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Background: Mobile health applications and artificial intelligence (AI) are 
increasingly utilized to streamline clinical workflows and support functional 
assessment. The International Classification of Functioning, Disability and Health 
(ICF) provides a standardized framework for evaluating patient functioning, yet 
AI-driven ICF mapping tools remain underexplored in routine clinical settings.

Objective: This study aimed to evaluate the efficiency and accuracy of the 
MedQuest mobile application—featuring integrated AI-based ICF mapping—
compared to traditional paper-based assessment in hospitalized patients.

Methods: A parallel-group randomized controlled trial was conducted in two 
medical centers in Astana, Kazakhstan. A total of 185 adult inpatients (≥18 years) 
were randomized to either a control group using paper questionnaires or an 
experimental group using the MedQuest app. Both groups completed identical 
standardized assessments (SF-12, IPAQ, VAS, Barthel Index, MRC scale). The 
co-primary outcomes were (1) total questionnaire completion time and (2) 
agreement between AI-generated and clinician-generated ICF mappings, 
assessed using quadratic weighted kappa. Secondary outcomes included AI 
sensitivity/specificity, confusion matrix analysis, and physician usability ratings 
via the System Usability Scale (SUS).

Results: The experimental group completed questionnaires significantly faster 
than the control group (median 18 vs. 28 min, p < 0.001). Agreement between AI- 
and clinician-generated ICF mappings was substantial (κ = 0.842), with 80.6% of 
qualifiers matching exactly. The AI demonstrated high sensitivity and specificity 
for common functional domains (e.g., codes 1–2), though performance 
decreased for rare qualifiers. The micro-averaged sensitivity and specificity were 
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0.806 and 0.952, respectively. Mean SUS score among physicians was 86.8, 
indicating excellent usability and acceptability.

Conclusion: The MedQuest mobile application significantly improved workflow 
efficiency and demonstrated strong concordance between AI- and clinician-
assigned ICF mappings. These findings support the feasibility of integrating AI-
assisted tools into routine clinical documentation. A hybrid model, combining 
AI automation with clinician oversight, may enhance accuracy and reduce 
documentation burden in time-constrained healthcare environments.

Trial registration: ClinicalTrials.gov, identifier NCT07021781.

KEYWORDS

rehabilitation, surveys and questionnaires, artificial intelligence, international 
classification of functioning, disability and health, mobile applications

Introduction

The advancement of digital health technologies, particularly 
mobile applications, has profoundly transformed clinical workflows, 
enabling seamless integration into routine medical practice (1). 
Smartphones and tablets equipped with specialized software have 
revolutionized access to medical information, communication 
between healthcare providers and patients, and the overall approach 
to healthcare delivery. This technological shift has led to improved 
clinical efficiency and optimized physician working time (2, 3).

Modern mobile health applications encompass a broad spectrum 
of functions, including medical reference tools, drug databases, health 
monitoring, telemedicine services, and remote patient monitoring (4). 
These applications consistently demonstrate effectiveness in enhancing 
patient care quality and reducing appointment durations (5). 
Furthermore, smartphones have become widespread across all 
demographics, including older adults, which facilitates the integration 
of mobile apps into rehabilitation (6) and opens avenues for remote 
management of care—a particularly vital benefit in rural regions with 
workforce shortages (7).

Clinicians today face a critical challenge: severely limited patient 
appointment times, a problem worsened by staff shortages and 
increasing demands on healthcare systems (8). This challenge is 
particularly acute in Kazakhstan, where general practitioners have 
only 15 min per patient, while specialists receive 20 min (9). Within 
this brief window, physicians must conduct interviews, perform 
examinations, and complete all necessary medical documentation. 
These time constraints significantly impede thorough patient 
assessment and increase the risk of medical errors due to insufficient 
time for comprehensive clinical decision-making.

Artificial intelligence (AI) technologies offer promising 
solutions in this context (10, 11). AI has substantial potential to 
accelerate clinical assessments, support clinical decision-making, 
and improve assessment accuracy, particularly in functional 
evaluation and mapping using frameworks like the ICF (12). 
However, the effectiveness of AI-driven tools in functional health 
classification remains largely unexplored, especially in real-world 
clinical settings. Research in this area is essential to determine AI’s 
effectiveness in ICF mapping and the practical value of its 
recommendations for clinicians.

The ICF is a foundational tool in modern medicine, offering 
a holistic perspective on human health that transcends the 

traditional disease-centric medical model, which primarily 
focuses on diagnoses and pathophysiological disorders (13). It 
provides a universal, standardized language for specialists 
globally, fostering effective interdisciplinary communication 
(12). ICF mapping involves the systematic assignment of specific 
alphanumeric codes and qualifiers from the ICF classification 
system to categorize various domains of human functioning. This 
comprehensive mapping process encompasses three key areas: 
“Body Functions and Structures” (such as physiological functions 
and anatomical parts), “Activities and Participation” (including 
task execution and involvement in life situations), and 
“Environmental Factors” (encompassing physical, social, and 
attitudinal surroundings). The primary goal of ICF mapping is to 
provide a holistic understanding of an individual’s functional 
status that complements traditional disease diagnoses (14). In 
contrast to the disease-oriented diagnostic classification of ICD, 
the ICF focuses on an individual’s functional capacity, which is 
paramount for planning and evaluating the efficacy of 
rehabilitation interventions (15). ICF has value across many 
clinical areas. In geriatrics, it helps in the comprehensive 
assessment of older adults (16). In neurology, the ICF framework 
is used for rehabilitation after stroke, brain injury and treatment 
of neurodegenerative diseases (17). It is also used in orthopedics 
and traumatology to assess functional limitations after injury 
(18). In addition, fields such as psychiatry, pediatrics, and social 
medicine use ICF for holistic patient assessment (19–21). 
Notably, health care and insurance systems use ICF mapping as a 
basis for making decisions about insurance coverage and resource 
allocation (22).

