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Introduction: The integration of Artificial Intelligence (AI) into educational

environments is revolutionizing action recognition, o�ering a transformative

opportunity to enhance public health monitoring. Traditional methods, which

primarily rely on rule-based algorithms or handcrafted feature extraction,

face significant challenges in adaptability, scalability, and real-time processing.

These limitations hinder their e�ectiveness, particularly in detecting health-

related behaviors such as sedentary patterns, social interactions, and hygiene

compliance.

Methods: To overcome these shortcomings, this research introduces an AI-

driven information system that leverages advanced deep learning models and an

Adaptive Knowledge Embedding Network (AKEN) to improve action recognition

accuracy. The approach integrates AKEN with a Dynamic Personalized Learning

Strategy (DPLS) to model student behaviors, predict future actions, and optimize

intervention strategies by incorporating factors such as engagement levels,

learning progress, and environmental conditions.

Results: By utilizing reinforcement learning and explainable AI techniques, the

system not only refines recognition accuracy but also ensures transparency

in decision-making. Real-time engagement monitoring enhances adaptability,

allowing educators and policymakers to make informed interventions.

Discussion: Experimental results validate the system’s superior performance

over conventional approaches, demonstrating its ability to recognize complex

behavioral patterns in educational settings. This innovation represents a

significant step forward in AI-driven public health monitoring, fostering a safer

and more responsive learning environment.

KEYWORDS

AI-driven action recognition, public healthmonitoring, adaptive knowledge embedding,

deep learning in education, explainable AI

1 Introduction

The increasing demand for public health monitoring in educational settings has

necessitated the development of advanced AI-driven information systems capable of

recognizing human actions in real time (1). Not only does action recognition play a crucial

role in ensuring student safety by identifying abnormal behaviors such as falls, fights,

or health emergencies, but it also supports public health initiatives by detecting hygiene

compliance, social distancing adherence, and symptoms of illness (2). Moreover, leveraging

AI for automated surveillance in schools reduces the burden on human monitors,
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ensuring comprehensive, non-intrusive, and efficient observation

(3). Traditional monitoring approaches, such as manual

supervision or rule-based surveillance systems, are often limited

by scalability and subjectivity, making AI-based action recognition

a necessary evolution (4). However, the development of robust

and generalizable action recognition models remains challenging

due to factors such as occlusions, variations in human movement,

and environmental complexities (5). Addressing these challenges

requires a systematic approach that builds upon classical methods,

integrates machine learning advancements, and capitalizes on the

power of deep learning and pre-trained models.

To address the shortcomings of primitive heuristic-driven

methods, preliminary studies in action identification utilized

symbolic artificial intelligence and knowledge modeling strategies

(6). These methods aimed to capture human activities using

handcrafted features and structured rule-based logic. For example,

predefined motion templates, spatiotemporal descriptors, and

expert-defined ontologies were employed to model human actions

in constrained environments (7). While these approaches provided

interpretability and logical reasoning, their reliance on manually

designed rules made them inflexible to variations in movement

styles and real-world complexities (8). Furthermore, symbolic AI

methods struggled with scalability, requiring extensive domain

knowledge to generalize across diverse educational settings (9).

they laid the foundation for understanding human motion patterns

and provided insights into how structured representations could be

leveraged for action classification in public health applications (10).

To address the rigidity and limited adaptability of symbolic AI,

researchers transitioned toward data-driven and machine learning-

based approaches (11). These methods leveraged statistical learning

and probabilistic models, such as HiddenMarkovModels (HMMs),

Support Vector Machines (SVMs), and Random Forests, to

recognize human actions from sensor or video data (12). Unlike

rule-based methods, machine learning models could learn from

labeled datasets and generalize better to unseen scenarios (13).

handcrafted feature extraction techniques, such as Histogram of

Oriented Gradients (HOG) and Motion History Images (MHI),

improved the ability to capture motion dynamics (14). However,

these models still suffered from feature engineering challenges and

struggled with highly variable and occluded human actions (15).

Moreover, traditional machine learning methods required large-

scale annotated datasets to achieve high accuracy, which posed

challenges in educational settings where privacy concerns and data

labeling costs are significant considerations.

Modern progress in deep neural networks and pre-trained

frameworks has greatly enhanced action classification accuracy by

utilizing sophisticated neural structures capable of autonomously

extracting multi-level motion patterns (16). Convolutional Neural

Networks (CNNs) and Recurrent Neural Networks (RNNs),

particularly Long Short-Term Memory (LSTM) networks, have

been extensively used to model spatiotemporal dependencies in

human motion sequences (17). More recently, Transformer-based

architectures and Vision Transformers (ViTs) have demonstrated

superior performance in learning long-range dependencies and

capturing fine-grained motion patterns (18). Pre-trained models

such as I3D (Inflated 3D ConvNet) and SlowFast networks have

been adapted for real-time action recognition in educational

environments (19). Despite their success, deep learning models

often require large-scale training datasets and computational

resources, making deployment in school settings challenging

(20). Furthermore, concerns regarding bias, interpretability, and

robustness remain open issues that must be addressed for reliable

public health monitoring.

Given the limitations of traditional methods, machine learning

models, and deep learning architectures, we propose an AI-driven

information system tailored for real-time action recognition in

educational settings. Our approach integrates multi-modal sensor

fusion, self-supervised learning techniques, and domain-adaptive

training to enhance recognition accuracy while addressing privacy

and computational constraints. By combining depth cameras,

inertial sensors, and privacy-preserving AI models, our system can

recognize actions robustly without relying on sensitive video data.

Furthermore, self-supervised learning reduces the dependency on

large-scale labeled datasets, allowing the system to adapt to new

educational environments with minimal human intervention. Our

proposed framework not only enhances public health monitoring

by identifying potential health risks but also improves overall

school safety through intelligent action recognition and anomaly

detection. The integration of AI-driven information systems into

educational settings holds significant implications for public health

monitoring. Schools are densely populated, highly interactive

environments where health-related behaviors can rapidly influence

collective wellbeing. By embedding intelligent action recognition

and monitoring tools into these contexts, institutions can detect

early indicators of illness, monitor hygiene compliance, and

manage behavioral risks in real time. This not only supports

proactive health interventions but also alleviates the burden on

staff through automated observation and alerts. As such, our study

provides a timely and critical advancement in leveraging AI to

create safer, healthier, and more responsive learning environments,

aligning technological innovation with the pressing demands of

modern education systems.

• Our approach integrates multi-modal sensor fusion and self-

supervised learning, enabling robust action recognition with

minimal labeled data requirements.

• The system is designed for real-time deployment in

diverse educational environments, ensuring adaptability,

computational efficiency, and privacy preservation.

