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Introduce: Urban street spatial quality, as an intervenable environmental factor

from the perspective of public health, significantly a�ects residents’ mental

health and emotional wellbeing. Accurately identifying emotional hot spots in

urban environment and exploring the mechanism of environmental features

a�ecting emotions are crucial for improving residents’ mental health level,

promoting healthy urban planning and creating a sustainable urban environment.

Methods: This study employed an interdisciplinary approach, utilizing street

view images from Liwan District, Guangzhou, China. A Pyramid Scene Parsing

Network (PSPNet) was applied to quantify 18 key environmental features,

including the Green View Index (GVI), Space Openness (SO), Enclosure Index

(EI), etc. By integrating an emotion dataset assessed by 40 experts, a random

forest model was constructed to predict emotional responses to di�erent

street spaces. Emotional distribution maps were generated using ArcGIS Pro to

identify emotional hotspots. Subsequently, SHAP (SHapley Additive exPlanations)

analysis was conducted to explore how environmental features influence

emotional responses.

Results: The analysis revealed the following: (1) Positive emotions were

significantly associated with areas of well-vegetated, while negative emotions

were predominantly concentrated in industrial zones and narrow alleys. (2) GVI,

sky-green ratio, EI, and SO had a notable impact on emotional responses.

(3) The optimal range for the GVI (0.27–0.3) was found to maximize positive

emotional valence. Beyond this range, further increases in the GVI did not result

in significant emotional changes.

Discussion: This study demonstrates the feasibility of predicting public

emotional responses from street view images using machine learning.

Optimizing green spaces and improving pedestrian environments can

promote emotional health. To e�ectively balance the distribution of urban

green spaces and maximize public health benefits, it is recommended that

governments collaborate with communities, leveraging fiscal incentives

and green infrastructure investments to promote equitable and sustainable
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development of green spaces. These findings play a crucial role in advancing

both public health and environmental sustainability.

KEYWORDS

green space, street view, Green View Index, machine learning, emotional responses,

public health, health planning, sustainable development

1 Introduction

From the perspective of health geography, urban street space,

as an active element in public health intervention, is undergoing

a shift in values—from prioritizing efficiency to emphasizing

human wellbeing. To optimize street space, it is crucial to

improve its potential for environmental healing through designs

that provide emotional support. This approach not only helps

improve residents’ mental health but also addresses disparities

in social welfare, providing spatial solutions for health equity.

By adopting design strategies that foster positive emotional

experiences, the street environment can be optimized to enhance

residents’ sense of wellbeing and contribute to the creation of

more psychologically supportive urban spaces (1). By adopting

design strategies that promote positive emotional experiences,

the street environment can be optimized to enhance residents’

wellbeing and contribute to the creation of more psychologically

supportive urban spaces. Various countries and regions, such as

those in Scandinavia and the United States, have implemented

measures to optimize street spaces, focusing on the introduction

of green spaces and enhancing walkability to foster residents’

mental health and social interactions (2, 3). However, existing

urban governance frameworks often neglect the emotional aspect of

place-making, potentially exacerbating health inequalities among

different socio-economic groups. For example, computer vision

assessments have revealed stark disparities in neighborhood visual

environments along socio-economic lines (4), underscoring that

poorer communities often endure inferior streetscape conditions.

Recent research also advocates leveraging artificial intelligence

to analyze the built environment for public health, aiming to

uncover and address such spatial inequities (5). As such, the

deep connection between street environments and residents’

emotional perceptions warrants urgent exploration. This will

provide theoretical support for the creation of high-quality street

spaces and promote the development of cities in a more livable and

human-centered direction.

Emotion serves as a bridge between humans and their

environments, reflecting subjective perceptions of space and

influencing behavior and social relationships (6–8). The AR model

provides a theoretical framework for the interaction between

environmental perception, emotional responses, and behavior,

suggesting that environmental features influence emotions through

perception, with emotions playing a crucial mediating role in

this process (9). Therefore, the design of street environments

should not only meet physical functional needs but also consider

their potential impact on residents’ emotional states. Quantitative

monitoring of emotional states, as a new perspective in public

health research, with its multidimensional features (such as

pleasure, anxiety, etc.) (10), can not only effectively assess the

quality of the built environment but also provide valuable insights

for preventive public health interventions (11, 12). Nevertheless,

studies have revealed biases when comparing objective mappings

of urban environments with residents’ subjective perceptions

(13), highlighting that conventional assessments may overlook

the human experiential dimension. To bridge this gap, recent

approaches have begun integrating multi-source urban data—

combining street-view imagery, real-time traffic patterns, points

of interest, and survey-based comfort evaluations—to assess

pedestrian experiences more holistically (14).

Visual perception, as a core dimension of urban planning, is

predominantly reflected in the direct impact of visual indicators

such as the Green View Index (GVI) on emotional responses

(15). The influence of street spatial features on residents’

emotional perceptions has gradually become a research focus in

recent years (16, 17). Various studies on street environments

have proposed evaluation indicators to characterize the material

features and quality of street spaces, providing a foundation

for understanding the complex relationship between street

environments and emotional responses. The GVI, and space

openness (SO) are core indicators for assessing street greenery

and visual openness (18–21). In addition, scholars such as Jacobs

(22) and Jan Gehl (23) have emphasized that street design

should prioritize walkability over vehicle flow efficiency, as high-

density traffic and narrow passageways are considered major

factors that undermine pedestrians’ sense of safety (24, 25).

Epidemiological studies have confirmed that exposure to high

traffic volume is significantly positively correlated with pedestrian

anxiety levels, while walkability-oriented design has been shown to

reduce the risk of cardiovascular diseases (26, 27). Furthermore,

pedestrian presence, as a key indicator of street vitality, not

only reflects the degree of support the street offers for walking

activities but also plays an important role in enhancing residents’

positive emotional perceptions. The diversity of architectural and

landscape features (such as facade decorations) can enhance

visual complexity, potentially facilitating human-environment

interaction (28, 29). Finally, based on the principles of diversity

and comprehensiveness, we considered various aspects such as

spatial physical features, visual perception, and accessibility, and

selected 18 indicators, including GVI, SO, Accessibility, Enclosure

Index (EI), and Complexity, as means to evaluate the features of

street environments.

The research focuses on six emotions: pleasure, relaxation,

curiosity, anxiety, unsafety, and loneliness. Their selection was

informed by prior empirical studies and established emotion
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theories. Akgün-Tanbay et al. (30) and Bivina and Parida (31)

highlight that pedestrians prioritize safety and comfort, with

emotions such as relaxation, pleasure, and safety directly reflecting

the quality of the walking experience (32). Specifically, pleasure

corresponds to positive emotions evoked by aesthetically pleasing,

comfortable, and green environments, aligning with the pleasure

dimension in Russell’s widely used pleasure–arousal–dominance

(PAD) framework (33). Relaxation draws on Kaplan’s (34)

Attention Restoration Theory (ART), which posits that restorative

urban features (e.g., greenery, open spaces) alleviate mental fatigue

and promote calm. Curiosity, often expressed as attraction, reflects

the likelihood of pedestrians choosing a particular street (35).