Due to significant time constraints in clinical practice, the 
challenges of manual ICF mapping, and the untapped potential of AI 
in functional health classification, a more integrated solution was 
needed (8, 10). To address this critical gap, we developed MedQuest, 
a free mobile application for our clinic (23). This program is designed 
to streamline the administration of large volumes of functional status 
questionnaires while maintaining accurate ICF mapping. Automated 
ICF mapping speeds up the diagnostic process and increases the 
objectivity of assessments (24), while the mobile questionnaire 
format minimizes transcription errors and increases patient 
accessibility (25). MedQuest also optimizes data handling by 
providing built-in analytical tools and secure cloud storage in 
compliance with international and local data protection standards 
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(26–28). Furthermore, the transition to electronic questionnaires also 
contributes to reduced environmental impact by decreasing 
paper and other resource consumption (29). Crucially, MedQuest 
prioritizes data security, incorporating features like encryption and 
authentication to ensure medical information confidentiality in 
compliance with major regulatory requirements such as HIPAA 
(USA), GDPR (EU), and, importantly, Kazakhstan’s national 
regulations (“On Approval of Rules for Collection, Processing, 
Storage, Protection and Provision of Personal Medical Data by Digital 
Healthcare Subjects”) (30–32).

From the patient’s perspective, completing questionnaires through 
a mobile app at their own pace can provide more thoughtful answers 
and reduce the stress of a clinic visit (33). The ability to remotely 
monitor the system allows physicians to keep track of chronic patients 
between visits (34). Finally, the integration of artificial intelligence into 
MedQuest offers the potential to identify subtle health patterns and 
develop personalized recommendations, while maintaining data 
privacy through strong encryption (35).

In light of the growing interest in artificial intelligence for clinical 
documentation and the limited evidence on its application in 
functional health classification, this study aimed to rigorously assess 
the questionnaire completion time and ICF mapping accuracy of the 
MedQuest mobile application in comparison with conventional 
paper-based questionnaires. The primary outcomes were: (1) the time 
required to complete questionnaires during clinical appointments, and 
(2) the accuracy of AI-generated ICF mapping, evaluated against 
expert clinician mapping using the quadratic-weighted Kappa statistic. 
Secondary outcomes included physician satisfaction and the 
consistency of ICF mapping, assessed through sensitivity, specificity, 
and concordance matrix analysis.

Materials and methods

Study population and data selection

This study was conducted in accordance with the ethical 
standards of the 2013 Declaration of Helsinki and followed 
CONSORT guidelines for randomized controlled trials. The 
protocol was approved by the Local Bioethics Committee of 
NCJSC Astana Medical University (№7, 27 September 2024) and 
subsequently registered on ClinicalTrials.gov (NCT07021781, 11 
June 2025). All participants provided written informed consent. 
Adult inpatients (≥18 years) who owned smartphones and were 
able to operate them independently were recruited at Green Clinic 
LLC and the National Research Oncology Center LLC, both 
located in Astana, Kazakhstan. The study population consisted 
mainly of patients with musculoskeletal disorders, including 
osteoarthritis of the hip (coxarthrosis) and knee (gonarthrosis), 
as well as patients with trophic ulcers resulting from 
atherosclerosis and diabetes mellitus. These conditions were 
selected because they are common clinical problems that require 
a comprehensive functional assessment and ICF mapping in 
rehabilitation medicine. Patients were included if they: (1) had 
stable medical conditions allowing participation in questionnaire 
completion, (2) demonstrated basic literacy skills in Russian (the 
language of the questionnaires), (3) were physically capable of 
completing the assessment procedures, (4) provided informed 

consent to participate. Exclusion criteria included severe cognitive 
or visual impairment, and voluntary withdrawal after protocol 
explanation. Participants did not receive any financial 
compensation, and they were free to withdraw from the study at 
any time without consequence.

Study design and randomization

This parallel, two-group randomized controlled trial was 
conducted in two distinct phases. In Phase 1, traditional paper-
based questionnaires (control) were compared with the MedQuest 
mobile app (experimental). A total of 185 participants were 
randomized into two groups (control n = 92; experimental n = 93) 
using simple randomization with a computer-generated sequence 
prepared by an independent statistician (36). Allocation was 
performed by a blinded coordinator to reduce bias. Recruitment 
occurred from November 25, 2024, to February 26, 2025. Blinding 
was not feasible for participants or nursing staff due to the nature 
of the intervention; however, ICF mapping was independently 
performed by physicians who were blinded to group assignment 
and AI outputs.