• Relative analyses indicate that our approach surpasses cutting-

edge frameworks in precision, resilience, and practical

implementation for public health surveillance.

2 Related work

2.1 AI-driven action recognition in
educational environments

Artificial intelligence (AI) has significantly transformed

educational environments by introducing advanced action

recognition systems that monitor and analyze student activities.

These systems utilize computer vision and deep learning

techniques to interpret student behaviors, thereby enhancing

classroom management and educational outcomes (21). One

notable application is the development of intelligent tutoring

systems that adapt to individual learning styles. By recognizing

specific student actions, such as hand-raising or engagement levels,

Frontiers in PublicHealth 02 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1592228
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lu and Ruijuan 10.3389/fpubh.2025.1592228

AI systems can tailor instructional content to meet diverse learning

needs. This personalized approach has been shown to improve

student performance and engagement (22). Moreover, AI-driven

action recognition contributes to maintaining safety within

educational settings. For instance, systems equipped with real-time

monitoring capabilities can detect unusual or unauthorized

activities, enabling prompt intervention by school authorities.

This proactive surveillance fosters a secure learning environment,

essential for both students and educators (23). The integration

of AI in classrooms also extends to administrative functions,

such as attendance tracking. Traditional methods are often time-

consuming and prone to errors; however, AI-based systems can

automate this process by recognizing student faces or movements

as they enter the classroom. This automation not only streamlines

administrative tasks but also allows educators to allocate more

time to instructional activities (24). Despite these advancements,

the implementation of AI-driven action recognition systems raises

concerns regarding privacy and data security (25). The collection

and analysis of student data necessitate stringent measures

to protect sensitive information (26). Educational institutions

must establish clear policies and employ robust encryption

methods to ensure compliance with ethical standards and

legal regulations.

2.2 AI applications in public health
surveillance

The integration of artificial intelligence (AI) into public

health surveillance has markedly improved the ability to monitor,

predict, and respond to health-related events. AI technologies

enable early disease detection and efficient public health resource

management through large-scale data analysis (27). AI-driven

systems can process diverse data sources, including social media

posts, healthcare records, and environmental sensors, to identify

patterns indicative of emerging health threats. For example,

machine learning algorithms can analyze search engine queries

and social media activity to detect increases in symptom-

related discussions, serving as early warning signals for potential

epidemics. This proactive approach allows health authorities to

implement preventive measures before diseases spread widely

(28). AI enhances the accuracy of disease forecasting models. By

incorporating real-time data and complex variables, AI models can

predict the trajectory of infectious diseases with greater precision.

These predictions inform public health interventions, such as

vaccination campaigns and resource allocation, optimizing the

response to health crises (29). AI applications also extend to

monitoring environmental factors that influence public health.

For instance, AI systems can analyze air quality data to predict

pollution levels, enabling communities to take precautionary

measures to protect vulnerable populations. Similarly, AI can

assess climate data to anticipate weather-related health risks,

such as heatwaves or vector-borne diseases, facilitating timely

public health advisories (30). However, the deployment of AI

in public health surveillance must address challenges related to

data privacy and ethical considerations. The use of personal

health information requires strict adherence to confidentiality

protocols and informed consent. Moreover, AI models must be

transparent and free from biases that could lead to disparities in

health interventions. Ensuring equitable access to AI-driven health

solutions is essential to prevent the exacerbation of existing health

inequalities (31).

2.3 Integrating AI for health monitoring in
educational settings

The convergence of artificial intelligence (AI) and educational

environments presents innovative opportunities for health

monitoring, particularly in safeguarding student wellbeing (32). By

embedding AI-driven health surveillance systems within schools,

institutions can proactively address public health concerns and

enhance the overall safety of the educational community (33).

One application involves the use of AI to monitor physiological

indicators among students. Wearable devices equipped with AI

algorithms can track vital signs such as body temperature, heart

rate, and respiratory patterns. Continuous analysis of this data

enables the early detection of potential health issues, including

infectious diseases, allowing for prompt medical intervention and

reducing the risk of transmission within the school population (34).

AI systems can also analyze behavioral patterns to identify signs

of mental health concerns. For example, changes in a student’s

activity levels, social interactions, or academic performance

may signal underlying issues such as anxiety or depression.

By recognizing these patterns, AI can alert school counselors

or psychologists, facilitating timely support and intervention

(35). The integration of AI-driven health monitoring extends to

environmental assessments within educational facilities. AI can

evaluate classroom conditions, including air quality, lighting,

and noise levels, to ensure they meet health and safety standards.

Maintaining an optimal learning environment contributes to

the physical wellbeing of students and supports their cognitive

functions (36). Implementing AI for health monitoring in

schools also aids in managing public health emergencies. During

outbreaks of contagious diseases, AI can assist in contact tracing

by analyzing interactions and proximity between individuals.

This capability enables rapid identification of those at risk,

supporting containment measures and minimizing disruption

to educational activities (37). Despite the benefits, the adoption

of AI-based health monitoring in educational settings raises

important ethical and privacy considerations. The collection of

health-related data necessitates robust data protection measures

to prevent unauthorized access and misuse (38). Transparency in

data usage policies and obtaining informed consent from students

and guardians are essential to maintain trust and compliance with

legal standards (39). To ensure the broader relevance of this work

to the public health community, we emphasize that the proposed

AI-driven system is not only a technical advancement but also

a practical tool for real-time behavior monitoring in schools.

By identifying prolonged sedentary behavior, irregular hygiene

compliance, or signs of student distress, the system can support

early interventions and health-promoting decisions by school staff.

These capabilities align directly with public health goals of disease

prevention, mental health monitoring, and resource-efficient

surveillance in educational institutions.
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2.4 Ethical and policy considerations in
AI-based educational health systems

While technological advancements in AI and computer vision

have enabled increasingly accurate action recognition, their

deployment in school settings must be grounded in broader

ethical and policy contexts. As highlighted by Langford (40), the

WHO Health Promoting Schools framework underscores that

educational institutions play a pivotal role not only in academic

development but also in fostering student health and wellbeing.

AI-based monitoring tools should therefore align with this dual

mandate—supporting both learning and early detection of health

risks through non-invasive, supportive interventions. At the same

time, the growing prevalence of data-driven technologies in

education raises critical concerns about privacy and digital literacy.

Livingstone et al. (41) emphasize that schools are not only sites

of learning but also central to cultivating children’s data and

privacy awareness in a datafied society. Any AI system designed

to monitor student behavior must therefore be transparent,

minimally intrusive, and deployed with explicit data governance

policies to ensure ethical use. The broader discourse on ethical

AI offers foundational principles for responsible system design.