Anxiety and unsafety reflect psychological distress and perceived

threats in public spaces, key factors in evaluating pedestrian

wellbeing (36). Loneliness captures perceived social disconnection

within urban environments, strongly associated with public health

concerns such as depression and isolation (36). Collectively, these

six emotions provide a balanced representation of positive and

negative experiences, and cover hedonic, safety-related, cognitive,

and social dimensions of pedestrians’ subjective perceptions of the

urban environment. Their spatial distribution features can provide

decision-making insights for the allocation of community mental

health services and resources.

Street view big data captures the street environment at

the human visual scale using panoramic images, providing a

spatially organized, high-precision data foundation for quantifying

emotional perception. Its integration with computer vision

technologies, such as semantic segmentation, has significantly

enhanced the efficiency of identifying environmental features.

High-performance algorithms, such as theMask R-CNN developed

by He et al. (37) and the Pyramid Scene Parsing Network

(PSPNet) proposed by Zhao’s team (38), have greatly improved the

accuracy of identifying urban environmental elements (39). These

advancements provide a technological foundation for large-scale

urban spatial quantification research and drive the paradigm shift

in public health research from traditional epidemiological surveys

to Digital Health, aligning with the technological innovation focus

of theWHOHealthy Cities assessment. The street scene perception

model developed by Zhang’s team (39) using the PlacePulse

dataset enables macro-scale urban perception evaluation. Qi

et al. (40) revealed the spatial distribution mechanisms of

street vitality by extracting visual features through deep neural

networks and proposed environmental optimization strategies.

While existing research has confirmed the effectiveness of street

view data in environmental analysis (41–45), challenges remain

in the analysis of emotional perception mechanisms. First, many

previous studies have used linear regression models (e.g., OLS)

to examine the impact of the environment on emotions, which

oversimplifies the complex interactions between environmental

features and emotional responses (46–49), making it difficult

to capture threshold effects of environmental features like the

GVI and nonlinear responses. Even advanced data-driven studies

tend to rely on linear correlations for environment–perception

relationships (50), indicating that key nonlinear dynamics remain

unaddressed. Second, these studies have neglected the spatial

heterogeneity of emotional geography and failed to systematically

explore the patterns of emotional distribution, resulting in a lack of

spatial targeting in intervention designs.

To address these limitations, this study integrates Explainable

Artificial Intelligence (XAI) with the One Health framework,

responding to the WHO’s initiative on the relationship between

the built environment and mental health. An interdisciplinary

analytical framework is developed, combining Geographic

Information Systems (GIS) to quantify spatial heterogeneity,

SHAP attribution analysis to decipher nonlinear interaction

pathways, and deep coupling of psychological emotional

dimensions with computer vision-based feature extraction. This

framework advances beyond single-disciplinary paradigms with a

methodological innovation for emotion-responsive street design,

enabling targeted identification of emotional hotspots as spatial

clusters of predicted intensity and revelation of differentiated

thresholds for features like GVI.

The study focuses on the Liwan District of Guangzhou,

Guangdong Province, China. As one of Guangzhou’s historical

urban cores, Liwan District possesses rich cultural heritage and

diverse street morphologies, making it a representative and

highly relevant case study. Using the PSPNet technique, the study

performs semantic segmentation on street-view images to extract

urban environmental features. Based on these features, a random

forest algorithm is employed to construct an emotional perception

prediction model, capturing six emotions: pleasure, relaxation,

curiosity, anxiety, unsafety, and loneliness. This study uses SHAP

attribution analysis to explore the potential nonlinear interactions

between street environment features and residents’ emotional

responses. By leveraging street-view big data and machine

learning techniques, it introduces an innovative multidimensional

framework for measuring and analyzing emotional perceptions.

This framework provides technological support for urban

perception research and enhances the understanding of how street

environments affect human emotions.

The study aims to achieve the following three objectives:

(1) To construct a multidimensional emotional perception

prediction model based on street-view images from the

Liwan District;

(2) To predict and reveal the emotional geography features of

Liwan District, clarifying the distribution patterns of emotions

in street spaces;

(3) To explore the complex nonlinear relationship between street

environment features and residents’ emotional perceptions

using SHAP attribution analysis.

In response to the growing global burden of mental health

issues, this research combines street-view big data with Explainable

Artificial Intelligence (XAI) to analyze the nonlinear impact

of street environments on emotional perception. By identifying

the spatial distribution patterns of emotional hotspots and their

associated environmental features, the study provides strong

support for urban design strategies and offers evidence-based

spatial intervention solutions for policymakers in the development

of healthy cities. This research aims to help reduce the mental

health burden caused by environmental factors and contribute to

the advancement of urban health research.
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2 Materials and methods

2.1 Study area

The study focuses on Liwan District, Guangzhou, China

(23◦07′ N, 113◦15′ E; population: 1.12 million), is a dense

urban area with mixed land-use and varied street patterns,

reflecting typical characteristics of rapidly urbanizing cities in

southern China (Figure 1). Recent initiatives inspired by the

WHO’s “Healthy Cities” framework have focused on improving

the built environment through green space development and

pedestrian infrastructure upgrades (51), The availability of high-

resolution street view data facilitates detailed analysis of micro-

scale environmental features and their associations with health

disparities identified in previous research (52).

2.2 Data sources and data collection

2.2.1 Street view image data collection
This study utilizes the Baidu Maps Static API to scrape

street-view image data. Road network data is extracted and

optimized from OpenStreetMap (Remove highways and add

sidewalks), resulting in a corrected road centerline with a total

length of 619,073 meters. Using ArcGIS Pro software, sampling

points are set at 50-meter intervals along the road centerline,

with 11,911 WGS1984 geographic reference coordinates selected

(Figure 2A). To enhance efficiency and reduce environmental

impact, Python 3.7 is used to automatically obtain images

from the Baidu Maps API. Four street-view images (1,000 ×

750 pixels) are captured from each sampling point in four

directions (Figure 2B). The final dataset consists of 9,955 valid

sampling points and 39,820 high-resolution images, covering

a variety of environments to ensure the representativeness of

the sampling.

2.2.2 Emotional response training data acquisition
Expert elicitation was conducted to establish reliable emotional

response metrics. Amultidisciplinary panel of 40 experts, including

urban planners, psychologists, and public health specialists,

evaluated 600 randomly selected street view images using a five-

point Likert scale. Emphasis was placed on six key emotional

dimensions: pleasure, relaxation, curiosity, anxiety, unsafety, and

loneliness. Structured consensus discussions resolved inter-rater

discrepancies, ensuring consistent and validated emotional ratings.

FIGURE 1

Study area. (A) China, (B) Guangdong province, (C) Guangzhou city, (D) Liwan District.
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FIGURE 2

Street attractions sampling map. (A) Road network and its sampling points, (B) street panorama composed of street view from four directions.

Final scores were categorized into three tiers: (1) negligible, (2)

moderate, and (3) significant.

2.3 Methodology

The study consists of three primary phases: image

recognition, database construction, and model development

and interpretation. Figure 3 illustrates the overall process of

studying emotional responses in urban street spaces using big data

and machine learning.