In Phase 2, results from both groups were combined to compare 
ICF mappings assigned by clinicians with those generated by 
artificial intelligence, providing a comprehensive evaluation of AI 
performance. The overall study structure is illustrated in the flow 
diagram (Figure 1).

Interventions

The control group completed validated questionnaires using 
standardized paper forms, with responses subsequently manually 
entered by medical staff into the calculator module of the MedQuest 
app for consistent automated scoring using identical algorithms as 
the experimental group. The experimental group completed the 
same questionnaires directly within the MedQuest app, which 
provided immediate automated scoring and AI-generated ICF 
mapping. Apart from the completion method, questionnaire 
content and scoring algorithms were identical between groups, with 
all results ultimately processed through MedQuest to ensure 
uniform scoring.

The AI module utilized Anthropic’s Claude 3.5 Sonnet (October 
22, 2024), a commercial large language model based on transformer 
architecture, capable of natural language understanding, analysis, 
summarization, and dialogue management (37). No additional AI 
training for ICF was performed; instead, a predefined prompt in 
Russian guided code generation (see Supplementary files). The system 
produced structured reports with recommended ICF codes and 
appropriate qualifiers for comparison with physician-generated codes. 
Technical infrastructure included Flutter, Dart, Flutterflow for 
interface creation, Firebase for data storage, and API integration 
with Claude.

All participants completed identical validated assessments: SF-12 
Health Survey (38), International Physical Activity Questionnaire 
(39), Visual Analog Scale for pain (40), Barthel Index (41), and MRC 
scale (42). These instruments were selected for their validity and 
relevance to patient functioning.
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ICF mapping

The ICF classification system consists of four main domains, each 
identified by a specific letter code: Body Functions (b), Body 
Structures (s), Activities and Participation (d), and Environmental 
Factors (e). Each ICF code comprises three components: a domain 
identifier, a numeric code specifying the particular category within 
that domain, and a qualifier indicating the severity of the problem 
(Figure 2).

Functional status was mapped using two parallel methods: 
manual mapping by experienced physicians and automatic mapping 
by the MedQuest AI system. Manual ICF mapping was performed by 
seven physicians specializing in rehabilitation medicine. To ensure 
balanced workload distribution, participants were randomly assigned 
to physicians using a stratified randomization approach (stratified by 
study group) that maintained equal distribution across both control 
and experimental groups. Each physician was assigned approximately 
26–27 participants to ensure manageable caseloads while preserving 

FIGURE 1

Study flow diagram and data processing workflow.
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statistical power for inter-rater analysis. Patient assignments were 
randomized using a computer-generated sequence prepared by the 
same independent statistician who conducted the initial group 
randomization, ensuring that each physician evaluated participants 
from both study groups. To maintain inter-rater consistency, all 
participating physicians completed a standardized 4-h training session 
on ICF mapping principles and classification criteria before study 
initiation. They performed patient interviews, reviewed data from the 
questionnaires, and systematically matched the information to the 
appropriate ICF categories and qualifiers. These physician-assigned 
codes served as the clinical reference standard for subsequent accuracy 
comparisons. Automatic AI mapping was carried out using the 
MedQuest application’s Claude 3.5 Sonnet-based AI system (described 
in Interventions section). Guided by a predefined prompt, the AI 
analyzed the summary scores from all validated questionnaires to 
assign the corresponding ICF codes. No predetermined rules were 
used to link specific questionnaire scores to particular ICF categories; 
instead, the AI analyzed the aggregate data to determine the 
appropriate domains and qualifiers.

The conversion of instrument scores into ICF qualifiers (0–4) 
was based on the severity of the problem. For most scales (SF-12, 
Barthel Index, IPAQ), the maximum score represented the best 
health outcome, whereas for the Visual Analog Scale for pain, the 
maximum score corresponded to the worst outcome. The AI used 
these principles to assign a qualifier based on the percentage of 
impairment: “0” for “no problem” (0–4%), “1” for “mild problem” 
(5–24%), “2” for “moderate problem” (25–49%), “3” for “severe 
problem” (50–95%), and “4” for “complete problem” 
(96–100%) (14).

While the assessment tools could have identified other ICF 
categories, we focused on pre-selected codes that were most relevant 

to our patient population to evaluate the AI’s performance in the 
most applicable domains. To ensure objectivity, clinicians were 
blinded to group assignments and the AI’s output. The codes 
resulting from both methods were compared post hoc to evaluate the 
AI’s performance and concordance. The study was completed as 
planned upon reaching the target sample size, with no 
premature discontinuations.

Outcomes

The study had two co-primary outcomes reflecting areas of 
efficiency and accuracy: (1) time to complete questionnaires during 
the patient encounter and (2) agreement between AI- assigned and 
clinician- assigned ICF codes, measured using quadratic weighted 
kappa (κ > 0.8 defined near-perfect agreement). For the first 
primary outcome, the total time taken by each participant to 
complete all questionnaires was measured in minutes. Time 
measurement for questionnaire completion was conducted by 
nursing staff using a standardized protocol. Timing commenced 
when participants began completing their first questionnaire. For 
the control group, total time encompassed both patient completion 
of paper questionnaires and subsequent staff transcription of 
responses into the scoring app, with timing concluding when 
transcription was complete. For the experimental group, total time 
included only patient completion of digital questionnaires within 
the app, with timing concluding when the patient submitted their 
final response. Importantly, time spent on subsequent ICF mapping 
assignments was excluded from questionnaire completion times in 
both groups to ensure comparable measurement of the core 
questionnaire completion process.