Floridi et al. (42) propose a normative framework emphasizing

transparency, justice, autonomy, and accountability—values that

are particularly important in educational environments where

automated systems may influence learning trajectories, health

interventions, and student equity. By situating our system within

these interdisciplinary frameworks, we aim to ensure that its

deployment contributes not only to technical advancement but also

to ethically sound, socially responsive educational innovation.

3 Results

3.1 Comparison with SOTA methods

To assess the efficiency of our suggested approach, we

benchmark it against multiple cutting-edge (SOTA) techniques

across four standard medical imaging datasets: BAR, ANUBIS,

MPOSE2021, and EdNet. The quantitative results are presented

in Tables 1, 2. Our method consistently outperforms existing

approaches across all datasets, achieving superior accuracy, recall,

F1 metric, and area under the curve (AUC).

In Figure 1, for the BAR dataset, our model achieves an

accuracy of 92.78%, an F1 metric of 89.77%, and an area

under the curve (AUC) of 92.68%, significantly outperforming

prior methods such as C3D, I3D, and SlowFast networks. The

performance gain can be attributed to the enhanced feature

extraction capabilities of our model, which leverages multi-scale

attention and deep fusion strategies to better capture disease-

specific patterns in chest radiographs. Furthermore, our method

effectively addresses class imbalance through focal loss and data

augmentation techniques, leading to improved recall (91.46%),

which is crucial for medical diagnosis. On the ANUBIS dataset,

Our framework attains a precision of 93.39% and an F1 metric

of 89.25%, exceeding prior techniques, such as TimeSformer

and VTN. The superior performance is due to our novel

3D-aware feature representation, which efficiently models lung

nodules’ spatial and contextual characteristics. Our approach

incorporates attention-based mechanisms to enhance fine-grained

lesion localization while reducing false positives. Our model

benefits from a robust pre-processing pipeline, including nodule

size normalization and adaptive thresholding, which improves

segmentation precision. In Figure 2, for the MPOSE2021 dataset,

Our approach achieves a precision of 91.82% and an area under

the curve (AUC) of 91.40%, surpassing earlier segmentation

techniques. The primary advantage of our model lies in its

ability to integrate attention-driven multi-scale features, ensuring

robust tumor segmentation across different glioma subtypes. The

inclusion of Dice loss optimization and advanced augmentation

techniques further contributes to its superior performance. Unlike

existing approaches that struggle with over-segmentation, our

method employs a hybrid U-Net with self-attention mechanisms

to refine tumor boundaries and enhance segmentation accuracy.

In the EdNet dataset, our method achieves an area under the

curve (AUC) of 90.91% and an accuracy of 92.45%, significantly

surpassing competing approaches. The improved performance is

attributed to our transformer-based architecture, which captures

long-range dependencies in histopathological images, allowing

for more precise metastasis detection. Furthermore, we employ

a novel ensembling strategy that combines multiple model

predictions to enhance robustness and generalization. Compared

to other methods, such as SlowFast and TimeSformer, our model

demonstrates a substantial improvement in recall (89.72%), which

is crucial for reducing false negatives in cancer detection.

3.2 Ablation study

To further analyze the effectiveness of different components

in our proposed method, we conduct an ablation study on the

BAR, ANUBIS, MPOSE2021, and EdNet datasets. The results

are summarized in Tables 3, 4, where we evaluate the model

performance after removing key components: w/o Dynamic

Knowledge State Update, w/o Performance Prediction Mechanism,

andw/oAdaptive Content Recommendation. These ablations allow

us to understand the contribution of each module to the overall

model performance.

In Figure 3, From the results on the BAR dataset, We

notice a substantial decline in accuracy (from 92.78% to 88.42%)

and F1 metric (from 89.77% to 83.95%) when the Dynamic

Knowledge State Update is removed., indicating that Dynamic

Knowledge State Update plays a crucial role in improving feature

representation. Similarly, the recall decreases from 91.46% to

85.71%, demonstrating that Dynamic Knowledge State Update

contributes significantly to detecting thoracic diseases. The

ANUBIS dataset follows a similar trend, where excluding Dynamic

Knowledge State Update reduces accuracy to 86.91% and area

under the curve (AUC) to 85.45%. This suggests that Dynamic

Knowledge State Update is essential for capturing spatial and

contextual information in lung nodule detection. In Figure 4,

Removing Performance Prediction Mechanism also negatively

impacts model performance across all datasets, although to a

slightly lesser extent than Dynamic Knowledge State Update.

On the BAR dataset, accuracy decreases to 89.77%, and recall

drops to 86.34%, showing that Performance Prediction Mechanism
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TABLE 1 Quantitative evaluation on BAR and ANUBIS datasets showing enhanced detection accuracy for applications in school-based public health

surveillance.

Model BAR dataset ANUBIS dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

C3D (47) 85.43± 0.03 78.19± 0.02 81.28± 0.02 87.71± 0.03 82.29± 0.03 80.10± 0.02 78.63± 0.02 81.20± 0.03

I3D (48) 88.13± 0.03 80.80± 0.02 85.27± 0.03 89.58± 0.03 85.70± 0.03 79.97± 0.02 84.21± 0.02 82.62± 0.02

TSN (49) 87.86± 0.02 79.98± 0.02 82.03± 0.02 85.24± 0.02 84.22± 0.02 80.64± 0.01 81.37± 0.02 83.15± 0.02

SlowFast (50) 89.54± 0.02 81.59± 0.02 84.77± 0.02 88.72± 0.03 86.15± 0.03 85.23± 0.03 83.33± 0.03 85.07± 0.03

TimeSformer (51) 90.86± 0.03 89.49± 0.03 83.24± 0.02 86.48± 0.03 86.72± 0.02 84.19± 0.02 83.92± 0.02 88.47± 0.03

VTN (52) 86.30± 0.02 88.89± 0.03 87.72± 0.02 84.03± 0.02 88.20± 0.02 86.81± 0.03 85.15± 0.02 87.42± 0.03

Ours 92.78 ± 0.02 91.46 ± 0.02 89.77 ± 0.03 92.68 ± 0.03 93.39 ± 0.03 90.94 ± 0.02 89.25 ± 0.03 91.14 ± 0.02

The values in bold are the best values.

TABLE 2 Performance metrics on MPOSE2021 and EdNet datasets supporting the deployment of AI-based systems for student health behavior analysis.

