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Association between air
pollution, altitudes, and
overweight/obesity in China

Yugen Wang†, Muchun Yu† and Yanyan Liu*

Department of Philosophy, College of Humanities and Social Sciences, Xi’an Jiaotong University, Xi’an,

China

Background:Air pollution and altitudes are important obesogenic environmental

risks. No studies have examined the influence of the co-exposure of these two

risks and Body Mass Index (BMI). We discuss the concentration–response (C–R)

relationships and potential mechanisms between nine air pollution, altitudes,

and BMI.

Methods: Data from 38,617 individuals aged 18–90 years in the China

Family Panel Survey were used. Nine air exposure variables–Particulate Matter

2.5 (PM2.5), Sulfur dioxide (SO2), Carbon monoxide (CO), Nitrogen dioxide

(NO2), Ozone (O3), Black Carbon (BC), Methane (CH4), Ammonia (NH3), and

Non–Methane Volatile Organic Compounds (NMVOCs)–and altitude grid data

were generated through the combination of satellite remote sensing inversion

data and nationally representative surveys. Bayesian kernel machine regression

and themoderated chain–mediationmodel were employed to examine the C–R

relationships and potential mechanisms.

Results: Four air pollution–PM2.5, BC, NMVOCs, and CH4-were positively

associated with OW/OB. A “negative–positive–negative correlation” pattern

across low altitudes (τ30 to τ55, 73.77–403.87m), medium altitudes (τ55 to

τ75, 403.88–944.73m), and high altitudes (τ75 to τ99, 944.74–2,610.72m) was

revealed for the correlation between altitudes and BMI. Altitudes negatively

moderated the relationship between air pollution and BMI. A chain mediator,

consisting of physical activity and sleep quality sequentially, partially mediated

the association between air pollution and BMI.

Conclusions: Co-exposure of air pollution and altitude had a complex influence

on individual BMI. Maintaining a healthy environment is important for the joint

prevention and control of obesity.
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1 Introduction

Overweight/obesity (OW/OB) constitutes a systemic threat to global health. Estimates
suggest that 3.4 million deaths per year are attributable to obesity worldwide, accounting
for ∼4% of total years of life lost (YLL) and disability–adjusted life years (DALYs) (1).
China faces a particularly severe OW/OB epidemic, where the number of adults diagnosed
with obesity has quadrupled, while the OW/OB population has doubled since 2000–2024
(2, 3). The recent study forecasts that the prevalence of OW/OB may reach 65.3% by 2030,
with projected healthcare expenditures reaching 418 billion yuan–equivalent to 22% of
total national health expenditures (4, 5). These findings underscore the urgent need to
identify determinants of OW/OB for targeted intervention (3).
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Obesogenic environmental risks have been widely studied,
yet predominantly in isolation (6–9). Individuals, however, are
simultaneously exposed to multiple factors that interactively
influence health outcomes. In China, the co–occurrence of air
pollution and altitude exposure merits focused investigation given
their synergistic impacts on weight regulation and metabolic
homeostasis (10–12).

China faces severe air pollution, with an annual PM2.5 average
of 25 µg/m3, five-fold higher than the WHO guideline (5 µg/m3)
(1). Meanwhile, China has the most diverse altitudes distribution,
with it’s distinctive “Three–Step Staircase Topography”, as first step
of the plateau (altitudes > 4,000m), the second step of central
plains (altitudes from 1,000 to 4,000m), and the third step of
plain (altitudes < 1,000m) (13). Both atmospheric pollution and
altitude gradients perturb metabolic homeostasis while shaping
socioeconomically obesogenic environments, collectively imposing
substantial health burdens. Elucidating their joint associations with
body mass index (BMI) thus emerges as a critical research priority.