Image recognition phase: Street View images were collected

from sampling points, and a PSPNet deep learning model was

applied for semantic segmentation to extract the pixel proportions

of features in the Street View. This method enhanced the accuracy

of environmental feature extraction while reducing reliance on

manual surveys, fostering sustainable research.

Database construction phase: Eighteen key indicators,

encompassing both composite and individual metrics, were

derived from the PSPNet segmentation results to construct the

spatial environmental feature database. An emotional response

database was also developed based on expert ratings.

Model development and interpretation phase: A random forest

model was developed using SPSS Modeler for predictions, while

ArcGIS Pro was used to generate layered emotional response maps.

To interpret the model, SHAP (Shapley Additive Explanations) was

applied, providing insights into how different features contributed

to the predictions. This approach allows for a deeper understanding

of the complex, nonlinear relationships between environmental

features and emotional responses, helping urban planners prioritize

interventions that improve sustainability and wellbeing.

2.3.1 Extraction of street environment features
This study used PSPNet for semantic segmentation of street

view images. PSPNet, with its Pyramid Pooling Module (PPM),

performs multi–scale feature extraction and fusion, capturing

global scene context. This reduces misidentification of fine–grained

features in complex urban areas and improves discrimination

of spatial elements, demonstrating its effectiveness in analyzing

intricate urban scenes.

Trained on the ADE20K dataset, the PSPNet model achieved a

mean Intersection over Union (mIoU) over 80%, indicating great

performance in multi–object semantic segmentation tasks (38).

It’s ideal for analyzing diverse street view environmental features.

Using PSPNet, we segmented street view image elements and

extracted key features such as GVI, building coverage, and SO,

generating a high–resolution spatial feature dataset.

By integrating multi-scale feature extraction with semantic

segmentation, PSPNet enables precise quantification of the pixel

proportions of street view features, providing high-quality data

to explore the relationship between street environments and

emotional response.

2.3.2 Construction of environmental features
indicators

Based on the results of semantic segmentation, this

study developed a series of environmental feature indicators
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FIGURE 3

Research workflow for modeling emotional responses to urban street environments. (A) Image recognition, (B) database construction, (C) model

development and interpretation.

encompassing both single and composite features. Single features

include the pixel proportions of roads, buildings, vegetation, and

sky, while composite indicators, such as GVI, SO, EI, and spatial

complexity, provide more detailed representations of the urban

environment (Table 1).These indicators comprehensively reflect

the physical features of street environments and play a critical role

in quantifying residents’ emotional response.

2.3.3 Development and interpretation of the
emotional response prediction model

This study utilized SPSS 27.0 for descriptive analysis and IBM

SPSS Modeler 18.0 to develop a random forest model. Descriptive

statistics analyzed the frequency distribution and trend changes

of the data. The random forest algorithm, proposed by Breiman

(53), is an ensemble learning method based on decision trees,

characterized by high prediction accuracy and robust tolerance

to outliers and noise. By constructing many decision trees and

aggregating their outputs, the random forest algorithm improves

performance, making it suitable for large datasets with high

efficiency and strong predictive power.

In this study, the random forest regression model

used street spatial features to predict residents’ emotional

response scores, assessing the influence of spatial features on

emotional responses.

To address the random forest model’s “black-box” nature

and enhance interpretability of feature contributions, the study

used SHAP (54), a game theory-based method that quantifies

each feature’s marginal impact on model predictions. SHAP not

only captures complex nonlinear associations between variables,

but also enables a quantitative assessment of feature importance,

thereby providing a novel framework for elucidating the latent

mechanisms linking emotional responses with street environment

characteristics. It supports both global understanding and local

interpretability by revealing how individual features influence

specific predictions.
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TABLE 1 Components of composite indices.

Indicator Description Objective function equation

Green View Index The proportion of pixels representing vegetation and grass in the street scene. C1 =
Ptree+Pgrass+Pplant

Pall

Accessibility The ratio of vehicle pixels to total road pixels in the street view image, used as a measure of road

traffic flow.

C2 = 1− Pcar
Pcar+Proad

Enclosure Index The degree of spatial enclosure created by buildings, trees, and vertical structures (walls,

signboards, streetlights).

C3 =
Pbuilding+Ptree+Pstruct

Pall

Space Openness The proportion of open space, excluding surrounding building masses, in the street view image. C4 = 1−
Pbuilding
Pall

Depth to height ratio The ratio of the average height of buildings on both sides of the street to the street width. C5 = 10.459e−5.2094Psky

Degree of motorization The proportion of street space occupied by motor vehicle lanes. C6 =
Proad−Psidewalk−Ppath−Prunway

Pall

Complexity The ratio of the number of street elements with a proportion exceeding 0.1%−30%. C7 =
Countp

30

Sky-green space ratio The proportion of sky area and vegetation area in the image. C8 =
Ptree+Pgrass+Pplant+Psky

Pall

∗∗Pcategory represents the proportion of the category in the image.

As an additive model, SHAP treats each feature as a contributor,

calculates its contribution, and sums the contributions to generate

the final prediction. In this study, SHAP values were the

interpretation tool. The random forest model was configured

with key hyperparameters, including the minimum samples at

each leaf node (min_samples_leaf = 5) and the number of trees

(n_estimators = 200). SHAP values for the test set samples

were calculated by instantiating shap. Kernel Explainer with

the prediction function and the training dataset. The specific

calculation process of SHAP is as follows (55):

SHAPj =
∑

S⊆{V1 ,V2 ,...,Vp}\{Vj}

|S|!
(

p− |S| − 1
)

!

P!

[

fx
(

S ∪
{

Vj

})

− fx (S)
]

yi = ybase +

k
∑

SHAP
(

xij
)

j=1

In the formula: SHAPj is the SHAP value of any sample

in feature j; S is the subset of features used in the model;

Vp is the set of features in the model; p is the number of

features; fx (S) is the prediction result of the model in the

feature subset; yi is the prediction result at sample i; ybase is

the average value of the prediction values of other samples;

SHAP
(

xij
)

is the SHAP value of sample i at feature j; k is the

number of features. The SHAP value is an additional feature

attribution method, which interprets the prediction value of the

model as the sum of the attribution values of each input feature.

Therefore, the positive and negative values of SHAP
(

xij
)

express

the specific impacts of different street view space features on

emotional response.

By integrating high-precision street view data, deep learning-

based semantic segmentation, and the SHAP method, this study

achieved a scientifically rigorous full-chain approach from data

collection to result interpretation. Moreover, the developed

methodological framework demonstrates strong adaptability,

enabling its extension to other high-density urban environments

and providing feasible solutions for achieving sustainable

urban development.

3 Results

3.1 Description and analysis of the built
environment

The study conducted a multi-dimensional characteristic

analysis of the built environment data, aiming to comprehensively

understand the influence mechanism of various elements of the

built environment on residents’ emotions. Table 2 presents

the descriptive statistics of each indicator. For example,

the mean value of the GVI is 0.175, indicating a relatively

low level of greenery. The mean value of the accessibility

indicator is 0.696, reflecting a high level of accessibility in

the region, which enables residents to easily access amenities

and services. These metrics, combined with the degree of

motorization and environmental complexity, elucidate urban

emotional dynamics.