FIGURE 2

Structure of ICF.
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Secondary outcomes included clinician user satisfaction assessed 
using the System Usability Scale (SUS) questionnaire (43), AI diagnostic 
performance metrics (sensitivity, specificity, micro- and macro-averaged 
metrics), and a confusion matrix to visualize mapping discrepancies, all 
assessed after data collection. The SUS is a standardized 10-item 
instrument that captures usability and satisfaction on a 0–100 scale 
(higher scores indicate better usability) (44); it addresses aspects such as 
complexity, ease of use, and confidence in using the system.

Workflow and user interaction within the 
MedQuest application

The MedQuest mobile application includes two main functional 
components: an integrated calculator for standardized questionnaires 
and an automatic ICF mapping system. The application provides a 
streamlined, role-based workflow for physicians and patients, as 
illustrated in the complete workflow shown in Figure 3.

FIGURE 3

MedQuest application workflow.
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The process begins with physician login and patient profile 
creation, followed by questionnaire assignment and patient access 
provision via QR codes or links (Figures 4A–D, 5A,B). Patients then 
log in and complete their assigned questionnaires through an intuitive 
digital interface (Figures 6A,B). Upon completion, physicians can 
either save the calculated scores or activate AI processing to generate 
structured reports with recommended ICF codes (Figures 7A–C). The 
application interface and all validated scales and questionnaires are 
available in Russian.

Statistical analysis

All statistical analyses were conducted using IBM SPSS Statistics 
(version 27.0.1.0). The normality of data distribution was assessed 
using the Kolmogorov–Smirnov test. Quantitative variables with 
normal distribution are reported as mean ± standard deviation 
(M ± SD), while non-normally distributed data are expressed as 
median and interquartile range (Me [Q1–Q3]). Between-group 
comparisons of demographic and baseline characteristics were 
performed using the independent-samples t-test for normally 
distributed data and the Mann–Whitney U test for non-normally 
distributed data. For categorical variables, the Pearson chi-square test 
was used.

To evaluate agreement between clinician-based and AI-based 
ICF mapping, Quadratic Weighted Kappa was calculated. This 
method was selected for its ability to weight larger disagreements 
more heavily, thus reflecting the clinical impact of rating 
discrepancies on an ordinal scale. Kappa values were interpreted as 
follows: κ < 0.20—poor agreement, 0.21–0.40—fair, 0.41–0.60—
moderate, 0.61–0.80—substantial, and >0.80—almost perfect 
agreement (45).

In addition to the primary comparisons, prespecified secondary 
analyses were conducted to explore the AI system’s diagnostic 
performance. These included calculations of sensitivity, specificity, and 
both micro- and macro-averaged performance metrics across ICF 
codes. An agreement matrix was constructed to visualize AI–clinician 
concordance by functional domain and qualifier level.

All statistical tests were two-tailed, and a p-value < 0.05 was 
considered statistically significant. This multifaceted analytical 
approach enabled comprehensive assessment of both the MedQuest 
mobile application’s efficiency and the diagnostic accuracy of the 
AI-powered ICF mapping module.

Sample size calculation

Sample size calculations were conducted a priori using G*Power 
(version 3.1.9.7) with the Wilcoxon–Mann–Whitney test selected as 
the primary statistical test. The effect size (Cohen’s d = 0.6) was chosen 
following Cohen’s established framework for effect size interpretation. 
Cohen’s seminal work established d = 0.6 as representing a medium 
effect size that is both clinically meaningful and practically detectable 
(45). This choice reflects our expectation that AI-assisted ICF mapping 
would demonstrate a clinically significant improvement over 
traditional methods, while remaining realistic about the magnitude of 
difference we could reasonably expect to observe. As Sullivan and 
Feinn emphasize (46), focusing on effect size ensures that we prioritize 
clinical meaningfulness over mere statistical significance, which is 
particularly important when validating diagnostic tools that will 
impact patient care.

The power analysis used the following parameters: two-tailed 
test, Cohen’s d = 0.6, α = 0.05, power = 0.95, and 1:1 allocation 
ratio. This yielded a required sample size of 77 participants per 

FIGURE 4

MedQuest mobile application interface for physicians. (A) Initial screen for selecting between physician and patient access. (B) Physician authorization 
and login screen. (C) Creating a new group of scales for patient assessment. (D) Adding a new patient to the system.
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group (154 total). We deliberately chose a conservative approach 
that balances adequate statistical power with practical feasibility, 
avoiding the trap of overpowering our study to detect trivial 
differences that might be  statistically significant but clinically 
irrelevant. The actual recruited sample of 185 participants resulted 
in an estimated power of 0.97, providing robust capacity to detect 
meaningful differences while accounting for potential dropouts or 
missing data.