However, the influence of these two key obesogenic
environments on BMI remains contentious. Regarding altitudes,
Merrill concluded that high altitudes contribute to weight loss,
with a consistent negative association observed at 500–2,499m
(14). Pajuelo-Ramírez et al. (11) further demonstrated that this
association was more pronounced at higher altitudes (>3 000m).
In contrast, Peng et al.’s (15) study suggested the opposite,
finding that high altitudes were associated with adverse metabolic
outcomes linked to weight gain. As for air pollution, some studies
have reported a positive association between BMI and exposure to
particulate matter, nitrogen oxides, and sulfur oxides (12, 16, 17).
However, other studies propose that certain pollution could induce
leptin resistance, suppress appetite, and reduce energy expenditure,
ultimately promoting weight loss (10, 18). Additionally, no studies
have examined the combined influences of co–exposure to these
two factors on BMI.

The indirect relationship between air pollution, altitude, and
obesity is also worth attention, particularly their mediation. Since
both air pollution and altitude are significant risk factors for
behavior changes that contribute to obesity, it is reasonable to
consider behavioral factors as a strong mediator. We selected
physical activity (PA) and sleep quality (SQ) as key mediating
variables. Although diet may be a more crucial factor, it has
already been extensively analyzed in existing research. PA and SQ
are systematically influenced by altitude and air pollution, and
as important downstream factors, they mediate the relationship
between environmental risks and obesity.

Accordingly, this study employed Bayesian Kernel Machine
Regression (BKMR) to assess the joint associations of 10
environmental exposures–including nine air pollution (PM2.5, SO2,
CO, NO2, O3, BC, CH4, NH3, NMVOCs) and altitude–with BMI in
Chinese adults. Three objectives were addressed:

1. Quantifying concentration–response (C–R) relationships
between all exposures and BMI.

2. Evaluating altitude’s moderating role in air pollution–
BMI associations.

3. Investigating mediating influences of physical activity (PA)
and sleep quality (SQ) on the association between air pollution
and BMI.

2 Methods

2.1 Study participants

The China Family Panel Survey (CFPS) is a national
longitudinal study designed to assess demographic characteristics
and health status among Chinese residents. Analyses utilized
cross–sectional data, as longitudinal prefecture–level tracking was
geographically fragmented. The data employs amultistage stratified
sampling strategy, representing China’s adult population (18–90
years) and conducted biennially since 2010. Prefecture–specific
identifiers enable linkage of individual responses to satellite–
derived environmental exposures for analyzing the associations
between environmental exposures and BMI. Data from 2016,
2018, and 2020 waves were included. We excluded respondents
with missing information on anthropometric measurements,
socio–economic characteristics, and geographic location, or with
unreliable measurements (height ≤50 or ≥250 cm, weight ≤30
or ≥300 kg) (16, 17). Pregnant women and those with self–
reported history of cancer were also excluded. The final analytic
sample comprised 38,617 individuals across 126 prefectures. Ethical
approval was obtained from Peking University’s Ethics Review
Board, with written informed consent provided by all participants.

2.2 Selected variables

2.2.1 Air exposures
Air pollution exposure indicators were derived from NASA

Terra satellite remote sensing data (2016–2020), utilizing aerosol
optical depth measurements from the Moderate Resolution
Imaging Spectroradiometer (MODIS) and Multi–angle Imaging
Spectroradiometer (MISR) (https://ciesin.columbia.edu/data).
Annual mean concentrations (µg/m3) of PM2.5, SO2, CO, NO2,
O3, BC, CH4, NH3, and NMVOCs were extracted at 1 km and
0.01◦ spatial resolution. Gridded data were spatially aligned with
CFPS prefecture boundaries via bilinear resampling. We selected
a 1 km buffer resolution, balancing exposure misclassification
risks (undersampling at 10 km) and computational feasibility
[overfitting at 250m; (34)], based on empirical evidence that
1 km approximates the average daily mobility range of Chinese
adults. The air pollution exposure value refers to the annual mean
exposure for each respondent in the given survey year.

2.2.2 Altitudes
Altitude data were sourced from the Consultative Group

on International Agricultural Research–Consortium for Spatial
Information (CGIAR–CSI) platform (http://srtm.csi.cgiar.org/),
providing a spatial resolution of 3 arc–s. Altitude values for CFPS
participants were extracted based on residential prefectures, with
altitudes ranging from 2 to 3,500 m.