3.2 Analysis of emotional response model
prediction results

The training results are presented in Table 3. The model

aligns with subjective evaluations, identifying intervention hotspots

(e.g., green space development). For example, areas with low

greenery and high anxiety levels replace with require vegetation

augmentation and micro-green space implementation.

Using the trained random forest model, we generated

emotional response predictions for the streets (Table 4). Results

show higher levels of pleasure (mean value 1.96, with 22.1%

experiencing high levels), indicating that residents generally feel

positive about their street environments. However, loneliness and

unsafety were lower (mean 1.35 and 1.33, respectively), with only

7.5 and 2.1% reporting high levels. This suggests a need to focus

on improving street spaces to reduce negative emotions. Relaxation

was relatively common (mean 1.71, 10.5% high), but curiosity

was weaker (mean 1.49, 29.3% moderate). Anxiety was moderate

(mean 1.57).
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TABLE 2 Descriptive statistics of built environment.

Sort Factor Min Max Mean SD

1 Green View Index 0.000000 0.619938 0.175172 0.137401

2 Accessibility 0.000000 0.959919 0.695675 0.186783

3 Enclosure Index 0.073105 0.922809 0.447119 0.145424

4 Space Openness 0.154934 0.999366 0.749251 0.172771

5 Depth to height ratio 0.000082 1.000000 0.227872 0.267498

6 Degree of motorization −0.268076 0.360933 0.129168 0.095299

7 Complexity 0.166667 0.600000 0.335278 0.069004

8 Sky-green space ratio 0.001602 0.831097 0.336281 0.164879

9 Building 0.000828 0.473067 0.159009 0.105615

10 Road 0.000634 0.845066 0.250889 0.172005

11 Tree 0.001381 0.379706 0.170486 0.076613

12 Sky 0.000000 0.514718 0.143538 0.123806

13 Wall 0.000000 0.621462 0.032476 0.063889

14 Earth 0.000000 0.302734 0.020398 0.039373

15 Car 0.010028 0.316441 0.082067 0.049900

16 Sidewalk 0.000000 0.325158 0.036644 0.044324

17 Person 0.000000 0.093076 0.002551 0.007126

18 Truck 0.000000 0.414443 0.011383 0.041960

TABLE 3 Model accuracy of random forest classifiers.

Dataset type Pleasure Relaxation Curiosity Anxiety Unsafety Loneliness

Training set 97.22% 95.51% 91.24% 97.22% 94.87% 95.30%

Test set 75.76% 71.97% 55.30% 72.73% 69.70% 65.91%

3.3 Geospatial analysis of emotional
perception

The Pearson correlation analysis of six emotional responses

(Table 5) identified significant correlations (p < 0.01) among

most emotions, except between loneliness and curiosity.

Positive emotions (pleasure, relaxation, curiosity) exhibited

strong intercorrelations, with pleasure-relaxation (r = 0.522),

relaxation-curiosity (r = 0.48), and pleasure-curiosity (r =

0.55). Negative emotions (anxiety, unsafety, loneliness) also

correlated positively, including anxiety-unsafety (r = 0.477),

unsafety-loneliness (r = 0.139), and anxiety-loneliness (r =

0.173). Spatial trend consistency across emotional categories

reflects urban features’ universal perceptual influence. Notably,

the strong association between pleasure and relaxation (r = 0.522)

suggests that enhancing relaxation-promoting elements (e.g., green

spaces, reduced congestion) can significantly improve overall

emotional wellbeing.

Spatial visualization of emotional responses in Liwan

District (Figure 4) revealed that positive emotions (pleasure,

relaxation) were more prevalent in areas with high-quality

urban features, such as public service zones, well-maintained

alleyways, riverside green spaces, modern residential districts,

and renovated urban villages. In contrast, lower-quality

environments (e.g., industrial areas, underdeveloped spaces)

exhibited heightened anxiety and unsafety. Spatial patterns

inform policy priorities for green infrastructure-driven emotional

wellbeing enhancement.

Pleasure and relaxation demonstrated spatial overlap,

while curiosity and loneliness were diffusely distributed.

Pleasure and relaxation had similar spatial distributions,

with the highest intensity in public service areas (such as

parks and educational institutions), riverside green belts,

and modernized urban spaces (e.g., eastern Chajiao Street

and Huadi Street). Key cultural and tourism hubs, like the

Shamian Tourism Zone, Enning Road, and Zhongshan 8th

Road, also elicited strong positive emotional responses,

highlighting the significance of aesthetically and functionally

optimized urban spaces. Major traffic corridors, including

Huadi Avenue, Huangsha Avenue, and Longxi Avenue,

contributed positively, probably because of their role in

urban connectivity and development. In contrast, curiosity
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TABLE 4 Emotional responses predictions (Liwan District).

Emotion Mean value Low (%) Medium (%) High (%) Low perception Medium
perception

High
perception

Pleasure 1.96 26.4 51.5 22.1

Relaxation 1.71 39.6 49.9 10.5

Curiosity 1.49 61.0 29.3 9.7

Anxiety 1.57 51.6 40.3 8.1

Unsafety 1.33 69.0 29.0 2.1

Loneliness 1.35 71.1 22.4 7.5

TABLE 5 Correlations between environmental features and emotional responses.

Emotion Pleasure Relaxation Curiosity Anxiety Unsafety Loneliness

Pleasure 1 0.522∗∗ 0.055∗∗ −0.488∗∗ −0.384∗∗ −0.137∗∗

Relaxation 0.522∗∗ 1 0.048∗∗ −0.511∗∗ −0.405∗∗ −0.149∗∗

Curiosity 0.055∗∗ 0.048∗∗ 1 −0.026∗∗ −0.047∗∗ 0.032∗∗

Anxiety −0.488∗∗ −0.511∗∗ −0.026∗∗ 1 0.477∗∗ 0.173∗∗

unsafety −0.384∗∗ −0.405∗∗ −0.047∗∗ 0.477∗∗ 1 0.139∗∗

Loneliness −0.137∗∗ −0.149∗∗ 0.032∗∗ 0.173∗∗ 0.139∗∗ 1

∗∗At the 0.01 level (two-tailed), the correlation is significant.

and loneliness had a more even spatial distribution, with fewer

distinct high–perception areas.

Anxiety and unsafety clustered in lower-quality environments,

particularly in industrial zones (e.g., Longxi Panlong) and urban

villages (e.g., Tanwei Village, Xijiao Village), where poor spatial

quality, inadequate infrastructure, and limited greenery suppressed

positive emotions. The Guangfo Sci-tech Innovation Cluster

and western Datan Sha Island demonstrated similar trends,

highlighting the negative impact of underdeveloped spaces. While

loneliness was less pronounced district-wide, it was slightly elevated

in southwestern Pearl River regions, likely due to lower population

density and reduced urban vibrancy.