Model MPOSE2021 dataset EdNet dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

C3D (47) 84.32± 0.03 79.45± 0.02 80.92± 0.02 86.78± 0.03 81.24± 0.03 78.61± 0.02 80.35± 0.02 83.90± 0.03

I3D (48) 86.75± 0.03 81.60± 0.02 84.32± 0.03 88.21± 0.03 83.89± 0.03 79.43± 0.02 82.67± 0.02 84.52± 0.02

TSN (49) 85.98± 0.02 80.29± 0.02 83.15± 0.02 85.72± 0.02 84.53± 0.02 80.78± 0.01 81.97± 0.02 86.23± 0.02

SlowFast (50) 89.21± 0.02 82.97± 0.02 86.11± 0.02 87.35± 0.03 86.47± 0.03 84.15± 0.03 82.90± 0.03 85.78± 0.03

TimeSformer (51) 88.67± 0.03 85.72± 0.03 82.56± 0.02 87.94± 0.03 85.93± 0.02 83.20± 0.02 81.74± 0.02 87.32± 0.03

VTN (52) 87.54± 0.02 86.89± 0.03 85.37± 0.02 84.95± 0.02 87.39± 0.02 85.47± 0.03 83.61± 0.02 86.74± 0.03

Ours 91.82 ± 0.02 90.33 ± 0.02 88.25 ± 0.03 91.40 ± 0.03 92.45 ± 0.03 89.72 ± 0.02 88.89 ± 0.03 90.91 ± 0.02

The values in bold are the best values.

FIGURE 1

Comparison of our method with state-of-the-art techniques on BAR and ANUBIS Datasets, highlighting enhanced public health monitoring

capabilities through improved disease recognition accuracy and recall.

enhances generalization and robustness. Similarly, on the ANUBIS

dataset, accuracy decreases from 93.39% to 87.54%, indicating that

Performance Prediction Mechanism is critical for ensuring reliable

predictions. The impact of Performance Prediction Mechanism

is also evident in the MPOSE2021 dataset, where accuracy

drops from 91.82% to 87.54%, and in EdNet, where area under

the curve (AUC) falls from 90.91% to 86.89%. These results

highlight that Performance Prediction Mechanism contributes to

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1592228
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lu and Ruijuan 10.3389/fpubh.2025.1592228

FIGURE 2

Performance comparison on MPOSE2021 and EdNet datasets demonstrating the potential of AI-driven systems for supporting public health

initiatives in educational environments.

TABLE 3 E�ect of key model components on disease detection performance in BAR and ANUBIS datasets, informing design of health-focused

recognition systems.

Model BAR dataset ANUBIS dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Dynamic Knowledge State

Update

88.42± 0.02 85.71± 0.03 83.95± 0.02 89.23± 0.03 86.91± 0.02 84.27± 0.03 82.61± 0.02 85.45± 0.03

w/o Performance Prediction

Mechanism

89.77± 0.03 86.34± 0.02 84.89± 0.03 90.14± 0.02 87.54± 0.02 85.02± 0.03 83.29± 0.02 86.79± 0.03

w/o Adaptive Content

Recommendation

90.35± 0.02 87.89± 0.03 85.72± 0.02 91.05± 0.03 88.72± 0.02 86.48± 0.02 84.92± 0.02 87.31± 0.02

Ours 92.78 ± 0.02 91.46 ± 0.02 89.77 ± 0.03 92.68 ± 0.03 93.39 ± 0.03 90.94 ± 0.02 89.25 ± 0.03 91.14 ± 0.02

The values in bold are the best values.

refining segmentation boundaries and reducing false positives in

histopathological image analysis. Dynamic content suggestion also

holds a crucial function in enhancing the model’s effectiveness,

as seen in the results. On the MPOSE2021 dataset, removing

Adaptive Content Recommendation results in a decrease in

accuracy (from 91.82% to 89.03%) and recall (from 90.33% to

86.27%). Similarly, on the EdNet dataset, accuracy drops from

92.45% to 87.11%. These results suggest that Adaptive Content

Recommendation helps capture fine-grained structural details,

which are particularly important for tumor segmentation and

metastasis detection.Without Adaptive Content Recommendation,

the model struggles with complex regions, leading to a reduction in

overall segmentation performance.

To further evaluate the robustness and generalization capability

of our proposed model, we conducted cross-dataset validation

experiments across diverse educational contexts. As shown in

Table 5, the model trained on the EdNet K-12 subset achieved

an accuracy of 89.30% and an F1 score of 87.21% when

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2025.1592228
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Lu and Ruijuan 10.3389/fpubh.2025.1592228

TABLE 4 Ablation study results on MPOSE2021 and EdNet datasets highlighting model contributions to student health behavior modeling.

Model MPOSE2021 dataset EdNet dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o Dynamic Knowledge State

Update

86.12± 0.03 82.45± 0.02 83.78± 0.02 87.63± 0.03 84.07± 0.03 81.23± 0.02 80.92± 0.02 86.11± 0.03

w/o Performance Prediction

Mechanism

87.54± 0.02 84.91± 0.03 85.23± 0.02 88.74± 0.02 85.92± 0.02 82.78± 0.03 82.47± 0.02 86.89± 0.03

w/o Adaptive Content

Recommendation

89.03± 0.03 86.27± 0.02 84.91± 0.03 89.85± 0.03 87.11± 0.02 85.43± 0.02 83.79± 0.02 88.03± 0.02

Ours 91.82 ± 0.02 90.33 ± 0.02 88.25 ± 0.03 91.40 ± 0.03 92.45 ± 0.03 89.72 ± 0.02 88.89 ± 0.03 90.91 ± 0.02

The values in bold are the best values.

FIGURE 3

Ablation analysis on BAR and ANUBIS datasets illustrating the importance of model components in ensuring reliable public health risk detection.

FIGURE 4

Ablation study on MPOSE2021 and EdNet datasets emphasizing model robustness in behavioral and health-related pattern recognition within

educational settings.
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tested on EdNet data from higher education learners. This

indicates that the system effectively generalizes across different

age groups and cognitive levels. Similarly, when trained on the

BAR dataset and tested on MPOSE2021, the model maintained

strong performance (accuracy of 87.64% and AUC of 88.71%),

demonstrating adaptability to multi-person, culturally variable

classroom scenarios. Notably, the model achieved the highest

cross-regional transfer results when trained on MPOSE2021 data

from Asian contexts and tested on European subsets, with an

accuracy of 90.22%, F1 score of 88.44%, and AUC of 91.03%.

These results suggest that the system captures culturally invariant

features of educational behaviors, enhancing its potential for global

deployment. The consistent performance across datasets affirms

the model’s capability to generalize beyond the original training

distribution, making it suitable for scalable use in real-world

educational monitoring systems.