2.2.3 BMI
BMI was defined as the value of weight divided by the square of

height [weight (kg)/height (m2)].
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2.2.4 Mediation
We chose PA and SQ as the mediation of the correlation

between air pollution and BMI. As for the PA, the CFPS survey
collected self–reported data from respondents regarding their
frequency in PA. Respondents were given four categorical options:
no physical activity, less than once per week, one to four times
per week, and more than five times per week. These categories
are subsequently assigned numerical values of 1, 2, 3, and 4,
respectively, to quantify the intensity of PA as “none”, “<1 time
per week”, “1–4 times per week”, “>5 times per week”. This
categorization of physical activity was based on several established
studies, which aimed to determine the correspondence of self-
reported physical activity time information to physical activity
intensity (6, 9, 19).

The SQ data was collected in the CFPS through the self–
reported questionnaire, with four available options of none
insomnia, 1–2 times insomnia per week, 3–4 times insomnia per
week, 5–7 times insomnia per week. The above categories are
subsequently assigned numerical values of 4, 3, 2, and 1, to denote
“high sleep quality”, “medium sleep quality”, “low sleep quality”,
and “extremely low sleep quality”. This categorization of SQ was
based on Pan et al.’s (20) studies, which aimed to determine the
correspondence of self-reported insomnia information and SQ.

2.2.5 Covariates
Demographic covariates were adjusted in this study, including

age (years), sex (female, male), ethnicity (minority ethnicity,
majority ethnicity), personal income (Chinese Yuan), education
(illiterate, primary to middle, college), registration (rural, urban),
marital status (married, unmarried), tobacco use (yes or no),
alcohol consumption (yes or no).

2.3 Statistical analysis

First, cross–sectional univariate descriptive statistics of the
main outcomes were presented by full subjects, OW/OB subjects,
and normal weight subjects.

Second, we used the BKMR to capture the C–R relationships
of each exposure on OW/OB. The BKMR model, a novel
semi–parametric modeling approach, flexibly captured the joint
association of the mixture components, allowing for potential
interactions and non–linear associations. BKMR offered two
appealing advantages compared to previous purely parametric or
non–parametric approaches. First, it handled the joint association
of multiple exposures using a kernel machine regression model,
thereby capturing the potentially complex and non–linear joint C–
R curves of multiple exposures while maintaining good statistical
power. Second, it allowed for the disentangling of the joint
association of mixtures into their main effects and moderation,
while properly accounting for model uncertainty (21). The function
of the BKMR model was:

Yi = h[Group = (
c∑

i=1

Xi)]+ βTZi + ei

FIGURE 1

The potential mechanism between air pollution, PA, SQ, altitudes

and BMI, which took the air pollution and BMI as the dependent and

independent variable, PA and SQ as the sequential chain mediator,

and altitudes as the moderator. Modification index and bootstraps

(5,000 times) are used to optimize the model.

Where h() was the C–R relationships of exposures on OW/OB,
Zi and β represented covariates and the coefficients. In our BKMR
analysis, the number of iterations (iter) was set to 10,000, and the
Gaussian Process Regression model was chosen.

Third, the potential mechanism between air pollution, PA, SQ,
altitudes and BMI was revealed by a moderated chain–mediation
model, which took the air pollution and BMI as the dependent
and independent variable, PA and SQ as the sequential chain
mediator, and altitudes as the moderator, as shown in Figure 1.
Modification index and bootstraps (5,000 times) were used to
optimize the model.

The BKMR model and moderated chain–mediation model are
conducted by the R (4.1.0) and Mplus (8.3).

3 Results

3.1 Population characteristics

The prevalence of OW/OB among Chinese adults was 46.86%
between 2016 and 2020. Individuals with OW/OB tended to
experience higher levels of air pollution, and lived at lower altitudes
(Table 1).

