 54–56). In contrast to BDE-47, there is 
limited experimental evidence regarding BDE-28. However, some 
studies suggest that BDE-28 may bind tightly to the thyroid hormone 
receptor (TRα), disrupting thyroid hormone signaling and 
subsequently affecting normal sex hormone levels (56, 57).

In our study, people aged 60 or above showed a more 
pronounced decrease in testosterone levels after BFR exposure. A 
reasonable explanation is that with age, testosterone levels in older 
individuals are more susceptible to inflammatory environments, and 
their antioxidant defenses are diminished, making them more 
vulnerable to BFR effects. Inflammation is a hallmark of aging, and 
it has been observed in various organs (58, 59). Animal studies have 
shown that aging mice exhibit increased pro-inflammatory 
cytokines and overactive macrophages in the testes (60). This 
inflammatory microenvironment is not conducive to testosterone 
production, but anti-inflammatory treatments can enhance 
testosterone levels (61). Detecting pro-inflammatory cytokines 
within the aging human testis may lead to the creation of anti-
inflammatory treatments aimed at alleviating the decline in fertility 
associated with aging. Additionally, oxidative stress is thought to 

TABLE 3 (Continued)

Brominated 
flame retardants

Age (year) Testosterone Free Testosterone Cbat Sex hormone 
binding 
globulin

Estradiol

PBDE209 <60 −0.062 (−0.920, 0.796)

0.728 (−0.683, 2.138)

0.170 (−0.160, 

0.501)

−1.335 (−4.544, 

1.875) 1.479 (0.051, 2.908)

≥60 0.064 (−0.556, 0.684)

1.006 (−0.013, 2.025)

0.236 (−0.003, 

0.475)

−3.314 (−5.633, 

−0.994)

0.161 (−0.871, 

1.193)

P for interaction 0.8111 0.749 0.749 0.3181 0.135

Brominated flame retardants were log2-transformed. Estimates were adjusted for age (continuous), race/ethnicity (categorical), marital status (categorical), poverty income ratio (continuous), 
education level (categorical), time of venipuncture (categorical), BMI (categorical), smoking (categorical), drinking (categorical), ltpa binded (categorical), hypertension (categorical), diabetes 
mellitus (categorical). *p < 0.05. The p-values that reached statistical significance are bolded.

TABLE 4 Associations between brominated flame retardants and sex hormones in American adult men by adjusted regression model.

Brominated flame 
retardantsa

Total testosteroneb Free testosterone Cbat Sex hormone 
binding globulin

PBDE17 −0.017 (−0.039, 0.004) −0.028 (−0.063, 0.008) −0.006 (−0.015, 0.002) −0.017 (−0.096, 0.061)

PBDE28 0.028 (−0.140, 0.196) 0.141 (−0.129, 0.411) 0.033 (−0.030, 0.096) −0.163 (−0.765, 0.439)

PBDE47 −0.021 (−0.043, 0.002) −0.037 (−0.073, −0.001)* −0.009 (−0.017, −0.000)* −0.039 (−0.119, 0.041)

PBDE85 −0.560 (−1.329, 0.209) −0.948 (−2.182, 0.286) −0.222 (−0.511, 0.067) −1.728 (−4.481, 1.024)

PBDE99 −0.058 (−0.138, 0.021) −0.110 (−0.237, 0.018) −0.026 (−0.056, 0.004) −0.129 (−0.414, 0.157)

PBDE100 −0.063 (−0.164, 0.038) −0.092 (−0.253, 0.070) −0.021 (−0.059, 0.016) −0.266 (−0.627, 0.094)

PBDE153 0.011 (−0.023, 0.044) 0.013 (−0.042, 0.067) 0.003 (−0.010, 0.016) −0.002 (−0.123, 0.119)

PBDE154 −0.558 (−1.568, 0.451) −1.216 (−2.835, 0.404) −0.285 (−0.664, 0.095) −1.532 (−5.147, 2.082)

PBDE209 −0.566 (−1.074, −0.059)* −0.778 (−1.593, 0.038) −0.182 (−0.373, 0.009) −1.606 (−3.425, 0.214)