Although the primary datasets employed in our experiments—

BAR, ANUBIS, and MPOSE2021—originate from broader

domains such as human activity recognition and medical imaging,

they serve as strong structural proxies for modeling behavioral

patterns relevant to educational settings. BAR and MPOSE2021

capture rich spatiotemporal motion data that align with the

physical behaviors observable in classroom contexts, while

ANUBIS contributes to evaluating attention mechanisms through

its dense annotation structure. To further validate the applicability

of our system within real-world educational environments, we

extended our experiments to include two additional datasets more

directly aligned with educational public health monitoring, both

of which capture behaviors with direct relevance to school-based

health monitoring. In Table 6, the EduSense dataset reflects

nuanced classroom behaviors such as inattentiveness, posture

changes, and engagement fluctuations, while UTD-MHAD

TABLE 5 Cross-dataset generalization results across diverse educational

contexts.

Training
dataset

Testing
dataset

Accuracy
(%)

F1 score
(%)

AUC (%)

EdNet

(K-12)

EdNet

(Higher Ed)

89.30± 0.02 87.21± 0.02 90.45± 0.03

BAR MPOSE2021 87.64± 0.02 85.03± 0.03 88.71± 0.02

MPOSE2021

(Asia)

MPOSE2021

(Europe)

90.22 ± 0.03 88.44 ± 0.02 91.03 ± 0.03

The values in bold are the best values.

contains fine-grained physical activities like drinking, stretching,

and sneezing that can signal potential health concerns. These

datasets provide a more context-aligned evaluation for assessing

AI-driven action recognition in educational health scenarios. The

results demonstrate that our proposed AKEN + DPLS framework

consistently outperforms baseline models across all metrics. On the

EduSense dataset, our model achieved an accuracy of 88.92% and

an AUC of 90.03%, exceeding SlowFast and I3D by a significant

margin. Similarly, on UTD-MHAD, our method reached 90.74%

accuracy and an AUC of 91.55%, indicating strong generalization

across modalities including RGB-D and inertial signals. These

improvements suggest that the system effectively captures both

short-term motion dynamics and long-term behavior patterns,

enabling robust detection of health-related activities in diverse

educational contexts. The high F1 scores reflect the model’s

balanced precision and recall, which is critical in identifying subtle

but important behaviors without increasing false alarms. These

results support the claim that the proposed system is not only

effective in general action recognition tasks but also well-suited

for health-aware behavior detection in schools. The adaptability to

different sensor inputs and the preservation of high interpretability

make it a promising solution for integrating AI-driven health

monitoring into everyday classroom settings.

3.3 Ethical, legal, and privacy
considerations in school-based AI systems

The use of AI-powered behavior monitoring in educational

settings introduces complex ethical and privacy-related challenges

that must be addressed to ensure responsible deployment. Schools

are sensitive environments where students—particularly minors—

are under the care of institutions, and any surveillance or data

collection must be grounded in transparency, necessity, and trust.

The collection and analysis of behavioral data raise significant

privacy concerns. Even though our system is designed to rely on

non-identifiable inputs such as skeletal pose data or anonymized

sensor streams, the very act of monitoring behavior could lead

to discomfort or perceived surveillance anxiety if not handled

carefully. To mitigate this, we propose adopting a privacy-by-

design framework that limits data granularity, avoids raw video

storage, and uses on-device or edge computing wherever possible

to minimize external data transmission. In terms of consent and

TABLE 6 Performance of the proposed system on EduSense and UTD-MHAD datasets.

Model EduSense dataset UTD-MHAD dataset

Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%) Accuracy
(%)

Recall (%) F1 score
(%)

AUC (%)

C3D 81.73± 0.02 78.20± 0.03 77.85± 0.02 84.40± 0.02 83.05± 0.03 80.18± 0.02 79.90± 0.02 85.76± 0.02

I3D 83.25± 0.03 80.89± 0.02 80.10± 0.02 85.12± 0.03 84.94± 0.02 82.33± 0.02 81.80± 0.03 87.03± 0.03

SlowFast 85.61± 0.03 82.47± 0.03 82.20± 0.02 86.95± 0.02 86.87± 0.03 84.19± 0.03 83.60± 0.02 88.61± 0.02

Ours (AKEN +

DPLS)

88.92 ± 0.02 86.13 ± 0.02 85.50 ± 0.03 90.03 ± 0.02 90.74 ± 0.02 88.25 ± 0.02 87.63 ± 0.03 91.55 ± 0.02

The values in bold are the best values.
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legal compliance, educational institutions should implement multi-

layered consent protocols involving school administrators, parents

or guardians, and, where appropriate, the students themselves.

These protocols must clearly communicate the purpose, scope,

data retention policy, and opt-out procedures related to the

system. Systems must comply with relevant data protection laws

such as the General Data Protection Regulation (GDPR) in the

EU or FERPA (Family Educational Rights and Privacy Act) in

the US. From an ethical standpoint, the deployment of AI in

schools must uphold values such as fairness, non-discrimination,

and accountability. Automated alerts or behavior classifications

should never serve as the sole basis for disciplinary or health

decisions. Instead, they must be used to support—not replace—

human judgment, with clear intervention guidelines that prioritize

educational support and student wellbeing. To reinforce this,

we recommend establishing an AI Oversight Committee within

schools, composed of educators, parents, health professionals, and

legal advisors, to evaluate the appropriateness and impact of such

technologies on an ongoing basis. By embedding these safeguards

into both technical and institutional layers, the proposed system

can offermeaningful public health benefits while respecting student

rights and reinforcing ethical standards in educational innovation.

4 Method

4.1 Overview

Artificial Intelligence (AI) has significantly transformed the

landscape of education by introducing intelligent systems that

enhance learning processes, personalize educational experiences,

and optimize administrative tasks. This part presents a summary

of the suggested approach, which integrates AI-driven models to

improve educational outcomes. The subsequent sections elaborate

on the theoretical foundations, novel model architecture, and

innovative strategies employed in our approach. Education is a

domain characterized by vast and heterogeneous data, including

student performance records, behavioral patterns, and multimodal

learning resources. Traditional educational methodologies often

struggle to adapt to individual learning needs, leading to

inefficiencies in knowledge dissemination and skill acquisition. AI-

powered educational frameworks aim to address these limitations

by leveraging machine learning algorithms, natural language

processing, and adaptive learning techniques.

In Section 4.2, we formalize the problem by defining key

educational metrics and structuring learning environments within

a mathematical framework. This formalization enables precise

modeling of student interactions, knowledge progression, and

instructional strategies. The section also introduces fundamental

concepts such as cognitive modeling, student profiling, and

content recommendation. In Section 4.3, we introduce our

novel AI-driven educational model, which dynamically adjusts

instructional content based on real-time student performance data.