3.2 The C–R relationships of air pollution
and altitudes on OW/OB

We first fitted the BKMR model to assess the joint association
of mixed exposures with BMI. The selected exposures suffered
from multicollinearity problems, with several variables had
Variance Inflation Factors (VIF) > 10, see Table 2. The significant
concentration–response (C–R) relationships of 7 exposures are
shown in Figure 2. Four air pollution were significantly related to
BMI: PM2.5 [positively associated with BMI at low–to–medium
concentration tertiles (τ5–τ50)], BC [positively associated at low
concentration tertiles (τ0–τ30)], NMVOC [negatively associated
at low concentration tertiles (τ10–τ40) and positively associated
at medium–to–high tertiles (τ40–τ75)], and CH4 [negatively
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TABLE 1 Characteristics of study participants in the Chinese Family Panel Surveys (CFPS), N = 38,617, 2016–2020.af

Variables All subjects (38,617) OW/OB subjectsb (14,172) Normal weight subjectsc (24,445) χ2/td

BMI 23.04 (0.02) 26.71 (0.02) 20.91 (0.01) <0.01

PMe
2.5 3.86 (<0.01) 3.89 (<0.01) 3.84 (<0.01) <0.01

SOe
2 3.26 (0.01) 3.26 (0.01) 3.26 (0.01) 0.02

COe 0.55 (<0.01) 0.57 (<0.01) 0.55 (<0.01) 0.03

NOe
2 3.65 (<0.01) 3.67 (<0.01) 3.63 (<0.01) 0.02

Oe
3 4.49 (<0.01) 4.50 (0.01) 4.48 (0.01) 0.04

BCe 5.61 (<0.01) 5.65 (<0.01) 5.58 (<0.01) <0.01

CHe
4 7.66 (0.01) 7.64 (0.01) 7.67 (<0.01) <0.01

NHe
3 7.26 (<0.01) 7.29 (0.01) 7.24 (<0.01) <0.01

NMVOCse 5.19 (<0.01) 5.20 (<0.01) 5.18 (<0.01) <0.01

altitudese 6.61 (0.03) 6.51 (<0.01) 6.67 (<0.01) <0.01

Male 0.49 (<0.01) 0.52 (<0.01) 0.47 (<0.01) <0.01

Age (years) 45.81 (0.09) 48.06 (0.12) 44.52 (0.11) <0.01

18–40 41.32% 34.15% 45.48%

41–60 26.21% 43.78% 31.83%

61–90 22.46% 22.07% 22.69%

Minority ethnicity 0.15 (0.01) 0.12 (0.02) 0.17 (0.01) <0.01

Personal income (Chinese
Yuan)

37,164.7 (280.3) 39,220.6 (471.6) 35,931.23 (347.35) 0.03

≤10,000 72.03% 70.89% 72.69%

10,001–50,000 19.95% 19.99% 19.93%

50,001–100,000 7.09% 7.98% 6.57%

≥100,001 0.93% 1.14% 0.81%

Rural registration 0.25 (<0.01) 0.28 (<0.01) 0.23 (<0.01) <0.01

Tobacco using 0.28 (<0.01) 0.29 (<0.01) 0.28 (<0.01) <0.01

Alcohol using 0.14 (<0.01) 0.15 (<0.01) 0.13 (<0.01) <0.01

Physical activity

None 57.79% 55.90% 58.88% 0.02

<1 time per week 7.69% 7.05% 8.07%

1–4 times per week 10.50% 10.17% 10.69%

>5 times per week 24.01% 26.87% 22.36%

Sleep quality

High sleep quality 7.70% 7.61% 7.75% <0.01

Medium sleep quality 12.95% 12.61% 13.14%

Low sleep quality 31.51% 30.78% 31.94%

Extremely low sleep quality 47.85% 49.01% 47.17%

aMean (standard deviation) for continuous variables, percentage for categorical variables.
bRestricting the sample of BMI ≥ 24.
cRestricting the sample of BMI < 24.
d
χ
2 test was used to identify the inter–group heterogeneity of categorical variables, and t-test was use to identify the inter–group heterogeneity of continuous variables.

eWe take the logarithm of the exposures concentration.
fPM2.5 was Particulate Matter 2.5, SO2 was Sulfur dioxide, CO was Carbon monoxide, NO2 was Nitrogen dioxide, O3 was Ozone, BC was Black Carbon, CH4 wasMethane, NH3 was Ammonia,

NMVOCs was Non–Methane Volatile Organic Compounds.
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TABLE 2 Variance inflation factors test of multivariable in analysis.a

Var VIF 1/VIF

PM2.5 8.86 0.11

SO2 9.47 0.11

CO 9.34 0.11

NO2 8.90 0.11

O3 9.09 0.11

BC 10.13 0.10

CH4 8.69 0.12

NH3 8.73 0.11

NMVOC 10.27 0.10

Altitudes 8.60 0.12

Cons (-) (-)

aVariance Inflation Factors >10 for the selected variable in the model indicates that there was

a multicollinearity problem with this variable.

associated at low concentration tertiles(τ0–τ40) and positively
associated at medium–to–high tertiles (τ40–τ90)].