3.4 Relationship between street spatial
features and emotional response

In the global sample, factors such as GVI, EI, sky-green

space ratio, earth, trees, and accessibility significantly influence
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FIGURE 4

Spatial distribution of predicted emotional responses in Liwan District. (A) Pleasure, (B) relaxation, (C) curiosity, (D) anxiety, (E) unsafety, (F) loneliness.

emotional responses and are key elements in street renovation.

In contrast, elements such as walls, degree of motorization,

cars, and trucks have a lower influence on emotional response

(Figure 5). Walls, serving as static boundaries, lack the potential

to evoke significant emotional fluctuations. Similarly, cars

primarily serve as modes of transportation, and pedestrians tend

to prioritize safety and mobility over the emotional impact of

cars. However, under specific circumstances, such as artistic

graffiti on walls or traffic congestion due to car accidents,

these factors can become significant variables influencing

emotional response.

3.4.1 Influence of features on positive emotions
Figures 6A–C presents the SHAP beeswarm plots, which

visualize the impact of each street spatial feature on model

predictions of positive emotional responses, namely pleasure,

relaxation, and curiosity. In these plots, each point represents a

SHAP value for a single sample, with the color indicating the

corresponding feature value (red: positive gain, blue: negative

gain). Features are ordered by their overall importance, and the

distribution of SHAP values illustrates both the magnitude and

direction of each feature’s effect.

The results indicate that pleasure and relaxation are strongly

influenced by environmental features such as GVI, EI, sky-

green space ratio, earth, and trees. Among them, GVI emerges

as the most influential predictor of positive emotions, which

aligns with previous research findings (56, 57). According to

ART, natural environments capture involuntary attention, allowing

individuals to disengage from intense cognitive activities and

restore attentional resources (58). Stress Reduction Theory (SRT)

further posits that elements in natural environments, such as

green plants and water bodies, can reduce both physiological and

psychological stress levels (59).

In particular, a moderate GVI (e.g., 20%−40%) not only

increases time spent in the street but also significantly reduces

anxiety. However, overly homogeneous or functionally inadequate

green spaces may reduce these positive effects (60). EI reflects the

integrated effect of buildings and natural features in shaping an

enclosed space; when paired with ample vegetation and complete

facilities, high enclosure can enhance feelings of pleasure, while

narrow or dimly lit spaces may impair perceptual comfort.
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FIGURE 5

Feature importance of street environmental variables in predicting emotional responses (SHAP ranking). (A) Pleasure, (B) relaxation, (C) curiosity, (D)

anxiety, (E) unsafety, (F) loneliness.

Similarly, the sky-green space ratio promotes both pleasure and

relaxation, with visual openness and perceived comfort playing

key roles.

The earth is found to be negatively correlated with pleasure

when poorly maintained but enhances walking experience when

well-paved. The sky, as an element contributing to openness, is

positively associated with pleasure. Trees, a major component of

GVI, further amplify the psychological benefits of street greenery

by adding depth and vertical layering to the visual field.

On the other hand, curiosity, as a more dynamic and

individualized emotion, exhibits distinct influencing factors. As

shown in Figure 6C, crowd density, accessibility, sky, and sidewalk

design are key drivers of curiosity. Unlike pleasure or relaxation,

which are primarily evoked by natural features, curiosity is more

closely tied to the narrative quality and spatial complexity of the

urban environment. People with different spatial preferences may

be drawn to either tranquil, green settings or culturally complex and

functionally diverse spaces. In particular, built environments with

historical significance or unique design features appear to stimulate

stronger exploratory impulses.

3.4.2 Influence of features on positive emotions
The mechanisms behind negative emotions are more complex.

Anxiety and unsafety are closely related, primarily influenced by the

GVI, sky-green space ratio, and trees (Figures 6D–F). These factors

affect negative emotions in a manner opposite to positive emotions.

A higher GVI alleviates anxiety and unsafety, while a lower

index is linked to disordered environments. Traffic flow, especially

congestion, increases noise and reduces efficiency, contributing to

anxiety and unsafety.

Additionally, a moderate sky view, such as the sense of

openness in rural or suburban areas, can also help alleviate anxiety.

Furthermore, vibrant commercial areas and high-grade public

service facilities, which foster active crowds and well-equipped

environments, positively contribute to reducing anxiety.

The sky-green space ratio complements the GVI by

compensating for the lack of sky visibility. Lower sky-green

space ratio tends to be accompanied by stronger feelings of

anxiety and unsafety. The role of vegetation is consistent with

the GVI, but its impact is more concentrated. To mitigate

these negative feelings, optimizing pedestrian infrastructure

and increasing commercial activity in underutilized areas

can significantly enhance street vitality and create a safe and

comfortable atmosphere. Busy commercial areas can promote

pedestrian activity, increase natural surveillance, and foster a sense

of community belonging, thereby reducing feelings of anxiety

and unsafety.

Following these factors, EI and accessibility also have significant

effects on negative emotions. Anxiety may be exacerbated under

high containment conditions, such as narrow lanes, obstructed

views, or dimly lit alleys, while low traffic accessibility usually

implies traffic congestion, which predisposes to feelings of unsafety.

To alleviate these problems, strategies such as widening streets,

improving pedestrian facilities, and improving lighting in enclosed

areas may reduce the psychological impact of spatial enclosure and

traffic congestion.

The overall incidence of loneliness is relatively low, but

it is closely related to scene vitality and foot traffic density.

Environments with sparse foot traffic are more likely to trigger

feelings of isolation and loneliness. However, there were significant

differences in individual responses to loneliness: familiar scenes

or group activities were effective in alleviating loneliness, whereas
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FIGURE 6

SHAP beeswarm plots of street features for predicting emotional responses. (A) Pleasure, (B) relaxation, (C) curiosity, (D) anxiety, (E) unsafety, (F)

loneliness.

desolate or activity-poor spaces may exacerbate the experience

of loneliness.

3.4.3 Spatial features and mixed emotional
responses

The diversity of spatial features can trigger multiple emotional

responses, reflecting significant interactional complexity. High GVI

usually enhances pleasure and relaxation, butmay induce loneliness

under certain loneliness, depending on the spatial function and

individual psychological state. The proportion of sky-green space

ratio has a clear positive effect on positive emotions, and its

visual and psychological functions play multiple roles in alleviating

anxiety and stimulating curiosity; its ecological benefits (e.g., air

purification, carbon neutrality) indirectly contribute to the overall

enhancement of environmental quality and residents’ emotional

health. However, monotonous or poorly personalized designs can

exacerbate feelings of loneliness.

EI exhibits a dual effect: a high degree of enclosure combined

with rich natural elements and good facilities can stimulate

positive emotions such as curiosity and relaxation, but insufficient

lighting or oppressive spatial designs can exacerbate anxiety and

unsafety. This duality is particularly evident in historic districts and

commercial spaces, where the spatial features can simultaneously

stimulate a sense of exploration while potentially causing stress due

to enclosure or crowding.

Mixed emotional responses are nonlinear and context-

dependent. By optimizing spatial design and harmonizing natural

and artificial elements, urban spaces can better meet diverse

emotional needs, enhancing emotional quality and providing

higher emotional value, while improving ecological benefits.