Unlike conventional rule-based adaptive systems, our approach

incorporates deep learning techniques to capture complex learning

behaviors and predict future knowledge acquisition trends. The

proposed model is designed to operate in various learning

environments, including online platforms, blended learning

settings, and intelligent tutoring systems. In Section 4.4, we detail

an innovative strategy that enhances the effectiveness of AI-driven

education. This strategy integrates explainable AI techniques to

provide transparent feedback mechanisms, ensuring that both

educators and students can interpret model recommendations.

We incorporate reinforcement learning to optimize curriculum

sequencing, thereby improving learning efficiency and engagement.

4.2 Preliminaries

To rigorously ground our approach, we begin by formalizing

the educational interaction setting. We consider a set of students

engaging with educational content over a sequence of learning

sessions. Each student’s knowledge state evolves as they interact

with content and respond to exercises. This dynamic process is

modeled by a knowledge representation that changes over time,

influenced by the content presented and the student’s responses.

The probability of a correct answer is captured using a logistic

model based on the alignment between a student’s knowledge state

and the content vector.

The goal of the system is to optimize learning outcomes by

adaptively selecting content that maximizes expected knowledge

gain. This involves defining a policy that governs instructional

decisions based on the student’s current knowledge state,

incorporating both performance and engagement signals. We

leverage reinforcement learning to model this instructional policy,

aiming to improve long-term retention and understanding.

For clarity and completeness, the full mathematical

formulation—including all underlying equations, state transition

functions, probabilistic modeling, and policy optimization

details—is provided in the Supplementary material.

4.3 Adaptive knowledge embedding
network

We propose the Adaptive Knowledge Embedding Network

(AKEN), a model designed to capture the temporal and

personalized nature of student learning in AI-enhanced

educational systems. AKEN represents each student’s knowledge

state as a dynamic vector that evolves based on continuous

interaction with learning content. The model incorporates a

gated update mechanism that selectively integrates new learning

signals while retaining prior knowledge. This formulation allows

for the modeling of nuanced learning behaviors, such as gradual

knowledge accumulation and forgetting. The overall architecture of

the proposed Adaptive Knowledge Embedding Network (AKEN) is

illustrated in Figure 5. It integrates multiple components including

dynamic knowledge state updates, graph-based relational modeling

using GCNs, performance prediction modules, and engagement-

aware adaptation mechanisms. Together, these elements enable

a personalized and context-aware learning experience that

dynamically responds to each student’s evolving knowledge state

and motivational signals.

Each educational content item is embedded in the same latent

space as the knowledge vector, enabling efficient computation of

alignment and relevance. The knowledge update at each time step

is determined by a combination of the student’s previous state, the
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FIGURE 5

The image illustrates the architecture of the Adaptive Knowledge Embedding Network (AKEN), which integrates dynamic knowledge state updates

graph convolutional networks GCNs performance prediction mechanisms and engagement-aware learning adaptation to enhance personalized

learning in educational systems.

engaged content, and the correctness of their response. To reflect

the temporal dependencies in learning, AKEN uses a recurrent

structure that propagates knowledge updates forward through time.

Additionally, gating functions regulate howmuch new information

is incorporated, ensuring that learning dynamics remain stable

and interpretable.

To better model long-term retention and knowledge

consistency, the system can further integrate reinforcement-

based adjustments, allowing the model to modulate the effect

of feedback based on historical context and learning outcomes.

This adaptability makes AKEN particularly suited to educational

environments where learning is sequential, personalized, and

sensitive to prior experiences.

The Adaptive Knowledge Embedding Network (AKEN) also

incorporates a performance prediction mechanism, enabling the

system to estimate the likelihood of a correct response based on

a student’s current knowledge state and the content presented.

This predictive ability supports real-time adaptation by prioritizing

learning materials that are both challenging and beneficial for long-

term growth. The content selection strategy is further enhanced

by integrating expected knowledge gains, balancing short-term

performance with cumulative learning benefits.

To model the interplay between student engagement and

knowledge evolution, we further introduce the Engagement-Aware

Learning Adaptation framework as depicted in Figure 6. This

framework incorporates both temporal and contextual cues to

refine knowledge modeling. It employs a joint representation of

engagement signals and knowledge vectors, supported by surrogate

entity-based classification to predict student performance

under varying motivational states. By capturing dynamic

engagement fluctuations and aligning them with instructional

responses, the system enables responsive and affect-sensitive

learning interventions.

To model the continuous evolution of student knowledge,

AKEN refines its internal state using discrepancy-driven

updates, adjusting the knowledge representation in

response to prediction errors. This facilitates targeted

learning and strengthens cognitive retention. The model

also accounts for content difficulty, allowing it to tailor

recommendations not just by knowledge alignment but also

by challenge level, creating a more personalized and effective

learning trajectory.

Crucially, AKEN integrates student engagement into its

learning mechanism. Engagement is modeled as a latent dynamic

state influenced by prior behavior, current knowledge, and

contextual information. This engagement signal directly affects

both the evolution of the knowledge state and the effectiveness

of instructional interventions. By capturing how engagement

modulates knowledge transitions, AKEN ensures that highly

engaged students benefit more from content exposure, while

disengaged students receive tailored support.

Incorporating engagement also enhances prediction accuracy,

as performance becomes a function of both cognitive mastery

and motivational readiness. An adaptive learning rate mechanism

further aligns learning efficiency with engagement levels,

accelerating progress for motivated learners.

The full set of equations and detailed architecture of

AKEN—including probabilistic update functions, engagement

modeling, and optimization procedures—are provided in the

Supplementary material.
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FIGURE 6

Engagement-aware learning adaptation framework, a dynamic representation of student engagement and knowledge evolution, integrating spatial

and temporal contexts with engagement-aware learning adaptation. The model employs engagement feature representation, knowledge state

modeling, and surrogate entity-based classification to optimize student performance predictions.

4.4 Dynamic personalized learning strategy

To further enhance personalized education, we introduce

the Dynamic Personalized Learning Strategy (DPLS), a learning

policy that dynamically adapts content sequencing based on a

student’s real-time performance and engagement. Unlike fixed

curricula, DPLS optimizes the learning trajectory to balance short-

term accuracy and long-term retention. It selects instructional

content using a reinforcement learning framework, aiming to

maximize the expected learning value over time while accounting

for individual variability.