Altitudes was negatively associated with BMI at low
concentration tertiles (τ30–τ55) and high concentration tertiles
(τ75–τ100), and positively associated at medium concentration
tertiles (τ55–τ75).

3.3 The potential mechanism of air
pollution and altitudes on OW/OB

Table 3 and Figure 3 revealed the potential mechanisms
between air pollution, PA, SQ, altitude, and obesity. For easy
interpretation, we chose PM2.5 (with the most stable influence on
BMI) as a proxy for air pollution. The chain mediation involving
PA and SQ partially mediated the association between air pollution
and OW/OB, accounting for 37.5% of the association (OR = 1.38,
95%CI = 1.27;1.51). Altitude negatively moderated the association
between air pollution and BMI. A sensitivity analysis with a chain
mediation model of “air pollution—SQ—PA—BMI” (Figure 3B)
showed that reversing the order of SQ and PA reduced the model
fit and rendered the mediation insignificant, indicating minimal
impact on the results and confirming the robustness of our
conclusions.

4 Discussion

We investigated the relationship between air pollution,
altitudes, and individual BMI in 38,617 Chinese residents aged 18–
90 years. Using the BKMRmodel, we established C–R relationships
between 10 exposures and BMI, identifying positive associations
for four air pollution (PM2.5, BC, NMVOC, and CH4) with BMI.
A nonlinear C-R relationship was observed between altitudes
and BMI, showing negative correlations at low altitude tertiles
(τ30–τ55, 73.77–403.87m), positive correlations at medium
tertiles (τ55–τ75, 403.88–944.73m), and negative correlations at

high tertiles (τ75–τ99, 944.74–2,610.72m). Additionally, altitudes
negatively moderated the positive association between air pollution
and BMI. Furthermore, a chain mediation involving PA and
SQ partially mediated the association between air pollution
and BMI.

4.1 Air pollution on OW/OB

An important objective of this study was to identify the detailed
C–R association between mixed co–exposure to air pollution and
altitudes on BMI. We found that four air pollutants–PM2.5, BC,
NMVOC, and CH4-were positively associated with BMI. The
results for PM2.5 and BC were consistent with previous studies.
Bowe et al. demonstrated that a 10 µg/m3 annual increase in
PM2.5 was linked to higher BMI (0.140 kg/m² per year) and weight
gain (0.968 pounds per year). This finding supports the hypothesis
that long-term exposure to particulate matter, specifically PM2.5,
contributes to an increase in body fat accumulation, likely through
mechanisms such as inflammation, oxidative stress, and altered
metabolic processes (21). Similarly, Friedman found that higher
BC exposure was associated with increased fat mass percentage
and fat mass index (22). Our study extended this understanding
by revealing positive associations between PM2.5 and BC with BMI
across concentration tertiles.

PM2.5 and BC were the only two air pollution factors that
maintained stable positive associations with BMI. Notably, our
findings show that both PM2.5 and BC maintained stable positive
associations with BMI even at lower exposure levels, suggesting
that these pollutants may have a threshold effect, where even
moderate exposure can lead to adverse metabolic outcomes (16).
This is important because it suggests that reducing air pollution,
even by small increments, could potentially reduce obesity risk in
populations exposed to these pollutants (10).

NMVOC and CH4 were positively associated with BMI only at
the high–concentration tertile. This suggests that these pollutants
may have a dose-dependent effect on BMI, where the impact
becomes significant only after reaching certain exposure levels.
No previous studies have focused on the influence of these two
hazardous air pollutants on individual BMI. This gap in the
literature highlights the novelty of our findings, which suggest that
NMVOC and CH4 should be considered important contributors to
obesity risk, particularly in regions with high pollution levels.