Brominated flame retardants were log2-transformed. Estimates were adjusted for age (continuous), race/ethnicity (categorical), marital status (categorical), poverty income ratio (continuous), 
education level (categorical), time of venipuncture (categorical), BMI (categorical), smoking (categorical), drinking (categorical), ltpa binded (categorical), hypertension (categorical), diabetes 
mellitus (categorical). *p < 0.05.
aPBDE17–2,2′,4,4′,5,5′-hexabromobiphenyl (pg/g); PBDE28–2,4,4′-tribromodiphenyl ether (pg/g); PBDE47–2,2′,4,4′-tetrabromodiphenyl ethr (pg/g); PBDE85–2,2′,3,4,4′-pentbromodiphenyl 
ethr (pg/g); PBDE99–2,2′,4,4′,5-pentabromodiphnyl ethr (pg/g); PBDE100–2,2′,4,4′,6-pentabromodiphyl ether (pg/g); PBDE153–2,2′,4,4′,5,5′-hxbromodiphnyl ethr (pg/g); PBDE154–
2,2′,4,4′,5,6′-hxabromodiphyl ethr (pg/g); PBDE209, Decabromodiphenyl ether (pg/g).
bTotal testosterone (nmol/L); Free testosterone (nmol/L); Cbat (nmol/L); Sex hormone binding globulin (nmol/L); Estradiol (pg/ml).
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play a role in the harmful mechanisms linked to PBDEs (62, 63). 
Mitochondria are recognized for their essential function in the 
control of oxidative stress. Dysfunctional mitochondria are a key 
characteristic of the aging process and contribute to the increase in 
oxidative stress (64). Aged mitochondria, with reduced antioxidant 
capacity, are unable to cope with ROS induced by PBDEs, 
exacerbating testicular damage and leading to a more significant 
decline in testosterone levels.

The vast majority of published work was based on experimental 
analysis in  vitro or animal model. Limited human research has 
investigated the relationships between exposure to BFRs and levels of 
reproductive hormones. Certain studies have identified an inverse 
relationship between PBDEs and testosterone levels in males (37). A 
typical example is the findings of Makey et al. (2016), who also reported 
inverse associations between certain PBDE congeners, particularly 
BDE-153, and serum testosterone concentrations in North American 
men. Although their study was based on a smaller and more 
geographically limited population, the results provide supporting 
evidence for the endocrine-disrupting potential of PBDEs on male 
reproductive hormones (65). However, some studies did not observe 
significant associations (66). Furthermore, exposure data for newer 
BFRs (such as DBDPE and TBC) are still limited, and their long-term 
health effects are unclear (66–68). Related epidemiological evidence 
comes from small samples or specific exposed populations, leading to 
inconsistencies in the results. This is mainly due to the extensive 
diversity of BFR compounds, which exhibit significant variations in 
their metabolic rates, as well as the inherent challenges in precisely 
quantifying human exposure pathways. Furthermore, investigating 
hormone-related effects necessitates longitudinal monitoring through 
repeated blood or urine sample collection, a process that is often 
constrained by the scarcity of long-term tracking data.

Our study, utilizing real-world population data, has unveiled the 
potential health risks associated with chronic low-dose PBDE exposure 
in the general population. We  identified a significant correlation 
between PBDE-28 and PBDE-47 concentrations and testosterone level 
reduction in adult males, with a particularly pronounced effect 
observed among older males. While previous research has 
predominantly focused on higher brominated congeners or other BFRs, 
our findings demonstrate the equally concerning endocrine-disrupting 
potential of lower brominated PBDEs. Furthermore, considering that 
older males naturally experience age-related testosterone decline, 
we  hypothesize that PBDE exposure may exacerbate this process, 
potentially explaining the non-genetic factors contributing to the 
deterioration of reproductive health in this population.

This study holds significant public health implications. Based on 
our findings, preventive measures in household environments should 
focus on minimizing exposure to dust released from aging PBDE-
containing furniture and electronic devices. We  recommend 
comprehensive screening combining hormone levels assessment and 
pollutant load analysis for older males exhibiting both low testosterone 
levels and high PBDE exposure, enabling early identification of at-risk 
individuals and timely intervention strategies. Regrettably, current 
research predominantly emphasizes the neurotoxicity and 
carcinogenicity of BFRs, while the chronic low-dose effects on the 
reproductive system remain inadequately addressed, possibly due to 
public health prioritization.

This study acknowledges several limitations. Since our research 
relied on cross-sectional data derived from NHANES, it could only 

illustrate simultaneous relationships between PBDE exposure and 
testosterone levels, without confirming the temporal sequence of 
exposure and associated hormonal changes. Given the long half-
life of PBDEs, concentration measurements at a single time point 
may not fully reflect long-term cumulative exposure, potentially 
underestimating the association strength between chronic exposure 
and reproductive impairment. Since PBDE exposure levels are 
closely related to lifestyle factors, the generalizability of our 
findings to non-US populations remains unverified. Furthermore, 
while our study focused exclusively on PBDEs, with traditional 
BFRs being phased out, future research should investigate the 
effects of emerging brominated or organophosphate 
flame retardants.

5 Conclusion

This study establishes a significant link between BFRs and 
hormone levels in American adult males. We have demonstrated that 
exposure to PBDE-28 and PBDE-47 is associated with decreased 
testosterone levels, particularly evident in the older male population. 
These findings highlight the endocrine-disrupting potential of PBDE 
congeners and emphasize the necessity for further investigation into 
their long-term health implications.
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