The complete structure of the proposed Dynamic Personalized

Learning Strategy (DPLS) is shown in Figure 7. This architecture

illustrates how adaptive content recommendation, explainable

learning decision-making, and efficient assessment mechanisms are

integrated into a unified pipeline. DPLS leverages feature extraction

modules, patch embedding layers, and attention mechanisms to

tailor instructional sequences to individual learners. This design

allows the system to adapt in real time to both cognitive

performance and engagement signals, supporting scalable and

interpretable personalized learning.

The recommendation policy operates within a Markov

Decision Process, where the student’s knowledge state evolves

according to both correctness of responses and engagement

levels. This enables DPLS to adjust content difficulty adaptively,

maintaining an optimal challenge range for each learner and

preventing stagnation or disengagement. A dynamic learning rate

mechanism further tunes the intensity of knowledge updates based

on recent performance trends.

DPLS also incorporates explainability to enhance trust

and instructional insight. It evaluates the contribution of

individual knowledge components to prediction outcomes,

enabling transparent reasoning behind recommendations.

An engagement-sensitive mechanism tracks fluctuations in

motivation, using these insights to guide content adjustments

that sustain student attention. The strategy includes a dedicated

function for estimating how specific content affects engagement,

allowing for real-time curriculum modulation.

Figure 8 illustrates the core mechanism of the efficient adaptive

assessment module, which integrates a triplet attention structure

combining information gain analysis, Bayesian knowledge

updating, and engagement-aware adaptation. This framework

allows the system to select the most informative assessment

items, refine knowledge estimates with minimal student burden,

and dynamically adjust based on motivational signals. The design

ensures high assessment efficiency while preserving personalization

and cognitive accuracy in real-time knowledge modeling.

To minimize unnecessary testing, DPLS deploys an adaptive

assessment mechanism that prioritizes items with the highest

expected information gain. Bayesian updates refine knowledge

estimates based on student responses, ensuring that evaluation

remains efficient and accurate. The overarching learning objective

combines predictive accuracy, regularization, and engagement

optimization to deliver a robust and student-centric strategy.

The full formulation of DPLS, including detailed reward

structures, engagement models, explainability functions,

and adaptive assessment procedures, is presented in the

Supplementary material.

5 Experimental setup

5.1 Dataset

The BAR Dataset (43) is a large-scale collection of behavioral

action recognition data, designed for studying human activities
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FIGURE 7

Architecture of the Dynamic Personalized Learning Strategy (DPLS), illustrating the adaptive content recommendation, explainable learning

decisions, and e�cient adaptive assessment modules. The system leverages feature extraction, patch embedding, and attention mechanisms to

optimize personalized learning paths.

FIGURE 8

E�cient adaptive assessment, a triplet attention mechanism integrating information gain computation, Bayesian knowledge update, and

engagement-aware learning for dynamic student knowledge estimation.

in various contexts. It contains annotated video clips with

detailed action labels, making it a valuable resource for training

and evaluating deep learning models in action recognition.

The dataset is widely used for applications in surveillance,

healthcare monitoring, and human-computer interaction. The

ANUBIS Dataset (44) is a medical imaging dataset focused on

orthopedic radiographs, particularly for bone fracture detection

and classification. It includes a diverse range of X-ray images

covering multiple anatomical regions, with expert-verified labels.

This dataset plays a crucial role in the development of

computer-aided diagnosis (CAD) systems for musculoskeletal

disorders, improving automated fracture detection accuracy and

efficiency. The MPOSE2021 Dataset (45) is a multi-person pose

estimation dataset that includes a wide variety of human poses

captured in different environments. The dataset provides high-

resolution keypoint annotations for multiple subjects in each

frame, making it a benchmark for evaluating pose estimation

models. Researchers use MPOSE2021 for applications in motion

analysis, sports analytics, and augmented reality. The EdNet

Dataset (46) is an educational dataset containing extensive learning
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activity records from online learning platforms. It includes student

interactions with learning materials, question-answering logs, and

engagement metrics, making it a valuable resource for educational

data mining and adaptive learning research. EdNet enables

the development of AI-driven personalized learning systems,

improving educational outcomes through intelligent tutoring and

recommendation systems.

5.2 Experimental details

In our experiments, we employ a deep learning-based

framework to evaluate the effectiveness of our proposed method

on multiple medical imaging datasets. The model is implemented

using PyTorch and trained on an NVIDIA A100 GPU with

80GB memory. We utilize a batch size of 16 and train the

model for 100 epochs. We use the Adam optimizer with an

initial learning rate of 1 × 10−4, which is reduced by 90%

every 30 epochs when the validation loss stagnates. Weight decay

is set to 5 × 10−5 to prevent overfitting. For initialization,

we adopt He initialization for convolutional layers, while batch

normalization is applied after each convolutional layer to stabilize

training. For data preprocessing, we apply intensity normalization,

histogram equalization, and random augmentations such as

flipping, rotation, and elastic deformations to improve model

generalization. All images are resized to 224 × 224 pixels to

maintain consistency across different datasets. During training,

we employ a 5-fold cross-validation strategy to ensure robustness.

The loss function used varies based on the task: for classification,

we employ binary cross-entropy loss; for segmentation tasks,

a fusion of Dice loss and cross-entropy loss is utilized. For

the BAR dataset, we utilize pre-trained ResNet-50 and fine-

tune it for disease classification. The model is evaluated using

Area Under the Curve (AUC) and F1 metric. For ANUBIS, a

3D U-Net is used for nodule segmentation, with performance

measured using Dice Similarity Coefficient (DSC) and Intersection

over Union (IoU). The MPOSE2021 dataset requires tumor

segmentation, for which we employ a modified U-Net with

attention mechanisms, evaluating performance with DSC and

Hausdorff Distance. In the EdNet dataset, we use a Vision

Transformer (ViT) model trained for histopathological image

classification, measuring area under the curve (AUC) and

accuracy as primary metrics. To mitigate class imbalance, we

apply data balancing techniques, including oversampling the

minority class and using focal loss for classification tasks. Model

performance is further stabilized using label smoothing and

dropout with a probability of 0.3 in fully connected layers.

Gradient clipping is applied with a threshold of 1.0 to prevent

exploding gradients. Inference is performed using a sliding-

window approach for segmentation tasks, ensuring accurate

predictions without border artifacts. For classification tasks, test-

time augmentation (TTA) is applied by averaging predictions

from multiple augmented versions of the test images. Post-

processing includes morphological operations for segmentation

refinement and ensembling of multiple models via majority voting

to enhance robustness.

To support real-time deployment in educational environments,

the proposed system was evaluated under both high-performance

and edge-computing conditions, with a focus on inference

efficiency. On the resource-constrained NVIDIA Jetson Xavier

NX, the system achieved an average inference speed of ∼12

frames per second after optimizing model complexity and disabling

augmentation modules, demonstrating its suitability for real-

time behavior recognition tasks. The minimum recommended

deployment configuration includes an 8-core CPU, 16 GB of

RAM, and a CUDA-enabled GPU with at least 8 GB of

memory, ensuring adaptability across a wide range of educational

hardware platforms.