Laboratory evidence has shown that NMVOC exposure is
linked to inflammation and oxidative stress, while excessive CH4

intake interferes with hormones, causing insulin resistance (23, 24).
Both factors disrupt normal metabolic processes, increasing the
risk of obesity. These disruptions may occur through complex
pathways involving changes in hormone regulation, inflammatory
responses, and fat cell metabolism. Notably, NMVOC and
CH4 are byproducts of fossil fuel combustion, making them
particularly relevant in countries like China, where industrial and
transportation sectors contribute significantly to air pollution. The
widespread use of fossil fuels in China poses a critical public
health challenge, as these pollutants could exacerbate the growing
obesity epidemic.
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FIGURE 2

The C–R relationships between selected exposures and BMI estimated by BKMR model. This figure showed the relationship between specific

exposure concentration and the individual BMI, when other exposures were kept at the median. (A) PM2.5 and OW/OB. (B) NMVOC and OW/OB. (C)

BC and OW/OB. (D) CH4 and OW/OB. (E) Sleep quality and OW/OB. (F) Altitude and OW/OB. (G) Physical activity and OW/OB.

4.2 Altitudes on OW/OB

We identified a comprehensive C–R relationship between
altitudes and BMI, characterized by a “negative correlation–
positive correlation–negative correlation” pattern across low
altitude tertiles (τ30–τ55, 73.77–403.87m), medium altitude
tertiles (τ55–τ75, 403.88–944.73m), and high altitude tertiles
(τ75–τ99, 944.74–2,610.72m). In low and high altitude tertiles,
altitudes were positively associated with BMI, whereas in
medium altitude tertiles, altitudes were negatively associated
with BMI.

In China, low-altitude regions and high-altitude regions
commonly experience lower levels of economic development. This
socioeconomic context compels local residents to rely heavily
on labor-intensive occupations (e.g., agriculture, construction,
mining) (25), resulting in chronic exposure to altitude-related
hypoxic microenvironments (26). Although the absolute oxygen

concentrations differ significantly between these two types of
regions, the combination of occupational exposure patterns and
hypoxia-mediated metabolic adaptations collectively drives the
negative correlation between altitude and BMI.

In medium altitude regions of China, a positive correlation
exists between altitude and BMI. This association stems from
the geographic concentration of low-altitude zones in eastern
coastal areas, where minimal elevations predominantly correspond
to topographically constrained basins, while marginally higher
elevations align with plains exhibiting superior economic
development conditions (27). Enhanced economic status in
these plains promotes obesogenic socioenvironmental drivers—
including increased availability of energy-dense foods and reduced
physical activity demands—thereby establishing a positive C-R
relationship with BMI. Although altitude may theoretically
influence metabolic processes through hypoxia-mediated pathways
(e.g., oxygen availability reduction) (28), socioeconomic factors
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TABLE 3 Associations between exposures and overweight/obesity in SEM

model (N = 38,617), CFPS, China, 2016–2020.ab

Association OR 95%CI P–value

Panel 1. Potential mediated association between PM2.5 and OW/OB (CFI =

0.92 > 0.90; TLI = 0.96 > 0.90; SRMR = 0.041 < 0.08)

(a1) PM2.5 → Physical activity 1.31 1.19; 1.43 <0.05

(a2) PM2.5 → Sleep quality 1.14 0.94; 1.38 >0.05

(b1) Physical activity→ OW/OB 1.34 1.16; 1.52 <0.05

(b2) Sleep quality→ OW/OB 1.26 1.14; 1.41 <0.05

(d) Physical activity→ Sleep
quality

1.17 1.08; 1.26 <0.05

(c) PM2.5 → OW/OB 1.22 1.04; 1.43 <0.05

Total 1.38 1.27; 1.51 <0.05

Ind. total 1.13 1.06; 1.21 <0.05

Ind1 (a1× b1) 1.08 1.03; 1.14 <0.05

Ind2 (a2× b2) 1.03 1.01; 1.05 <0.05

Ind3 (a1× d× b2) 1.01 1.01; 1.02 <0.05

Panel 2. Potential moderation association between PM2.5 and OW/OB

(M) altitudes→ PM2.5 and
OW/OB (τ0–τ100)