Results

Phase 1

A total of 185 participants were enrolled in the study and 
successfully randomized into two groups: a control group (n = 92) 
and an experimental group (n = 93) (Figure  8). All participants 
completed the study, and no dropouts or post-randomization 
exclusions were reported. Baseline demographic characteristics were 
comparable between the two groups, with no statistically significant 
differences observed (Table 1). The mean age of participants was 
61.77 ± 10.2 years overall, with the control group averaging 
61.93 ± 10.5 years and the experimental group  61.61 ± 9.9 years 

(p > 0.05). The median body mass index (BMI) across all participants 
was 29.7 [IQR: 25.3–34.8]; values were similar between groups, with 
the control group exhibiting a BMI of 30.1 ± 5.6 and the experimental 
group  29.5 ± 5.5 (p > 0.05). Gender distribution consisted of 121 
males and 64 females, also without significant between-group 
differences (p > 0.05).

Baseline assessment of functional status showed no statistically 
significant differences between the control and experimental groups 
(Table 2). Regarding the SF-12 questionnaire, both the physical and 
mental component scores were comparable: the physical component 
median was 70 [IQR: 61.25–80] in the control group and 70 [IQR: 
60–75] in the experimental group (p = 0.22), while the mental 
component scores were 66.7 [IQR: 55.6–74.1] and 70.4 [IQR: 53.75–
79.65], respectively (p = 0.40). The Barthel Index medians were 75 
[IQR: 70–80] for the control group and 75 [IQR: 65–80] for the 
experimental group (p = 0.13). Pain assessment via the Visual Analog 
Scale revealed medians of 6 [IQR: 6–7] and 7 [IQR: 5.5–7] in the 
control and experimental groups, respectively (p = 0.97). The 
International Physical Activity Questionnaire (IPAQ) yielded a 
median score of 12 [IQR: 10–16] in the control group and a mean of 
13.4 [IQR: 10–16] in the experimental group (p = 0.40). Muscle 
strength, assessed by the MRC scale, was consistent across both 
groups, with a median score of 4 [IQR: 3–5] (p = 0.87).

FIGURE 5

Physician’s workflow for patient data input and access management in MedQuest. (A) Detailed patient information entry form. (B) Granting the patient 
access to the assigned questionnaire.
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A key finding of the study was the significant difference in the 
time required to complete the questionnaires. Participants in the 
experimental group, who utilized the MedQuest mobile application, 
completed the forms in a median time of 18 min [IQR: 16–20], 
compared to 28 min [IQR: 26–29] in the control group who used 
paper-based forms (p < 0.001). This reduction represents a 35.7% 
improvement in completion time, indicating enhanced efficiency 
associated with the digital application.

Phase 2

In terms of ICF mapping accuracy, the comparison between 
clinician-assigned and AI-generated mappings revealed a high level of 
agreement across the majority of domains (Table 3). Of the 22 domains 
evaluated, statistically significant differences were found in only three: 
d410 “Changing body position” (clinicians: 1.76 [IQR: 1–2]; AI: 1.81 
[IQR: 1–2]; p = 0.04), b280 “Sensation of pain” (clinicians: 2.98 [IQR: 
3–3]; AI: 2.94 [IQR: 3–3]; p = 0.03), and e310 “Immediate family” 
(clinicians: 1.22 [IQR: 1–2]; AI: 1.18 [IQR: 1–1]; p = 0.02). As shown 
in Table  3, no differences were found in the remaining domains 
between the clinician and AI scores (p > 0.05). Notably high 

concordance was observed in domains such as d640 “Doing 
housework,” d540 “Dressing,” and d430 “Lifting and carrying objects,” 
where median scores were identical between the clinician and AI 
ratings. Strong agreement was also evident in functional domains like 
b455 “Exercise tolerance functions” (clinicians: 2.99 [IQR: 3–3]; AI: 
2.98 [IQR: 3–3], p = 0.78), b710 “Joint mobility functions” (clinicians: 
1.02 [IQR: 0–2]; AI: 1.03 [IQR: 0–2], p = 0.71), and b715 “Joint stability 
functions” (clinicians: 1.04 [IQR: 0–2]; AI: 1.03 [IQR: 0–2], p = 0.67).

To further assess the level of agreement between the AI system 
and clinicians, a Quadratic Weighted Kappa coefficient was calculated, 
yielding a value of 0.842 (p < 0.05), indicating substantial agreement 
(Table 4). Analysis of the agreement matrix revealed that 80.6% of all 
scores matched exactly, with 18.7% differing by only one level and 
discrepancies greater than one level occurring in only 0.6% of cases. 
The most frequent exact matches were for scores of 2 (1,434 cases, 
35.2%) and 1 (1,282 cases, 31.5%). Discrepancies between scores of 1 
and 2 (324 cases combined) and between 2 and 3 (212 cases combined) 
were the most common among adjacent disagreements, further 
supporting the system’s high reliability in distinguishing between 
nuanced functional limitations.

To evaluate the AI’s classification performance, sensitivity and 
specificity were calculated for each ICF score using values extracted 

FIGURE 6

Patient’s interaction with the MedQuest mobile application. (A) Patient login screen to access their assigned test. (B) Patient interface for completing 
the assigned questionnaires.
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from the agreement matrix (Table 5). Sensitivity and specificity values 
were as follows: Code 0—sensitivity 0.633, specificity 0.987; Code 1—
sensitivity 0.847, specificity 0.890; Code 2—sensitivity 0.884, 
specificity 0.854; Code 3—sensitivity 0.648, specificity 0.972; Code 
4—sensitivity 0.053, specificity 1.000. These results suggest that the AI 
system performs particularly well in distinguishing moderate levels of 
functional impairment, although it is less sensitive in detecting 
extreme values such as Code 4.