3.5 Clustered coupling analysis of
emotional response features

Figure 7 shows the SHAP decision heatmap, with the x-axis

representing 120 emotional response data samples and the color

encoding representing the SHAP values of each factor. The baseline

f (x) represents the model’s predicted average value, where values
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FIGURE 7

Heatmap of SHAP-derived interaction patterns between street features and emotional responses. (A) Pleasure, (B) relaxation, (C) curiosity, (D) anxiety,

(E) unsafety, (F) loneliness.

above the baseline indicate high perception and those below

indicates low perception. To clarify the interaction of multiple

factors, the study uses SHAP results to segment the diagram with

dashed boxes, highlighting the coupling mechanisms of primary

factors influencing emotional response. This approach deepens the

understanding of the relationship between the street environment

and pedestrian emotional response, providing a foundation for

urban street planning and design.

3.5.1 Coupling patterns of positive emotions
For positive emotional responses, factors such as the GVI

play significant regulatory roles: For pleasure, the synergy between

the GVI, sky-green space ratio, and earth features, highlighted

by the purple box, leads to a high pleasure perception. However,

when these factors are coupled with EI, as shown in the rose

box, a low pleasure perception emerges. For relaxation, the rose

box is primarily influenced by the GVI, with blue-green space

and tree coverage as key contributors, resulting in high relaxation

perception. In contrast, areas where multiple factors combine tend

to have a lower relaxation perception. As for curiosity, pedestrian

presence stands out as the main driver. The purple and orange

boxes highlight areas where pedestrian presence plays a major

role, while other regions show a mix of pedestrian presence and

additional factors.

3.5.2 Coupling patterns of negative emotions
For negative emotional responses, the following patterns

are observed: For anxiety, the green box shows high anxiety

perception, influenced by the positive SHAP values of the

GVI and EI, while the purple box shows low anxiety due

to the negative impact of the GVI. Regarding unsafety, the

purple box shows low perception, driven by the negative impact

of the GVI, whereas the green box represents high unsafety

perception, driven by its positive influence. The orange box

lacks a dominant factor, resulting in low unsafety perception. In

contrast, the rose box, although influenced positively by the GVI,

is affected by other negative factors, leading to high unsafety

perception. For loneliness, the green box reveals high loneliness

perception, influenced by the positive effects of automobiles

and the DH ratio. However, the negative coupling effect of

traffic smoothness moderates this, resulting in an overall high

loneliness perception. Other indicators show minor SHAP value

differences, resulting in a lower loneliness perception through their

coupled effects.

3.5.3 Clustered features of mixed emotions
Overall, emotional responses are influenced by the complex

coupling of multiple environmental features. The GVI is the most

critical spatial factor, highlighting the importance of greenery
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and nature in promoting positive emotions. Meanwhile, sky-green

space ratio, EI, and Accessibility serve as corrective indicators for

emotional response results.

Factors such as earth, sky, buildings, and automobiles, while

highly correlated with these composite indicators, exhibit weaker

predictive power as single indicators. These factors can be

further analyzed as supplementary components to refine the

prediction results.

3.6 Analysis of the relationship between key
spatial environmental features and
emotional responses

By integrating Kernel Density Estimation (KDE) and SHAP

value analysis (SHAP), this study systematically examines the

impact mechanisms of key spatial environmental features,

such as the GVI, tree ratio, and the sky-green space ratio,

on emotional responses. The two methods complement

each other in terms of spatial scale and explanatory depth.

While KDE uncovers macro-level distribution patterns, SHAP

delves into the nonlinear mechanisms at play. This integrated

approach ultimately proposes a collaborative optimization

strategy, offering a scientific foundation for high-density urban

environment design.

3.6.1 Kernel density estimation (KDE) analysis
Using KDE, this study investigates the relationship between

emotions and their most significant spatial environmental

features (Figure 8). The results indicate significant differences

in the distribution of feature factors across various emotional

states. When the GVI is low (below 0.09), feelings of

pleasantness and relaxation are concentrated in the lower

levels. As the GVI increases, higher perceptions of pleasantness

and relaxation gradually emerge, peaking at GVI values

around 0.27 and 0.3. After this point, the increase is

minimal, suggesting that the emotional improvement effect

is primarily concentrated within this range. The optimal

GVI threshold (0.27–0.3) provides clear guidance for urban

renewal strategies.

Anxiety and unsafety show high densities at low GVI values

(below 0.1). As the GVI increases, high-level perceptions decrease,

while middle and low-level perceptions rise, indicating that

higher GVI values effectively alleviate negative emotions. Low

curiosity is notably higher in areas with pedestrian densities

below 0.01, whereas high curiosity gradually prevails in areas

with pedestrian densities above 0.02. High loneliness is most

pronounced at vehicle densities below 0.05. Between 0.05

and 0.1, moderate loneliness peaks, while low loneliness

gradually becomes dominant as vehicle density increases.

The KDE method effectively highlights the influence of GVI

on emotional responses at a spatial level, but it does not

thoroughly explore the interactions and nonlinear relationships

between features. This gap is addressed through SHAP feature

dependence plots.

3.6.2 SHAP analysis: nonlinear mechanism
analysis

This study utilizes SHAP feature dependence plots to

examine the nonlinear impact of environmental features on

emotional responses (Figure 9). By analyzing the SHAP plots

of six urban environmental features with significant emotional

impacts, we gain a deeper understanding of their contributions to

emotional responses.

An increase in GVI enhances pleasantness and relaxation

while reducing anxiety and unsafety. Below a GVI of 0.3, the

improvements in pleasantness and relaxation are most noticeable,

especially for relaxation. As the GVI exceeds 0.3, the effect on

emotional improvement weakens, and after surpassing 0.35, further

emotional benefits are minimal. This finding aligns with the KDE

analysis, confirming the optimal range of GVI between 0.27 and 0.3.

Notably, when GVI exceeds 0.5, pleasantness decreases slightly, and

unsafety and anxiety increase. Thus, maintaining a GVI below 0.35

avoids the negative effects of overly high GVI.

Tree cover percentage shows significant nonlinear effects

as well. In the 0–0.1 range, increasing tree cover enhances

pleasantness and relaxation, with the effect strengthening as tree

cover increases. However, beyond 0.35, the canopy shading effect

creates a sense of spatial confinement, weakening emotional

benefits. Therefore, tree ratio should be maintained below 0.35 to

avoid discomfort caused by excessive tree cover.

Regarding the sky-green space ratio, the physical structure

of buildings limits spatial layout, making it difficult to improve

this ratio solely by adjusting building coverage. Optimizing GVI,

however, can indirectly enhance it and thus serves as an effective

strategy. In high-density urban areas, improving GVI not only

increases the sky-green space ratio but also alleviates negative

emotions caused by high building density, significantly improving

emotional health.