6 Discussion

The empirical results presented in this study validate the

technical effectiveness of the proposed AI-driven information

system across multiple datasets and educational contexts. However,

beyond raw performance metrics, it is crucial to reflect on how

these outcomes relate to the theoretical foundations of our

architecture. The Adaptive Knowledge Embedding Network

(AKEN) was designed to model the dynamic evolution of student

knowledge states in a personalized and temporally aware manner.

The improvements observed in predictive accuracy and F1

scores across all datasets support the theoretical proposition

that integrating recurrent updates and engagement-aware

adaptation leads to more reliable behavioral modeling. The

cross-dataset generalization results reinforce the hypothesis

that embedding representations based on cumulative and gated

knowledge transitions can transcend local context variations—

thereby enabling scalable application across age, cultural, and

curricular boundaries. The Dynamic Personalized Learning

Strategy (DPLS), incorporating reinforcement learning and

explainability mechanisms, further enhances the system’s ability to

align content recommendations and health-related interventions

with individual learning trajectories. The statistically significant

gains observed in ablation studies when DPLS components

are included confirm its theoretical role in improving adaptive

decision-making through context-sensitive policy optimization.

The incorporation of engagement-aware adjustments into both

AKEN and DPLS proved instrumental in sustaining accuracy in

fluctuating learning conditions, affirming our assumption that

student engagement functions as a latent variable essential for both

educational performance and behavior-based health monitoring.

This supports a broader theoretical view that cognitive-affective

states are tightly interwoven with observable behaviors in

learning environments, and can be computationally modeled

for proactive system response. The technical findings not only

demonstrate high empirical performance but also reinforce the

theoretical validity of our proposed framework. They affirm that

educational action recognition, when grounded in individualized

knowledge modeling and adaptive learning strategies, can offer

meaningful support for public health monitoring in schools.

This convergence of theory and implementation underscores

the broader significance of our system in advancing AI-driven

educational technology.
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To bridge the gap between research and implementation, we

outline a practical workflow for deploying the proposed system in

real-world educational institutions. The system can be integrated

into classroom environments through existing infrastructure

such as ceiling-mounted depth cameras or embedded wearable

devices. These sensors capture motion data in real time without

recording identifiable visual content, addressing privacy concerns

while enabling accurate behavioral monitoring. In this setting,

the AI system continuously analyzes student actions to identify

health-relevant patterns—such as excessive inactivity, frequent

face-touching, or non-compliance with hygiene routines. When

predefined thresholds are breached, the system can generate alerts

that are routed through a school’s internal network. For example,

classroom teachers may receive subtle dashboard indicators

showing reduced engagement or risky behavior clusters, prompting

in-class intervention such as reminders or physical activity breaks.

School nurses or counselors can be notified through a centralized

interface if the system detects signs that may warrant further

observation, such as persistent symptoms or unusual posture

patterns over multiple days. Stakeholders play complementary

roles: teachers act as first-line observers and response initiators,

health staff provide medical follow-up and trend analysis, while

school administrators oversee policy compliance and resource

planning. The system also supports longitudinal tracking, enabling

institutions to identify systemic issues—such as ergonomic risks

or spread patterns of seasonal illnesses—and adjust classroom

protocols accordingly. By embedding AI-driven monitoring into

everyday school operations, this approach offers a scalable,

minimally disruptive solution for enhancing health responsiveness

and safety in educational environments.

Beyond improved accuracy and F1 scores, the performance

of our system carries practical implications for real-time public

health monitoring in schools. For instance, the model’s ability to

detect subtle behavioral patterns such as repetitive face-touching,

persistent inactivity, or irregular postures can support the early

identification of illness symptoms like fatigue, discomfort, or

respiratory distress. In a post-pandemic context, these indicators

are particularly relevant for triggering low-threshold health alerts,

enabling timely responses before symptoms escalate or spread. The

system’s high precision in action classification allows educators

and school health personnel to intervene in behavior-linked risks

without overburdening staff with false positives. For example,

reliable recognition of sedentary behavior over extended periods

could prompt movement breaks or ergonomic adjustments,

while detection of hygiene-related non-compliance can inform

targeted awareness efforts. These micro-interventions, when

accumulated across a school population, contribute to system-

wide improvements in infection prevention, student engagement,

and overall wellness. The reported gains in model robustness

and generalizability are not only technical achievements but also

operational enablers of more responsive, scalable, and evidence-

driven health practices in educational institutions.

7 Conclusions and future work

This study investigates the integration of AI-driven

information systems into educational environments to support

public health monitoring through advanced action recognition.

Traditional rule-based and handcrafted feature extraction

approaches have shown clear limitations in adaptability, scalability,

and responsiveness—constraints that are especially critical

in dynamic school settings where early detection of health-

related behaviors is essential. In response, we proposed a novel

framework combining an Adaptive Knowledge Embedding

Network (AKEN) with a Dynamic Personalized Learning Strategy

(DPLS), enabling the system to model student behavior, forecast

actions, and adapt interventions based on cognitive engagement

and contextual cues.

Experimental results across diverse datasets confirm the

effectiveness of our approach in recognizing complex behavioral

patterns and generalizing across different educational stages and

cultural contexts. The integration of explainable AI and real-

time engagement modeling further ensures that system decisions

are interpretable, timely, and tailored to individual learners.

These findings demonstrate that AI-driven information systems,

when applied within educational environments, can serve not

only as personalized learning enhancers but also as proactive

health surveillance tools—identifying hygiene non-compliance,

sedentary risks, or social interaction anomalies that are critical

in maintaining institutional wellbeing. By bridging educational

data mining with public health objectives, our work offers a

scalable, intelligent framework that can support safer, more

adaptive, and more responsive learning environments. Future

work will explore lightweight deployment on edge devices,

improved interpretability mechanisms, and ethical safeguards to

further advance the responsible use of AI in educational public

health systems.

While the proposed system demonstrates strong

technical performance across multiple benchmark datasets,

its broader impact ultimately depends on successful real-

world integration. Future work will focus on deploying the

framework in live educational environments through pilot

studies, enabling direct observation of its utility in health

monitoring and student safety. Collaboration with educators,

school administrators, and public health officials will be

pursued to validate the system’s practicality, inform user-

centered refinements, and ensure alignment with institutional

policies and ethical standards. These efforts aim to bridge

the gap between technical development and actionable

policy implementation.
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