To provide a holistic performance overview, micro- and macro-
averaged sensitivity and specificity metrics were computed. The 
micro-averaged sensitivity was 0.806 and specificity 0.952, indicating 
strong overall predictive accuracy when weighted by case frequency. 
The macro-averaged sensitivity was lower, at 0.613, reflecting reduced 
performance in infrequent categories, while macro-averaged 
specificity remained high at 0.940.

Finally, the usability of the MedQuest application was evaluated 
using the System Usability Scale (SUS) among seven clinicians (Table 6). 
The mean SUS score was 86.8 out of 100, indicating high overall user 
satisfaction and system usability. The highest-rated aspects included 
ease of use (4.86/5) and function integration (4.71/5). The intention to 
use the system frequently and user confidence both received favorable 
scores (4.57/5). Notably, the negatively worded item assessing system 
inconsistencies received a mean score of 1.14/5, reflecting a positive 
perception. Three of the seven clinicians (42.9%) rated the system at or 
above 97.5, while the lowest individual score was 82.5, supporting 
consistently high satisfaction across respondents. No adverse events or 
unintended effects were reported during the course of the study.

Discussion

The MedQuest mobile app substantially reduced the time required 
for questionnaire completion compared to the paper-based method, 
streamlining the clinical workflow. In our study, clinicians completed 
mapping tasks significantly faster with the app, a finding that mirrors 
results from other mobile documentation tools. For instance, Ehrler 
et  al. reported that a smartphone app reduced nurses’ bedside 
documentation time by approximately 4.1 min per hour, thereby 
increasing uninterrupted patient care time (47). Similarly, Poissant 
et al. found that point-of-care computing saved nurses approximately 
24–25% of their documentation time per shift (48). Our usability 
assessment reinforces these findings. MedQuest received an 
exceptionally high System Usability Scale (SUS) score, well above the 
68-point benchmark for usability and the average score of 77 for 
digital health apps found in a recent meta-analysis (43). Taken 
together, the significant time savings and excellent user acceptance 
(SUS score) suggest MedQuest is well-suited for busy clinical 
environments. By reducing the administrative burden, the app may 
allow providers to dedicate more time to direct patient interaction and 
maintain smoother workflows (47).

The AI’s ICF mapping demonstrated robust agreement with clinician 
assessments. We  measured concordance using Quadratic Weighted 
Kappa, a standard metric for ordinal classification tasks (49). Our 
Quadratic Weighted Kappa values were in the “substantial” to “almost 
perfect” range (i.e., typically >0.75), indicating that the AI’s labels closely 
matched those of human experts. These results are consistent with other 

FIGURE 7

MedQuest mobile application interface for processing and displaying patient data. (A) Option to save patient data with or without AI processing. 
(B) Display of standardized scale and questionnaire results. (C) AI-generated report showing the recommended ICF codes.
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FIGURE 8

Participant flow chart. The flow chart shows the progression of participants throughout the study.

TABLE 1 Comparative characteristics of demographic indicators.

Characteristics Participants, median (IQR) or mean (SD)

All participants 
(n = 185)

Control group 
(n = 92)

Experimental group 
(n = 93)

p-value

Socio-demographic characteristics

Age 61.77 ± 10.2 61.93 ± 10.5 61.61 ± 9.9 0.83

BMI 29.7 [25.3–34.8] 30.1 ± 5.6 29.5 ± 5.5 0.42

Gender

Male 121 63 58 0.38

Female 64 29 35

Quantitative data with normal distribution are presented as the mean and standard deviation (mean ± SD); those with non-normal distribution are presented as the median and interquartile 
range (Me [Q1–Q3]). Mixed formats are shown where appropriate.
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TABLE 3 Comparative analysis of ICF mapping between clinicians and artificial intelligence system.

Participants, n = 185, median ICF qualifier 
score [IQR]

ICF codes By clinicians By artificial 
intelligence

p-value

d230 Carrying out daily routine 1.82 [1–2] 1.79 [1–2] 0.18

d410 Changing body position 1.76 [1–2] 1.81 [1–2] 0.04

d420 Transferring oneself 1.82 [1–2] 1.78 [1–2] 0.59

d430 Lifting and carrying objects 1.78 [1–2] 1.78 [1–2] 0.76

d450 Walking 1.61 [1–2] 1.62 [1–2] 0.41

d460 Moving around in different locations 1.58 [1–2] 1.59 [1–2] 0.38

d465 Moving around using equipment 1.62 [1–2] 1.59 [1–2] 0.06

d470 Using transportation 1.59 [1–2] 1.58 [1–2] 0.50

d520 Caring for body parts 1.69 [1–2] 1.67 [1–2] 0.18

d540 Dressing 1.68 [1–2] 1.68 [1–2] 0.87

d640 Doing housework 1.67 [1–2] 1.67 [1–2] 1.00

b134 Sleep functions 1.52 [1–2] 1.54 [1–2] 0.41

b280 Sensation of pain 2.98 [3–3] 2.94 [3–3] 0.03

b455 Exercise tolerance functions 2.99 [3–3] 2.98 [3–3] 0.78

b710 Joint mobility functions 1.02 [0–2] 1.03 [0–2] 0.71

b715 Joint stability functions 1.04 [0–2] 1.03 [0–2] 0.67

b730 Muscle power functions 1.04 [0–2] 1.02 [0–2] 0.15

b770 Gait pattern functions 1.04 [0–2] 1.02 [0–2] 0.29

s770 Additional musculoskeletal structures related to movement 1.42 [1–2] 1.42 [1–2] 0.72