0.85 0.73; 0.97 <0.05

(M1) altitudes→ PM2.5 and
OW/OB (τ0–τ25)

0.57 0.48; 0.68 <0.05

(M2) altitudes→ PM2.5 and
OW/OB (τ25–τ75)

1.45 1.15; 1.86 <0.05

(M3) altitudes→ PM2.5 and
OW/OB (τ75–τ100)

0.66 0.55; 0.78 <0.05

aAll model adjusted for socio–economic variables [including age (years), sex (female, male),

ethnicity (minority ethnicity, majority ethnicity), personal income (Chinese Yuan), education

(illiterate, primary to middle, college), registration (rural, urban), marital status (married,

unmarried)], and physical characteristics variables (including tobacco use (yes or no), alcohol

consumption (yes or no).
bPM2.5 was Particulate Matter 2.5, SO2 was Sulfur dioxide, CO was Carbon monoxide,

NO2 was Nitrogen dioxide, O3 was Ozone, BC was Black Carbon, CH4 was Methane,

NH3 was Ammonia, NMVOC was Non–Methane Volatile Organic Compounds, PH was

Pondus Hydrogenii value, NTU was Nephelometric Turbidity Units, KMnO4 was Potassium

permanganate, P was Phosphorus, N was Nitrogen.

constitute the dominant explanatory mechanism for the observed
altitude-BMI association in China’s medium-altitude regions.

Altitudes negatively moderated the relationship between air
pollution and BMI. This suggests that higher altitudes may
buffer or reduce the harmful effects of air pollution on obesity
risk. Mechanism analyses found that the higher the altitudes,
the lower the influence of air pollution on individual BMI.
This study revealed for the first time that altitudes mitigate
the weight gain caused by air pollution, and three explanatory
pathways might be identified: (1) air pollution was diluted in
high-altitude regions, reducing individual exposure to hazardous
pollution; At higher altitudes, lower air pressure and thinner
air could contribute to the dispersal of pollutants, leading to
reduced concentrations of harmful particles (29); (2) residents
in high-altitude regions were typically more engaged in outdoor
activity, such as walking and hiking, which counteracted the
positive influence of air pollution on BMI; This is particularly
relevant as higher physical activity levels can offset the weight
gain associated with pollution exposure (19); and (3) high-
altitude residents experienced physiological adaptations, such
as increased erythropoiesis, improved oxygen efficiency, and

FIGURE 3

Potential association between PM2.5 and OW/OB: chain–mediated

models. (A) Chain mediation model (CFI = 0.92 > 0.90; TLI = 0.96 >

0.90; SRMR = 0.041 < 0.08). (B) Chain mediation model for

sensitivity test (CFI = 0.74 < 0.90; TLI = 0.82 < 0.90; SRMR = 0.069

< 0.08).

enhanced sensitivity to insulin (28). These adaptations may
enhance metabolic health, leading to better regulation of weight
despite the presence of pollution. Such physiological mechanisms
could improve overall fitness and promote weight loss, even in areas
with significant air pollution.

4.3 Potential mechanism

A significant moderating effect of altitude was observed on
the relationship between air pollution and overweight/obesity
(OW/OB), indicating that the adverse health impact of air pollution
on BMI diminishes at higher altitudes. This attenuation may
be attributed to several interrelated mechanisms. Physiologically,
high-altitude environments promote adaptive responses such as
improved oxygen utilization, increased basal metabolic rate, and
enhanced insulin sensitivity, which may counteract pollution-
induced metabolic disruptions (30). Environmentally, lower
atmospheric pressure and greater wind dispersion at high altitudes
reduce pollutant concentration and exposure (31). Behaviorally,
residents in elevated regions are more likely to engage in
outdoor physical activities due to traditional lifestyles and
less urban congestion, thereby mitigating sedentary behaviors
commonly linked to urban air pollution (32). These factors
jointly buffer the obesogenic effects of air pollutants in high-
altitude settings.