4 Discussion

This study utilizes big data and machine learning techniques to

predict emotional responses based on street view images, revealing

the mechanisms by which urban spatial environments influence

emotions and their intrinsic connection to public health. By

constructing urban emotional hotspot maps, the study provides

a scientific basis for identifying emotionally vulnerable areas,

particularly in relation to key public health issues such as disparities

in green space and mental health (4, 61, 62). Using Liwan District,

Guangzhou as a case study, it analyzes the spatial heterogeneity

of emotional responses and the critical role of street spatial visual

features, offering empirical evidence and references for future

public health research on urban green space interventions.

4.1 Multidimensional emotional benefits
and spatial optimization mechanisms of
street environment features

The integration of KDE and SHAP establishes a collaborative

approach that quantifies spatial heterogeneity and decodes
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FIGURE 8

Kernel density distributions of environmental features by emotional response level. (A) Pleasure, (B) relaxation, (C) curiosity, (D) anxiety, (E) unsafety,

(F) loneliness.

nonlinear relationships. KDE, through spatial clustering analysis,

identifies the critical improvement threshold for the GVI (0.27–

0.30). SHAP reveals complex nonlinear dynamics by quantifying

the diminishing marginal effects of GVI beyond 0.35, identifying

the synergistic interaction between the sky-green space ratio and

tree cover (63, 64), and uncovers threshold-driven emotional

response patterns (e.g., a sharp drop in certain emotions when

GVI < 0.1). Notably, our identification of an optimal GVI range

echoes the concept of defining sufficient green exposure in high-

density cities (65), providing quantitative benchmarks for greening

interventions that maximize emotional benefits. This framework

bridges the gap between spatial goals and causal explanations,

demonstrating that optimizing GVI, tree cover, and blue-green

spaces requires balancing threshold effects and feature interactions

to achieve a dynamic equilibrium between environmental features

and emotional wellbeing.

Empirical examples, such as Singapore’s “Sky Garden” program

(66), show how vertical greening and integrated green spaces

enhance emotional health, air quality, and urban resilience. In high-

density urban areas, cost-effective interventions—such as vertical

greening systems, strategically positioned community green spaces

(e.g., pocket parks), and street micro-upgrading strategies—are

prioritized to increase the baseline GVI from < 0.1 to ∼0.27–0.30

while minimizing spatial conflicts in resource-constrained contexts

(67, 68). However, as demonstrated in Table 6, even streets with

high GVI may fail to evoke positive emotional perceptions if they
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FIGURE 9

SHAP dependence plots illustrating nonlinear e�ects of environmental features on emotions. (A) Pleasure, (B) relaxation, (C) curiosity, (D) anxiety, (E)

unsafety, (F) loneliness.
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TABLE 6 Characteristics of streets with a high GVI.

Visual commonality Perceptual
commonality

Reference images and their characteristics

High GVI High pleasure

The street greening layout adopts a “two-board-three-belt” or “one-board-two-belt” structure, offering shading that

ensures both visual and physiological comfort. This design improves driving safety and landscape continuity. Trees

are pruned to maintain clear sightlines, while aligned forest edges and coordinated plant species and layers

emphasize spatial order and aesthetic value.

High GVI Medium pleasure

Though the GVR meets the standard, inadequate pruning of street trees creates a monotonous atmosphere.

On-street parking often disrupts the street’s order. Additionally, poor rural road greening maintenance results in a

lack of environmental harmony.

High GVI High relaxation

The greening structure is varied, with rich landscape elements. Roadside green belts emphasize plant diversity while

integrating landscape and ecological functions. These spaces also include leisure characteristics, balancing aesthetics

and functionality.

High GVI Medium relaxation

The street greening structure is monotonous, lacking layers and spatial design. The layout is highly repetitive and

lacks variability, hindering the integration of diverse landscape elements. Additionally, the focus on vegetation

ignores functional and aesthetic values. Rampant on-street parking worsens spatial disorder, degrading the overall

landscape quality.

are accompanied by poor tree pruning, monotonous environments,

frequent illegal parking, insufficient maintenance, or homogeneous

greening layouts. These findings highlight the importance of

combining quantitative GVI targets with qualitative enhancements,

such as diverse vegetation layouts, art installations, and cultural

features, to expand spatial attractiveness and emotional benefits.

Layered vegetation design further meets functional needs:

residential areas benefit from tree cover between 25 and 35% to

mitigate spatial monotony, while commercial areas may reduce it to

10%−20% to alleviate visual congestion. EI should be evaluated in

the context of emotional perception. Moderate enclosures enhance

perceived safety and comfort (69, 70), whereas excessive enclosures

create a sense of oppression, and overly open layouts decrease

spatial legibility and emotional attachment (71, 72). The level

of enclosure should be adjusted to strengthen place identity,

regulate pedestrian flow, and maintain visual connectivity—critical

considerations for designing urban environments informed by

mental health.

Implementation depends on cross-sector collaboration

(government-community-resident partnerships), supported by

fiscal incentives (e.g., tax incentives and grants) (73–75), to ensure

equitable green space distribution. Future efforts should integrate

pedestrian-friendly design with cultural aesthetics to foster social

cohesion (76), while further case studies are necessary to clarify the

spatiotemporal heterogeneity of EI effects.

4.2 Data-driven urban emotional response
optimization

The emotional maps derived from street view big data and

predictive models provide detailed spatial insights for identifying

emotional distress hotspots. This data-driven framework lays an

empirical foundation for urban optimization, enabling decision-

makers to deploy targeted interventions that enhance public
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health and environmental sustainability. Strategically integrating

multifunctional infrastructure, such as pedestrian corridors,

community green spaces, and cultural centers, in emotionally

vulnerable areas can strengthen place attachment and urban health

resilience (77). Prioritizing the deployment of green infrastructure

in high-stress areas can improve emotional health while optimizing

resource efficiency. Predictive models ensure that interventions

align with the actual needs of the city and prevent environmentally

harmful developments (78–80).

Advances in data analysis technologies allow urban planners

to adopt more systematic, data-driven strategies. The digital

governance projects of the Guangzhou government, such as

the “Smart Tower Patrol” and the “Smart Governance Portal,”

support the high-quality development of urban renewal and

digital transformation, enhancing urban space quality (81, 82). By

combining emotional maps with multidimensional environmental

data such as temperature changes, noise levels, and greenery

coverage, cities can implement real-time monitoring systems to

track emotional changes within urban spaces. These monitoring

mechanisms provide timely feedback on environmental changes,

enabling cities to quickly respond to crises such as public health

emergencies or extreme weather events. For instance, during

public health emergencies, real-time emotional monitoring can

guide targeted interventions, including prioritizing air quality

improvements and increasing green space accessibility, thus

reducing anxiety and enhancing public wellbeing (83, 84).

Furthermore, long-term dynamic data analysis plays a

crucial role in assessing the lasting effects of environmental

transformations. Continuous evaluation of urban renewal allows

policymakers to refine and adjust strategies, ensuring sustainable

and regenerative urban growth. This iterative approach strengthens

evidence-based policymaking, enhancing the connection between

emotional wellbeing and urban resilience, and promoting healthier,

more adaptable urban environments.