s810 Structure of areas of skin 1.07 [1–1] 1.06 [1–1] 0.38

e310 Immediate family 1.22 [1–2] 1.18 [1–1] 0.02

e540 Transportation services, systems and policies 0.99 [1–1] 1.02 [1–1] 0.11

studies of AI–clinician agreement. For example, Faryna et al. reported 
algorithm–pathologist Quadratic Weighted Kappa values between 0.76 
and 0.86 for automated Gleason grading (50). In addition to overall 
agreement, we evaluated sensitivity and specificity for each ICF category. 
Performance was highest for common and well-defined codes, declining 
for rarer or more subjective categories (e.g., those involving personal/social 

context). The extremely low sensitivity (0.053) for ICF code 4, despite 
perfect specificity (1.000), likely reflects insufficient data representation for 
this particular code in our dataset, limiting the statistical meaningfulness 
of these performance metrics. To assess overall accuracy, we computed 
both micro- and macro-averaged F1-scores. Both the macro-averaged 
F1-score (averaging performance across codes) and the micro-averaged 

TABLE 2 Comparative characteristics of functional assessment results in control and experimental groups.

Characteristics Participants, median [IQR]

All participants 
(n = 185)

Control group 
(n = 92)

Experimental group 
(n = 93)

p-value

Results

SF-12 questionnaire Physical component 70 [60–80] 70 [61.25–80] 70 [60–75] 0.22

Mental component 66.7 [55.6–77.8] 66.7 [55.6–74.1] 70.4 [53.75–79.65] 0.40

Total component 68.10 [61.7–74.5] 68.1 [61.7–73.95] 70.2 [59.6–76.6] 0.80

Barthel Index 75 [70–80] 75[70–80] 75[65–80] 0.13

Visual Analog Pain Scale 6 [6–7] 6 [6–7] 7 [5.5–7] 0.97

International Physical Activity Questionnaire Short Form (IPAQ) 13 [10–17] 12 [10–16] 13.4 [10–16] 0.40

MRC Muscle Strength Scale 4 [3–5] 4 [3–5] 4 [3–5] 0.87

Time for questionnaire completion 22 [18–28] 28 [26–29] 18 [16–20] <0.001

Time measured in minutes.
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F1-score (global accuracy) were strong, and our macro-F1 score is 
comparable to the 84% achieved by Newman-Griffis et al. in a similar 
automated ICF mapping task (51). These aggregated measures confirm 
that the AI performs robustly across most categories while highlighting 
areas where further improvement is needed. However, we acknowledge 
that despite the standardized training and stratified assignment 
procedures, some degree of inter-rater variability among physicians may 
persist, potentially affecting the comparability of physician-assigned codes 
used as our reference standard. This assumption of consistent physician 
coding patterns represents a study limitation that may impact the 
interpretation of AI-physician agreement metrics, potentially either 
overestimating or underestimating true AI performance depending on the 
direction of any systematic differences in physician assessments.

Importantly, we  recognize that AI-based tools have strengths in 
automating routine tasks but limitations in subjective domains. Our 
analysis revealed the AI’s primary challenges lay with codes requiring 
nuanced human judgment. Discrepancies in domain d410 (changing 
basic body position) likely stem from the AI relying solely on 
questionnaire data, whereas clinicians can directly observe the patient. For 
domain b280 (sensation of pain), differences may reflect the subjective 
nature of pain and a clinician’s ability to interpret non-verbal cues 
inaccessible to the AI. The most significant discrepancies, found in 
domain e310 (immediate family), likely occur because assessing family 
dynamics requires understanding complex social interactions that 
clinicians can interpret more effectively through direct communication. 
Conversely, the perfect agreement for the ICF code d640, “Doing 
housework,” (p = 1.00) likely stems from both clinicians and the AI relying 
solely on the objective data from the Barthel Index questionnaire. This 
functional domain is relatively straightforward to assess, allowing both 

TABLE 4 Agreement matrix between clinicians and artificial intelligence 
in ICF mapping.

Clinicians

AI 0 1 2 3 4 Total

0 236

(5.8%)

47

(1.2%)

2

(0.05%)

0

(0.0%)

0

(0.0%)

285

1 129

(3.2%)

1,282

(31.5%)

150

(3.7%)

2

(0.05%)

1

(0.02%)

1,564

2 8

(0.2%)

174

(4.3%)

1,434

(35.2%)

175

(4.3%)

1

(0.02%)

1792

3 0

(0.0%)

11

(0.3%)

37

(0.9%)

326

(8%)

52

(1.3%)

426

4 0

(0.0%)

0

(0.0%)

0

(0.0%)

0

(0.0%)

3

(0.07%)

3

All 373 1,514 1,623 503 57 4,070

Kappa with quadratic weighting—0.842 (p < 0.05). Cell shading intensity (darker green) 
corresponds to higher frequencies of agreement between AI and clinician scores, with 
shading reflecting the magnitude of counts within the agreement matrix.