PA and SQ mediated the association between air pollution and
BMI. This finding underscores the complex interaction between
environmental factors and lifestyle behaviors in influencing obesity
risk. Mechanism analyses revealed that a chain mediator, consisting
of PA and SQ sequentially, partially mediated this association.
Previous studies identified PA and SQ as two separate mediators
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in the link between environmental exposures and BMI (20, 34).
These studies have shown that both PA and SQ independently
contribute tomitigating the adverse effects of environmental factors
on metabolic health. However, our study is the first to reveal
that PA and SQ could work as a chain mediator, simultaneously
influencing the relationship between air pollution and BMI. This
means that improving one factor, such as increasing physical
activity, could have a ripple effect on sleep quality, which in
turn further mitigates the impact of air pollution on BMI. This
chain mediation of PA and SQ highlights the importance of
promoting both physical activity and ensuring adequate sleep
to mitigate the influence of air pollution on OW/OB in large-
scale populations. Public health interventions that focus on
improving both PA and SQ may be particularly effective in
reducing obesity risk in populations exposed to high levels of
air pollution.

4.4 Contributions and health
recommendations

This study contributes to the literature by providing the
first large-scale empirical evidence on the joint effects of air
pollution and altitudes on OW/OB in China, emphasizing
the need to consider co-exposure rather than isolated
environmental factors. Using Bayesian Kernel Machine
Regression and a moderated chain mediation model, the
research demonstrates that altitudes significantly moderate
the obesogenic impact of air pollution, offering a refined
understanding of spatial heterogeneity in environmental health
risks. Practically, the findings highlight the necessity for region-
specific public health strategies: lower-altitude, high-pollution
areas may require intensified environmental and behavioral
interventions, while high-altitude regions exhibit physiological
and behavioral resilience that could inform more targeted resource
allocation. These insights advance both theoretical and applied
frameworks in environmental epidemiology and precision
public health.

Based on our findings, we recommend the following public
health interventions for China. First, enhance air quality regulation:
Implement stricter air quality controls to reduce exposure to
PM2.5, BC, NMVOC, and CH4, which are linked to higher
BMI, particularly in industrial and high-traffic areas. Second,
promote behavioral interventions: Encourage physical activity and
improve sleep quality to mitigate the effects of air pollution and
altitude on BMI, particularly in high-pollution areas. Third, address
socioeconomic disparities: Target interventions inmedium-altitude
regions to improve access to healthy food, physical activity, and
healthcare, reducing obesity-related health disparities.

4.5 Limitations

This study has some limitations. Self–reported information
may lead to downward bias in estimates. The BMI information
of the Chinese individuals in this study was derived from

self–reported height and weight, which may have resulted in
the underestimation of BMI. This bias is acceptable given the
widespread use of self–reported data in obesity analyses (20,
33). To address this, future studies should utilize specialized
equipment, such as Dual-Energy X-ray Absorptiometry (DXA),
to more accurately measure OW/OB. Second, only cross-
sectional relationships were captured. To overcome this limitation,
future cohort studies that examine the long-term effects of
multiple pollutants on obesity in Chinese adults are needed.
Additionally, some CFPS cohort samples from specific prefectures
were excluded to maintain exposure diversity from geographic
variation. Future studies should aim to include a broader,
more geographically diverse sample to improve generalizability.
Caution is required when interpreting the positive effects of
CH4 and NMVOCs on obesity. Our analysis is based on
population-level statistical data, and more detailed clinical
randomized controlled trials are needed for further validation.
Additionally, the selection of air pollution exposures was driven
by data availability, and thus some important exposures could
not be included in the analysis due to the unavailability
of data.

5 Conclusion

This study examined the association of mixed exposure to air
pollution and altitudes with OW/OB. Four air pollution exposure
parameters were positively associated with OW/OB, altitude was
negatively–positive–negatively related to BMI across concentration
tertiles. Altitudes negatively moderated the relationship between
air pollution and BMI, and a chain mediator, consisting of PA and
SQ sequentially, partially mediated this association. Future studies
are needed to focus more on multiple environmental exposures
correlated with OW/OB.
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