4.3 Social equity in urban emotional
optimization

Optimizing emotional responses in urban environments

is closely aligned with the pursuit of social equity. Prior

research shows that neighborhoods with lower socio-economic

status often exhibit reduced streetscape quality, contributing to

emotional vulnerability and spatial health disparities (4). Visual

environmental inequities—such as limited greenery or visual

clutter—intensify negative emotions like anxiety and insecurity.

Targeted environmental improvements in such areas have been

shown to enhance emotional wellbeing and strengthen public

health resilience (85).

Extending this evidence, our study reveals a significant

association between low environmental quality—particularly

diminished GVI—and clusters of negative emotional responses

in disadvantaged communities. These findings emphasize

the importance of addressing visual inequities to strengthen

neighborhood emotional resilience and reduce disparities in

both mental health and environmental access. This aligns with

the social equity principles embedded in the United Nations

Sustainable Development Goals (SDGs). For example, prioritizing

green infrastructure in under-served neighborhoods ensures

that the benefits of sustainable urban development are equitably

distributed (86).

However, due to inequitable resource allocation, spatially

disadvantaged communities often face financial and technical

barriers. To overcome these challenges, three strategies have

been proposed:

1. Perceptually driven prioritization: Urban policy should

prioritize environmental improvements in areas where spatial

features are strongly linked to negative emotional responses

such as anxiety, unsafety, and disconnection. These areas,

often characterized by fragmented form, low greenery, and

poor walkability, are critical for emotional restoration. Rather

than relying solely on greening indices, interventions should

incorporate adaptive strategies—such as enhancing spatial

legibility, improving pedestrian comfort, and enriching visual

diversity—to address perceptual deficits. This emotion-

informed allocation ensures that public investment aligns

with psychological needs and promotes equity in urban

health outcomes.

2. Participatory neighborhood Co-creation: Empowering

residents to participate in neighborhood design fosters a

sense of ownership and emotional attachment. Collaborative

mechanisms, including financial incentives and partnerships

with local businesses, can increase participation and social

cohesion. The “Community Garden Program” in the

United States illustrates how collective action can enhance

both environmental quality and community wellbeing.

3. Sustained institutional support: Government subsidies and

incentive policies play a crucial role in sustaining green

infrastructure. Our findings underscore that the psychological

gains from environmental improvements—such as reductions

in anxiety and stress—are contingent on proper maintenance;

without continuous support, these emotional benefits will

likely diminish over time. By reducing long-term maintenance

costs associated with neighborhood optimization, these

mechanisms promote the durability of urban greening efforts.

Additionally, public-private partnership (PPP) models provide

financial support for maintaining and expanding green

infrastructure, ensuring long-term viability and reinforcing

environmental sustainability.

Implementing these strategies enhances urban environments

while fostering social equity, ensuring all community members

benefit from sustainable development and equitable access to

green spaces.

4.4 Future research and technological
advancements

Optimizing emotional responses in urban environments

necessitates a convergence of interdisciplinary insights.

Psychological and ecological studies have illuminated the

mechanisms by which natural environments mitigate stress

and restore attention, while sociological research emphasizes
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the role of green infrastructure in enhancing community

cohesion and perceived safety. Additionally, economic evaluations

provide critical support for cost-effective decision-making in

health-oriented urban planning.

Building on this foundation, the present study contributes

to the field across three interrelated dimensions—methodological

innovation, empirical validation, and planning applicability—

thereby addressing key limitations in existing research and

informing future urban interventions. First, this study establishes

a novel analytical framework that integrates deep learning,

explainable AI (SHAP), and geospatial analysis to uncover the

complex and nonlinear relationships between street-level visual

features and emotional responses. Compared with traditional linear

models, this approach enhances interpretability and accommodates

the subjective nature of emotional perception, addressing the

oversimplifications found in prior studies (13, 50).

Second, through large-scale empirical analysis, the study

quantifies the emotional effects of specific spatial features,

particularly Green View Index (GVI) and the sky-green space

ratio. It identifies optimal thresholds (e.g., GVI between 0.27–

0.30) and diminishing marginal effects beyond certain values,

revealing nonlinear dynamics that extend existing literature on

urban greening and mental health (17).

Third, the findings are translated into practical urban design

guidance, emphasizing evidence-based and context-sensitive

interventions. These include vertical greening in high-density

settings, pocket parks in constrained spaces, and improvements

to visual diversity, all of which are aimed at enhancing emotional

wellbeing while ensuring spatial feasibility and sustainability.

Despite these advancements, several technological and

methodological challenges persist, warranting future research.

A primary obstacle lies in data acquisition. Current street-view

imagery systems—typically reliant on vehicle-mounted panoramic

cameras—fail to capture fine-grained spatial experiences in narrow

alleys, shaded corridors, or enclosed public spaces. Future studies

should consider integrating drone-based imagery to access elevated

and confined views (77), and pedestrian-worn sensors, such as EEG

and biometric trackers, to capture real-time emotional fluctuations

in response to specific micro-environmental stimuli.

In parallel, further development is needed in emotionally aware

analytical models.While current deep learningmodels demonstrate

robust performance in object detection and classification, they

struggle with culturally diverse or morphologically complex urban

environments. The integration of context-sensitive algorithms—

capable of incorporating architectural typologies, cultural markers,

and localized spatial semantics—may substantially improve the

accuracy and generalizability of emotional prediction models

(87). Such models should move beyond purely visual cues to

consider multimodal inputs, including acoustic environments and

air quality indicators.

Moreover, the advancement of real-time emotional monitoring

systems offers a compelling direction for urban governance.

By embedding IoT-enabled environmental sensors into public

infrastructure and coupling them with dynamic emotional

maps, planners can monitor emotional patterns across temporal

and spatial scales. These systems enable cities to respond

adaptively to evolving urban stressors such as extreme weather,

pollution surges, or public health emergencies (88). Feedback

loops informed by real-time data could support flexible policy

adjustments, emergency interventions, and longitudinal evaluation

of environmental upgrades.

Taken together, these future directions underscore the necessity

of combining methodological rigor, technological innovation, and

socio-spatial sensitivity to develop emotionally intelligent cities.

A truly health-promoting urban environment must not only

be efficient and sustainable but also responsive to the affective

experiences of its inhabitants.

5 Conclusions

This study integrates deep learning, explainable AI, and

geospatial analysis to quantify how spatial environmental features

influence emotional responses. By leveraging large-scale street-

view imagery and machine learning models, it establishes a

robust framework for identifying key visual factors—such as

GVI, sky-green space ratio, and EI—that exhibit significant and

nonlinear effects on emotional perception. These findings reveal

spatially clustered patterns of emotional vulnerability, offering a

scientific basis for targeted interventions that support psychological

resilience and public health.

Aligned with the United Nations Sustainable Development

Goals, particularly SDG 3 (Good Health and wellbeing) and SDG

11 (Sustainable Cities and Communities), the study highlights

the potential of data-informed spatial optimization to enhance

emotional wellbeing and urban sustainability.

Future research may further explore the temporal variability

and socio-cultural dimensions of emotional responses, while

emerging technologies—such as IoT and dynamic emotional

mapping—could improve the precision and adaptability of future

urban planning strategies.
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