TABLE 5 Artificial intelligence sensitivity and specificity for each ICF code.

ICF code Sensitivity (Recall) Specificity

0 0.633 0.987

1 0.847 0.890

2 0.884 0.854

3 0.648 0.972

4 0.053 1.000

TABLE 6 System usability scale (SUS) assessment of the MedQuest mobile application (scores on 5-point scale).

SUS question Physician 
1

Physician 
2

Physician 
3

Physician 
4

Physician 
5

Physician 
6

Physician 
7

Mean 
score

1. I think that I would like to use this 

system frequently

5 5 4 4 5 5 4 4.57

2. I found the system unnecessarily 

complex

1 1 2 1 1 1 1 1.14

3. I thought the system was easy to use 5 5 5 4 5 5 5 4.86

4. I think that I would need the 

support of a technical person to be able 

to use this system

2 1 2 2 1 1 1 1.43

5. I found the various functions in this 

system were well integrated

5 5 4 4 5 5 5 4.71

6. I thought there was too much 

inconsistency in this system

1 1 1 2 1 1 1 1.14

7. I would imagine that most people 

would learn to use this system very 

quickly

5 5 4 4 5 4 5 4.57

8. I found the system very 

cumbersome to use

1 1 1 2 1 1 1 1.14

9. I felt very confident using the system 5 5 4 4 5 5 4 4.57

10. I needed to learn a lot of things before 

I could get going with this system

1 1 2 2 1 1 1 1.29

Individual SUS Score (0–100) 97.5 100.0 85.0 82.5 100.0 97.5 95.0 86.8
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human evaluators and the AI system to consistently translate 
questionnaire scores into equivalent ICF codes. Consequently, the 
identical assessments produced by both methods naturally resulted in no 
statistical difference between the two approaches. These findings have 
practical implications. Identifying d410 (changing basic body position) 
issues enables rehabilitation specialists to more effectively target patient-
specific mobility challenges. Information about pain sensation (b280) can 
indicate whether patients require pain management interventions. 
Assessment of e310 (immediate family) reveals the need for enhanced 
family-centered communication strategies. These limitations reflect well-
documented concerns about AI’s reduced capacity for empathy, nuanced 
clinical judgment, and contextual understanding in healthcare settings 
(52). To address these inherent limitations and maximize AI’s benefits, a 
human-in-the-loop (HITL) workflow is advisable (53). In such a hybrid 
model, AI can efficiently generate initial mappings while clinicians retain 
crucial oversight to review and adjust outputs for ambiguous or complex 
cases. This collaborative approach, where human judgment is integrated 
into AI-driven processes, ensures accuracy, mitigates bias, and upholds 
ethical standards, particularly in high-stakes healthcare applications. 
Hybrid human–AI teams have consistently outperformed humans or 
machines working alone. For example, an experimental study of 
endoscopists found that combining AI suggestions with physician review 
yielded higher diagnostic accuracy than clinicians working alone (54). In 
practice, MedQuest could be  further enhanced by features that flag 
confidence levels for certain mappings, referring low-confidence cases to 
clinicians for expert review. This approach would leverage AI’s speed 
while preserving human expertise for complex clinical judgments and 
ensure regulatory compliance.

Study limitations include a restricted geographical scope (two 
medical centers in one city), absence of long-term follow-up, and limited 
evaluation to a focused set of ICF codes, and potential inter-rater 
variability among physicians that may have influenced our reference 
standard. While all participating physicians received standardized 
training, we did not conduct formal inter-rater reliability testing, which 
may have impacted the validity of our clinical reference standard and 
subsequently influenced agreement metrics between manual and 
AI-based mapping. Additionally, the sample size was insufficient to 
provide statistically meaningful weighted kappa values for individual ICF 
domains and qualifier levels. Technological constraints, such as the need 
for a smartphone and internet access, may exclude certain populations. 
The study excluded patients with severe conditions and may have 
attracted more technologically proficient individuals, introducing a 
potential selection bias. Furthermore, a cost-effectiveness analysis was not 
performed, the app’s impact on comprehensive clinical outcomes requires 
further investigation, and future research should analyze AI performance 
across a broader range of ICF codes with larger samples to enable domain-
specific agreement analysis.

Conclusion

The integration of the MedQuest mobile application with AI-driven 
ICF mapping demonstrated notable improvements in clinical workflow 
efficiency and mapping accuracy. The system significantly reduced 
questionnaire completion time and showed strong agreement with 
clinician assessments in most functional domains. While limitations were 
noted in subjective and complex areas, the findings support the use of AI 
as an assistive tool under clinician oversight. This hybrid approach may 

enhance documentation quality and optimize time use in busy healthcare 
settings, with future research needed to evaluate broader applicability and 
long-term impact.
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